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Preface

In addition to material selection and component design, there are other equally important considerations that must
be addressed in the overall process of design selection. One of these is process design, which not only affects cost and
ease of production, but may also impact the final microstructure and mechanical properties of the component being
produced. While there are various texts which address a particular process design such as forging, casting, and
rolling, there is a need for a single text that will provide an overview of these processes as they relate to metallurgical
component design. The objective of this text is to provide a thorough overview of the more important processes from
the standpoint of the effect of design.

There are an extensive array of process designs discussed in this book. In Part One, Chapters 1 and 2 provide an
overview of hot and cold forming process design, which includes forging process design. Chapter 3 details the effect
of steel rolling process on microstructure and properties. Chapter 4 provides the most thorough and current over-
view on aluminum rolling process design available anywhere. Chapter 5 discusses semisolid metal-forming design.
Chapter 6 provides a rigorous overview of the principles of aluminum extrusion process design and Chapter 7 is a
comprehensive review of superplastic forming design.

Part Two focuses on casting process design for steel and aluminum, including continuous process designs in
addition to a summary of various foundry casting process designs. Extensive guidelines for die casting process design
are also included.

Various heat treatment practices are conducted to achieve the desired microstructural and mechanical properties
of a particular material. Proper design is vital to the end-use properties of the component being produced. Part Three
deals with various heat-treatment topics including: an overview of the effect of heat-treatment process design on
hardening, tempering, annealing and other properties, carburizing and carbonitriding, nitriding, induction heating,
and laser hardening. Chapter 17 discusses the use of quench factor analysis for selection of appropriate quench
media for aluminum processing. Chapter 18 covers the use of intensive quenching methodology to provide superior
compressive stresses and fatigue properties and/or the replacement of more expensive steel alloys with less expensive
plain-carbon steels.

Part Four deals with a topic of ever-increasing importance—surface engineering. This section includes topics on
ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and thermal spray process
design. Coating process design for surface endurance is also discussed.

In Part Five, Chapter 22 provides information on designing for machining processes, which is a key topic in
metallurgical process design.

This book is an invaluable reference for persons involved in any aspect of product design including metallurgists,
material scientists, product and process engineers, and component designers. It is also appropriate for use in an
advanced undergraduate or graduate class on material design.

iii
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Preface

We are indebted to the persistence and thorough work of the contributors to this book. We are also especially
grateful for the patience and invaluable assistance provided by the staff at Marcel Dekker, Inc. throughout the
preparation of this text.

George E.Totten
Kiyoshi Funatani

Lin Xie
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1

Chester J.Van Tyne
Colorado School of Mines, Golden, Colorado, U.S.A.

I. BULK DEFORMATION

Bulk deformation is a metal-forming process where the
deformation is three-dimensional in nature. The pri-
mary use of the term bulk deformation is to distinguish
it from sheet-forming processes. In sheet-forming op-
erations, the deformation stresses are usually in the
plane of the sheet metal, whereas in bulk deformation,
the deformation stresses possess components in all three
coordinate directions. Bulk deformation includes metal
working processes such as forging, extrusion, rolling,
and drawing.

II. CLASSIFICATION OF DEFORMATION
PROCESSES

The classification of deformation processes can be done
in one of several ways. The more common classification
schemes are based on temperature, flow behavior, and
stress state. The temperature of the deformation process
is under direct control of the operator and has a pro-
found effect on the viability of the process and the
resulting shape and microstructure of the finished prod-
uct. The flow behavior and the stress state differ from
temperature in that they are a result of the actual defor-
mation process that one chooses.

A. Temperature Classification

The temperature classification scheme is normally di-
vided into two primary regions—cold working and hot

working. Cold working occurs at relatively low tempera-
tures relative to the melting point of the metal. Hot
working occurs at temperatures above the
recrystallization temperature of the metal. There is a
third temperature range, warm working, which is being
critically examined due to energy savings and is, in some
cases, used by industries.

1. Cold Working Temperatures

Cold working usually refers to metal deformation that
is carried out at room temperature. The phenomenon
associated with cold work occurs when the metal is
deformed at temperatures that are about 30% or less
of its melting temperature on an absolute temperature
scale. During cold work, the metal experiences an in-
creased number of dislocations and entanglement of
these dislocations, causing strain hardening. With strain
hardening, the strength of the metal increases with
deformation. To recrystallize the metal, a thermal treat-
ment, called an anneal, is often needed. During
annealing, the strength of the metal can be drastically
reduced with a significant increase in ductility. The
ductility increase often allows further deformation to
occur before fracture. The final surface finish and di-
mensional tolerances can be well controlled in a cold
work process.

2. Hot Working Temperatures

Hot working occurs at temperatures of 60% or above
of the melting temperature of the metal on an absolute
scale. At elevated temperatures, the metal has decreased
strength, hence the forces needed for deformation are
reduced. Recrystallization occurs readily, causing new
grains to continually form during deformation. The con-
tinual formation of new grains causes the ductility of

1
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Van Tyne2

the metal to remain high, allowing large amounts of de-
formation to be imparted without fracture. Control of
final dimensions is more difficult in a hot-worked metal
due to scale formation and volumetrical changes in the
part during subsequent cooling.

3. Warm Working Temperatures

Warm working occurs between hot working and cold
working. It occurs in the approximate temperature
range of 30–60% of the melting temperature of the
metal on an absolute scale. The forces required to de-
form metal in the warm working regime are higher than
during hot working. The final finish and dimensional
tolerances are better than hot working but not nearly
as good as a cold working process. Although warm
work seems to have drawbacks, the primary driver for
warm working is economic. There is significant cost in
heating a metal up to hot working temperatures. If the
working temperature is lowered, there can be major cost
savings in the process.

B. Flow Behavior Classification

The flow behavior of a metal or alloy during bulk defor-
mation processes falls into one of two categories—con-
tinuous flow or quasi-static. The easiest way to distin-
guish between these two types of flow is to imagine a
movie being made of the deformation region during
processing. If the shape of the deformation region
changes during each frame of the movie, the process is a
continuous-flow process. If in each frame of the movie
the shape of the deformation region remains the same,
even though a different material is in the region, it is a
quasi-static-flow process. The bulk deformation process
of forging is an example of a continuous-flow process.
As the metal is being shaped in the forging die cavity, the
deforming region, which is often the entire amount of
metal, is continuously undergoing change. Processes such
as rolling, wire drawing, and extrusion are examples of
quasi-static flow. For example, in rolling, the deforma-
tion region is the metal being squeezed between two rolls.
The shape of the deformation region does not vary, aside
from initial startup and final finish, although different
material flows into and out of the region.

The classification based on flow is useful in determin-
ing what type of modeling scheme can be used to simu-
late the bulk deformation process. For a quasi-static-flow
process, the deformation region can often be handled as
a single region and a steady-state type of analysis can be

applied. For a continuous-flow process, a more complex
analysis needs to be used to simulate the process accu-
rately. The complex analysis needs to account for the
continually changing shape of the deformation region.

C. Stress State Classification

In all bulk deformation processes, the primary deforma-
tion stress is compressive in nature. This is in contrast to
sheet metal forming where tensile stresses are often used.
Stress state classification consists of two categories for
bulk deformation—direct compression and indirect com-
pression. In direct compression, the tools or dies directly
squeeze the workpiece. Forging, extrusion, and rolling
are examples of direct compression processes. In indirect
compression, the deformation region of the workpiece is
in a compressive stress state but the application of these
compressive stresses occurs by indirect means. Wire
drawing is an example of an indirect compression proc-
ess, where the wire is pulled through a die. The workpiece
contacts the converging surfaces of the dies, creating high
forces normal to the die surface. The dies react to these
forces by pushing back on the workpiece, causing a
compressive stress state to exist in the deforming region
of the metal. Thus although the equipment action is of a
tensile (pulling) nature, the plastic deforming region is
being squeezed.

It should be noted that although the stress state for
bulk deformation is compressive, there are situations
where tensile stress components may be present within
the workpiece and fracture may occur. The metal-form-
ing engineer needs to be aware of these types of situations
and to properly design the process to avoid the
potential fracturing that can occur on the workpiece due
to the tensile stress components. For example, in the forg-
ing of a right circular cylinder between two flat dies in
the axial direction, if friction on the top and bottom sur-
faces is high, the sides of the cylinder will bulge and some
tensile hoop stress may occur on the outside surface of
the workpiece. A more insidious example is an extrusion
process where a small reduction is performed through a
die with a high die angle. For this situation, the deforma-
tion region may be limited to the surface region of the
workpiece, causing some internal tensile stress compo-
nents along the centerline of the workpiece. If the
internal tensile stress components become excessively
high, they can cause an internal fracture in the workpiece.
This fracture is referred to as central burst. The worst
aspect of central burst is that it cannot be detected via
visual methods.

Copyright © 2004 by Marcel Dekker, Inc.
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III. TYPES OF BULK DEFORMATION
PROCESSES

A. Forging

Forging is a metalworking process where a workpiece is
shaped by compressive forces using various dies and
tools. The forging process produces discrete parts. Some
finishing operations are usually required. Similarly
shaped parts can often be produced by casting or pow-
der metallurgy operations, but the mechanical proper-
ties of a forged component are usually superior compared
to other processing methods. Forging can be done hot or
cold. Warm forging is a process that is growing in popu-

larity due primarily to thermal energy costs. Typical
forged parts are shown in Fig. 1.

Open die forging consists of dies with very simple
geometry. The dies are usually flat, U-shaped, or V-
shaped, as seen in Fig. 2. The shaping of the metal occurs
through manipulation of the workpiece and skill of the
operator. It is a process that is useful in producing a small
number of pieces. It is difficult to hold to close tolerance
in this type of forging. Open die forging between two flat
dies is often called upsetting. Cogging or drawing out is
an open die forging process where the thickness of the
workpiece is reduced by successive small strikes along
the length of the metal. Open die forging is closely related
to blacksmithing.

Closed die or impression die forging consists of a die
set with a machined impression, as shown in Fig. 3. There
is good use of metal in this operation as compared to
open die forging. Excess metal beyond the size needed
for forging is used and flows into the gutter portion of
the die set to produce flash. The excess metal helps to
insure that the cavities are completely filled at the end of
the press stroke. Good tolerances and accuracy of the
final forging are attainable. The die costs for closed die
forging are fairly high due to their property requirements
and machining costs.

Closed die forging often occurs in a sequence of steps.
Each step of the operation usually has its own impression
in the die block. The first step distributes metals into
regions where extra volume is required in the final
component. This step often involves edging, where extra
metal is gathered, or fullering, where metal is moved
away from the local region. In hot forging, the first step
is referred to as busting because the scale on the surface
of the workpiece is busted off. The second step is
blocking, where the part is formed into a rough shape.
The third step is finishing, where the final shape of the
component is imparted to the workpiece. The fourth step
is trimming, where the excess metal in the flash region is
trimmed from the component. Figure 3 illustrates these
various steps.

Figure 1 Examples of forged parts: (a) automotive
crankshaft; (b) truck axle; (c) truck bracket; (d) universal
joint; (e) automotive gears; (f) truck assembly part; (g)
coupling fittings; and (h) hammer head. (From Ref. 1.)

Figure 2 Open die forging tools: (a) flat dies; (b) U-shaped
dies; and (c) V-shaped dies. (From Ref. 2.)

Copyright © 2004 by Marcel Dekker, Inc.
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The machines used for forging are hammers and
presses. Hammers are energy-limited equipment and can
be a simple gravity drop machine where a free-falling
ram strikes the workpiece. Augmentation of the energy
supplied to the hammer can be done in the form of pres-
sured air, steam or hydraulic fluid. In a hot closed die
operation, multiple blows are usually needed during each
step, especially the blocking and finishing steps, when
using a hammer to forge metal. Table 1 provides some
numerical details about hammers for a typical gear blank
forging.

For forging, there are three types of presses used—me-
chanical press, hydraulic press, and screw press. Mechani-

cal presses are stroke-limited equipment with a large fly-
wheel powered by an electrical motor. The up-and-down
motion of the ram is handled via a connecting rod attached
to a crank shaft. The travel distance during each press
stroke is controlled by machine design and operation.
Hydraulic presses are load-limited equipment where the
press will stop once its load capacity is reached. The power
comes from pressurized hydraulic fluid. Screw presses,
similar to hammers, are energy-limited equipment. A large
flywheel transmits power through a vertical screw, which
causes the ram to move. The ram movement stops when
all the energy from the flywheel has dissipated. Table 2
provides some numerical details about hydraulic presses
to produce the same gear blank as in Table 1.

In order to be successful in forging a metal, the
formability of the metal needs to be understood, espe-
cially with regard to temperature and speed. The impres-
sion die shape needs to be carefully designed and ma-
chined to allow a good flow of metal without seams or
laps developing. The die material needs to be carefully
chosen to match the metal being shaped and the tem-
perature of the operation.

B. Extrusion

Extrusion is a bulk deformation process where a billet,
generally cylindrical, is placed in a chamber and forced
through a die. The die opening can be round to produce
a cylindrical product, or the opening can have a variety
of shapes. Typical extrusion products are shown in Fig. 4.
Because of the large reductions imparted during the
extrusion process, most extrusion processes are per-
formed hot in order to reduce the flow strength of the
metal. Cold extrusion can occur but it is usually one step
in a multistep cold forging operation.

Forward or direct extrusion is where the billet is
pushed from the backside and the front side flows

Figure 3 Impression forging dies with forging sequence.
(From Ref. 3.)

Table 1 Characteristics of Hammers for Forging a 4.45-lb Steel Gear Blank

Temperature buildup in dies is lower than press systems.
A 4000-lb hammer had 40% of initial energy available.
Good uniformity of temperature in part.
Source: Ref. 4.
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through the die. Indirect or inverse or backward
extrusion is where the die, which imparts shape, moves
into the billet. The equipment used to perform an indirect
extrusion is more complex than for a forward extrusion.
To overcome the significant friction resistance between
the billet and the chamber in a forward extrusion,
hydrostatic extrusion has been developed. In hydrostatic
extrusion, the billet is smaller than the chamber and is
surrounded by hydraulic fluid. The hydraulic fluid is
pressurized, which squeezes the billet through the die
opening. Caution with both the sealing of the fluid and
at the end of the process, where the final part of the billet
could become a high-velocity projectile, needs to be
exerted. Impact extrusion is similar to indirect extrusion
and is often performed cold. The tooling, usually a solid
punch, moves rapidly into the workpiece, causing it to
flow backward and around the face of the punch. This
produces a tubular-shaped type of product. These types
of extrusions are schematically shown in Fig. 5.

The equipment for extrusion is normally a horizontal
hydraulic press. A large shape change is imparted to the
billet during a single stroke of the press. The shape change
causes significant distortion in the metal during the
deformation.

For success in extrusion, the temperature and speed
of the process need to be determined based on the

formability of the metal being deformed. Excessive
temperature, speed, or friction can cause surface cracks to
propagate along grain boundaries, which are referred to as
fir tree cracking, due to hot shortness of the metal. Improper
geometrical configuration of the tooling can cause central
bursts if the angle of the die opening is too large, or the
reduction is too small. Piping or cavitation at the end of the
extrusion can be minimized by reducing the severity of the
distortion in the product, or by reducing friction.

C. Rolling

Rolling is a direct compression deformation process,
which reduces the thickness or changes the cross section
of a long workpiece. The process occurs through a set of
rolls, which supply the compressive forces needed to
plastically deform the metal. Flat rolled products are clas-
sified as plate, sheet, or foil, depending on the thickness
of the product. A plate has thickness greater than 6 mm,
whereas a foil has thickness less than 0.1 mm. A sheet
has thickness between that of the plate and the foil. Roll-
ing can be done hot or cold. In many products, initial
reductions are performed hot, where the metal can expe-
rience large shape changes without fracturing, and the
final reductions are performed cold, so that better sur-
face finish and tolerances can be achieved.

Flat rolling reduces the thickness of the metal,
producing a product with flat upper and lower surfaces.
Shape rolling can also reduce the thickness of the metal
but, more importantly, it imparts a more complex cross-
section shape. Shape rolling can be used to produce bars,
rods, I-beams, channels, rails, etc. Ring rolling can be
used to produce a seamless product by reducing the wall
thickness of a ring through the action of two rolls.
Seamless pipes can be produced and sized by specialized
rolling operations such as rotary tube piercing, tube

Table 2 Characteristics of Hydraulic Presses for Forging a 4.45-lb Steel Gear Blank

Two-hundred-fifty-ton press stalled and left underfilled on outer diameter.
Fast 2000-ton press is similar to mechanical or screw press.
Smaller presses resulted in increased die temperature.
Source: Ref. 4.

Figure 4 Examples of extruded parts. (From Ref. 5.)
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rolling, and pilgering. A variety of rolling processes for
steel are schematically shown in Fig. 6.

Although large, the rolling mill equipment is relatively
simple. A two-high mill consists of two rolls, and a three-
high mill consists of three rolls, which also allows
reduction to occur on reverse directional flow of the
metal. A four-high mill consists of two work rolls in
contact with the metal and two back up rolls. A six-high
mill is like a four-high mill, but has two additional rolls
between the work roll and backup roll called intermediate
rolls, which allow in essence some control over the crown
and camber of the work rolls. Cluster mills exist usually
for the production of thin foil products. A cluster mill
will have a pair of small-diameter work rolls and a series
of intermediate and backup rolls to support the work
rolls. A tandem rolling mill will have a series of rolling
stands where each stand imparts a specific amount of
reduction. The operation of a tandem mill is challenging
due to coupling effects between the stands.

Defects can be present in sheet and plate products if
the rolling operation is not performed correctly. Wavy
edges, waves along the centerline, zipper cracks along the
centerline, or edge cracks can occur if the reduction is not

uniform across the width of the metal. Crowned rolls, six-
high mills, and sleeved rolls can be used to correct these
types of defects by properly controlling the amount of roll
bending that occurs. Small amount of waviness in a sheet
product can be eliminated by a postdeformation leveling
operation, where the sheet passes over a series of rollers
while under tension. Alligatoring or fish tails can occur at
the front end or back end of the workpiece. Proper
alignment of the feed stock into roll gap, proper balancing
of the friction between the top and bottom rolls, and
proper choice of roll size for reduction can be used to
minimize or to eliminate these two types of defects.

D. Drawing

Drawing of a round rod or wire is an indirect compression
process where the cross-sectional area of the metal is
reduced by pulling it though a converging die. A schematic
illustration of wire drawing is seen in Fig. 7. The process is
normally done at ambient temperatures. The major factors
that need to be controlled include: reduction, die angle,
friction at the die-workpiece interface, and drawing speed.
Tubes can also be drawn in a similar process. To control

Figure 5 Schematics of extrusion processes: (a) direct or forward extrusion; (b) indirect or reverse extrusion; (c)
impact extrusion; and (d) hydrostatic extrusion. (From Ref. 6.)
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the interior diameter of a tube, a mandrel, which can be
fixed, moving, or floating, is used. Because the metal is
pulled through the die, the final product, which has the
reduced cross section, is subjected to tensile stresses. If
these tensile stresses become excessive, then the wire would
fracture in a mode similar to a tensile test. The limit on the

value of the tensile stress that can be supported limits the
amount of reduction that can be achieved in one pass.
Multiple reduction passes with multiple dies are needed to
achieve large reductions in cross-sectional areas. The
approach is analogous to a tandem rolling mill with
multiple stands. The theoretical maximum reduction for a
frictionless, perfectly plastic material is 63%. In
production processing, the reduction that is used is often
limited to 35% or 40%. The ironing process, which is
used to reduce the wall thickness of a sheet metal, is also a
drawing-type operation.

The configuration of the opening in the final die will
control the configuration of the product produced.
Although a cylindrical shape is the most common, other
shapes can be imparted to the wire in the process.

The metal is cold-worked during the wire drawing
process and intermediate anneals may be needed to
increase its ductility to sufficient levels in order to reach
the final reduction desired. Internal fractures, called
central busts, can occur if the die angle is too large, or

Figure 6 Schematics of various rolling processes for steel. (From Ref. 7.)

Figure 7 Schematic of a wire drawing process.
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the reduction is too small. For rods, tubular products, or
high-strength wires, postdeformation straightening may
be required.

IV. PROCESSING ASPECTS

A. Temperature

In bulk working operations, thermal energy is often sup-
plied to the workpiece to increase its temperature. There
are a number of methods used to heat up metal workpieces.
Heating in a gas-fired furnace, induction heating, and elec-
trical resistance heating are the most common methods that
are used in industries. The operation and control of the heat-
ing process are critical features in controlling the deforma-
tion process. The workpiece needs to be at the proper work-
ing temperature in order to achieve the desired shape change
and to have the proper microstructure for deformation.

The deformation in the workpiece is produced by me-
chanical work. Most of the mechanical work imparted into
the workpiece during deformation is converted into heat.
The heat causes the workpiece to increase in temperature.
The maximum possible increase in temperature is often re-
ferred to as adiabatic heating and is calculated by assuming
that the entire amount of mechanical work is converted in
the temperature rise. The adiabatic temperature rise for a
bulk deformation process can be calculated by:

(1)

where W is the mechanical work per unit volume for the
deformation process, � is the density of the workpiece,
and CP is the heat capacity for the workpiece.

B. Strain

During bulk plastic deformation, a shape change is im-
posed on the workpiece. Strain is the normal measure to
quantify the amount of deformation. In operations such
as rolling, extrusion, and wire drawing, the cross-
sectional area A of the workpiece normally decreases as
the length L increases. In forging, the opposite usually
occurs where the cross-sectional area increases and the
height h of the workpiece decreases.

In most forming operations, the volume of the
workpiece remains constant. The constancy of volume is
expressed as:

(2)

Plastic deformation is often measured by the engineering
strain:

(3)

or by the true strain:

(4)

Often the measure of deformation for bulk deformation
processes is expressed by the reduction in area:

(5)

For forging, the equations will be similar:

(6)

(7)

(8)

It should be noted that these equations are simplified
measures for strain during the process. In bulk deforma-
tion, the strain in the workpiece will usually vary from
point to point, and for a continuous-flow process, the
strain will also vary at each time instant in the process.
In its true form, strain is a second-order tensor, which,
during deformation, has six unique components—three
normal components and three shear components. In de-
formation operations, strain is often expressed by its
three principal components ε1, ε2, and ε3. For deforma-
tion processes, which have undergone proportional load-
ing, the effective strain at a point in the workpiece is
often given by the Mises equivalent strain:

(9)

C. Strain Rate

During deformation processes, the speed of the opera-
tion is usually measured by strain rate. Strain rate ε is the
time rate of the change of strain:

(10)

where v is the velocity.
Strain rate is an important variable because the

strength and microstructural response of many metals
is dependent on the strain rate. Like strain, strain rate
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in its true form is also a second-order tensor. The effec-
tive strain rate at a point in the workpiece can be ex-
pressed as:

(11)

where , and , are the principal strain rate compo-
nents of the strain rate tensor.

D. Stress

In bulk deformation operations, stress has two mean-
ings. The first meaning of stress is related to the equip-
ment used to deform the workpiece. It is a measure of
the load requirements necessary to get the workpiece to
plastically deform. This is an important aspect that needs
to be considered because the sizing of the equipment for
bulk deformation is fundamentally dependent on the load
requirements for plastic flow.

The second meaning of stress is related to the
workpiece. During deformation, each point in the
workpiece has a stress state, which is a measure of the
materials’ internal resistance to the externally supplied
forces. These two meanings are interrelated.

In bulk metalworking operations, the external loads sup-
plied are often compressive in nature. Wire drawing is an
exception, where the supplied load is a tensile force. For
compressive deformation processes, the pressure required
for deformation usually describes the external stress. The
pressure can vary from point to point along the tool-
workpiece interface, often due to the friction resistance
present. An average pressure for deformation to occur is:

(12)

where F is the force or load supplied by the equipment,
and A is the area over which the load is being supplied.
For wire drawing, a similar equation can be used, but it
determines the average drawing stress on the wire being
pulled through the die:

(12)

The internal resistance within the workpiece to these ex-
ternal loads varies from point to point. The measure of
this resistance is the internal stress that exists in the
workpiece. If the specific point in the workpiece under-
goes plastic deformation, then the internal stress is equal
to the flow strength of the material at that point.

Internal stress, such as strain and strain rate, is a
second-order tensor. This second-order tensor has six
components—three normal components and three shear
component. The stress tensor is often expressed in terms
of the three principal components �1, �2, and �3.

The effective stress at a point within the workpiece is
given by:

(14)

If the effective stress at a point within the workpiece has
reached the value of the flow strength of the material at
that point, then plastic flow will occur.

If the effective stress and effective strain are known for
the deformation process, then the work per unit volume
of material for deformation W can be determined by

(15)

Another important stress measure is the mean stress com-
ponent or hydrostatic stress component:

(16)

For deformation processes, the stress components must
be of a sufficient deviation from the hydrostatic stress to
cause plastic flow to occur. A pure hydrostatic stress can-
not cause plastic flow to occur within a normal material.

E. Friction

During bulk deformation processes, frictional resistance
to sliding occurs at the interface between the workpiece
and the tooling. The frictional resistance is due to the
surface asperities that are present at the microscale on
both the tools and the workpiece. These asperities im-
pede the sliding motion that can occur during contact
under pressure. Figure 8 schematically shows how the
asperities interact to impede motion.

Figure 8 Schematic of frictional resistance and wear on
sliding metal surfaces: (a) interactions of asperities; and
(b) localized plastic deformation. (From Ref. 8.)
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Friction causes the required deformation loads to in-
crease. Friction causes the flow of the material to be less
homogeneous. High levels of friction can result in sur-
face damage to the workpiece, or seizing of the workpiece
to the tooling.

Frictional resistance is usually described by a shear
stress component τF. There are two basic models that are
used describe the frictional stress component that occurs
during metalworking operations. Both of these models
are highly simplified and only capture the major aspect
of the very complex interaction that occurs at the tool-
workpiece interface.

The first model is referred to as Coulomb’s law. The
frictional stress component is directly proportional to the
pressure that exists between the tool and the workpiece
at the point of interest, or:

(17)

where µ is the coefficient of friction. The value of µ can vary
from 0 to  (i.e., 0.577). At low-pressure levels, this equa-
tion is a good description of the frictional stress component.

The second model is a better description at higher
pressures at the interface. It is referred to as the constant
friction factor equation. It assumes that the frictional
stress component is some fraction of the flow strength σo

of the workpiece:

(18)

where m is the constant friction factor. The value of m
can vary from 0.0 for an ideal frictionless interface to 1.0
for an interface where full sticking between the workpiece
and tool occurs.

Friction is controlled through lubrication. The role of
the lubricant in metalworking is important in reducing
frictional resistance. Lubrication can also play a vital role
in cooling the tooling, preventing heat flow from a hot
workpiece into the tooling and protecting the new sur-
faces created during the deformation from oxidation or
chemical reactions.

F. Yield Criteria

The ease with which a metal flows plastically is an im-
portant factor in deformation processes. The dominant
factors that influence the flow (or yield) strength of a
metal are the temperature and the amount of prior cold
work. Yield criterion is the relationship between the stress
state and the strength of the metal. When the criterion is
met, then plastic deformation occurs. In uniaxial tensile
tests, the yield criteria predict that flow will occur when

the uniaxial tensile stress reaches the metals’ yield
strength. For bulk deformation processes, the stress state
is not a simple uniaxial state, hence the criteria for yield-
ing are more complex relationships.

The Tresca yield criterion or maximum shear stress
criterion indicates that plastic flow will occur when:

(19)

where σ1 is the largest principal component of the stress
state, σ3 is the smallest principal component of the stress
state, and σo is the flow strength of the metal. If Eq. (19)
is satisfied, then plastic deformation will occur.

A more generally applicable criterion is the Mises cri-
terion or maximum distortion energy criterion, which is:

(20)

Other criteria for the relationship between the applied
stress state and the flow strength of the metal, which can
cause plastic deformation, do exist, but the two equa-
tions given here are the ones most often used to describe
bulk deformation processes.

In three-dimensional principal stress space, both yield
criteria will plot as surfaces. Thus the yield criteria are
often called the yield surface for the metal. The surface
for the Tresca yield criterion is a hexagonal-shaped prism,
whereas the surface for the Mises yield criterion is cylin-
drical. If σ3=0, then the yield surface reduces to yield loci
curves in the two-dimensional σ1-σ2 space. Figure 9
shows the relationship between the Tresca and Mises
yield criteria in this reduced two-dimensional space.

G. Hardening

During cold work, the metal increases in strength with
increased deformation. This phenomenon is referred to

Figure 9 Comparison of Tresca and Mises yield criteria
in reduced principal component stress space.
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as hardening. Plastic hardening in metals is often reason-
ably well characterized by a power law equation, where
the strength is dependent on the amount of plastic strain
imposed:

(21)

where K is a strength coefficient for the hardening behavior
and n is the strain hardening exponent. These two mate-
rial parameters are usually obtained via a tensile or a com-
pression test. Equation (21) indicates that the metal
strengthens as the strain increases, which is isotropic hard-
ening. In isotropic hardening, the yield surface is continu-
ally expanding with strain. If the strain path imposed on
the metal during deformation is changed (e.g., if it is re-
versed), the yield strength on reversal may be different than
expected for the strain imposed before the change. This
difference is a manifestation of kinematical hardening,
where the center point of the yield surface moves with
strain. Figure 10 shows the difference between the yield
surface changes that occur for isotropic hardening as com-
pared to kinematical hardening.

V. DESIGN ISSUES TO PREVENT FAILURES

A. Geometrical and Mechanics Issues

The shape of the tooling and the initial shape of the
workpiece are important geometrical factors for bulk de-
formation processes. Incorrect choices of these geometri-
cal factors can lead to problems during deformation, or

lead to process-induced defects in the final product being
produced.

In extrusion, rolling and drawing the size and shape of
the deformation zone have a strong influence on a variety
of forming parameters, such as friction work, redundant
work, and deformation loads, as well as properties in the
formed part, such as internal porosity, internal cracking,
distortion, homogeneity of strength, and residual stresses.
A common single parameter measure of the deformation
zone geometry is the ∆ parameter. The ∆ parameter is de-
fined as the ratio of the average thickness or diameter h of
the deformation region to the contact length L between
the tooling and the workpiece, or:

(22)

It has been found that deformation under conditions of
high ∆ parameters can lead to microporosity along the
center line of the workpiece, or, in extreme cases, can
lead to internal cracks. Caution needs to be used when
∆>2 because it is this condition that can lead to prob-
lems. Figure 11 shows data from an extrusion process
that exhibit both sound flow behavior and central burst.

Flow localization can occur in the workpiece during
deformation. The common cause of flow localization is a
dead metal zone between the workpiece and the tooling.
Poor lubrication in forging can cause sticking friction

Figure 10 Comparison of isotropic hardening to
kinematical hardening for a Mises material in reduced
principal component stress space.

Figure 11 Criteria of the prevention of central burst in
extrusions. (From Ref. 9.)
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between the die and the workpiece, and in the sticking
region, a dead metal zone can occur. Forging dies, which
are cooler than the workpiece, can extract heat from the
metal, causing localized cooling. The metal at a lower tem-
perature has higher flow strength and is more resistant to
plastic deformation, which can lead to a dead region in
the workpiece. In extrusion, dead metal zones can occur
due to very large die angles and the metal will shear over
itself, leaving a dead metal region adjacent to the die.

In closed die forging, the width and thickness of the
land region are very important parameters. The land re-
gion is the choke point for metal flowing into the flash
region of the forging. As multiple parts are forged, the
land will wear away. The small thickness and large width
of the land opening provide restrictive flow into the flash
and cause increased pressure to occur in the die cavity.
The increased pressure in the cavity allows for better fill-
ing of the impression, but at the cost of higher load re-
quirements. If the flow of the metal inside of a cavity
during forging is not properly controlled, a lap, a flow-
through defect, or a suck-in defect may occur. A lap is
where the metal folds back on itself. A flow-through de-
fect occurs when the metal is forced to flow across a re-
cess in the die that is already filled. A suck-in defect oc-
curs when there is too much metal flow into a centrally
located rib region. These types of defects can be avoided
or minimized by proper redesign of the die cavity.

B. Metallurgical and Microstructure Issues

The common failure modes that occur in cold work de-
formation processes include: free surface cracking, shear
bands, shear cracks, central bursts, and galling. In hot
work processes, the common failures are hot shortness,
central bursts, triple-point cracks, grain boundary cavi-
ties, and shear bands. Metallurgical aspects and micro-
structure features can have a strong influence on the ten-
dency of the workpiece to experience one of these failure
modes.

Because of the segregation and cast microstructure in
ingots, these types of workpieces need to be hot-worked.
Due to chemical segregation and microstructural inho-
mogeneities, the properties of an ingot are not constant
from one location to another. Care must be taken to pro-
vide enough deformation to break down the cast struc-
ture. Low melting point phases may also be present and
can lead to hot shortness if the temperature during de-
formation is not carefully controlled.

Hot working can lead to creep-type fractures, espe-
cially at slower working speeds in metals with low work-

ability. It is also important not to let the workpiece be
locally chilled during hot working processes. Chilling can
lead to strength variations in the metal and cause the
promotion of shear banding.

Cold working causes the strength of the workpiece to
increase during deformation. Thus regions where signifi-
cant cold work has been imparted to the metal are re-
gions of higher strength. These strength variations can
lead to internal shear banding. The grain size of the
workpiece also can have an influence on the final prod-
uct produced. Working of large grained metals can lead
to a surface roughening phenomenon called orange peel,
which is usually undesirable.

VI. WORKABILITY AND TESTING METHODS

A. Definition

Workability is a characteristic that is usually attributed to
the metal or alloy. It is a relative measure of how easily the
metal can be plastically deformed without fracture. It
should be noted that workability depends not only on the
metal itself, but also on other external processing factors.
The temperature and stress state imposed by the process-
ing conditions will strongly influence workability. Most
metals have high higher workabilities at higher tempera-
tures. Workability is usually higher under compressive
states of stress as compared to tensile states. Terms such as
formability, forgeability, extrudability, and drawability are
often used to describe the workability within a specific
metal-forming process.

B. Tests

A number of different mechanical tests are used to assess
the workability of a metal or alloy. The best test is the
one that most closely mimics the actual stress state that
would exist in the metal during the bulk deformation
operation. Unfortunately, the optimum is often not the
easiest one to perform on the amount of material avail-
able, or is constrained by the type of laboratory testing
equipment available for use.

1. Tensile Tests

The tensile test is the most common test used to evaluate
the mechanical properties of a metal or alloy. The tensile
test can be set at a variety of speeds to study strain rate
effects and a variety of temperatures to study the proper-
ties of the metal as a function of temperature.
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In a tensile test, a specimen of known initial geometry
is placed in testing apparatus and pulled until fracture.
The pulling load and the tensile elongation are measured
throughout the test with a strip chart or computerized data
acquisition. Load and elongation are converted into engi-
neering stress-strain data. From the engineering stress-
strain curve elastic modulus, the yield strength, ultimate
tensile strength, fracture stress, and tensile elongation can
be determined. Figure 12 shows a typical engineering
stress-strain curve for a metal. After the test specimen is
removed from the testing apparatus, the final cross-
sectional area in the fracture region can be measured and
the reduction in area can be calculated. The reduction in
area and the tensile elongation are the two primary
measures for the ductility of the metal. The ductility
determined from a tensile test is for the tensile stress state,
temperature, and strain rate imposed on the specimen
during the testing.

The engineering stress-strain curve can be transformed
into a true stress-true strain curve for the metal. The
transformation is valid between the yield point and the
ultimate point, where uniaxial plastic deformation oc-
curs and localized necking has not occurred. The data
from a true stress-true strain curve can be plotted on a
log-log scale. From such a plot, the slope is the strain
hardening exponent n and the intercept is the logarithm
of the strength coefficient K.

2. Torsion Tests

The torsion test is a fairly straightforward process. The
specimen is held fixed on one end and the other end is
twisted at a constant angular velocity. The torque needed to

twist the sample and the angle of twist are the measured
parameters. The deformation is caused by pure shear and
large strains can be achieved without flow localization and
necking, which occurs in a tensile test, or barreling, which
occurs during a compression test. The test is suitable in pro-
viding flow stress and ductility data for materials as a func-
tion of strain, strain rate, temperature, and prior process-
ing. The test is frequently used to determine these material
properties under hot working conditions. Because the strain
rate imposed on the material is proportional to the rota-
tional speed of the test, high strain rates (up to 103 sec-1) are
obtainable in a torsion test.

Because a torque is being applied to the specimen
during the torsion test, the stress state in the material will
vary from the centerline to the surface of the specimen.
The variation in stress state in a torsion-tested specimen is
in contrast to the tensile and compression tests where the
stress state in the deforming region of the specimen is
relatively uniform. The analysis of the torque twist data to
produce stress-strain curves for the material needs to be
done carefully, with an understanding of the test itself.

3. Compression Tests

Because most bulk deformation processes involve
compressive states of stress, a compression test is often
more desirable in assessing the workability of a metal
that will be deformed by such a process. In theory, the
compressive force imposed on the metal during a com-
pression test creates a uniaxial stress state within the
metal. If this were the case, then the analysis of the ex-
periment would be handled in a manner similar to the
data acquired via a tensile test. Unfortunately, the exist-
ence of a uniaxial stress state in a compression sample is
not achieved because the specimen is compressed between
two flat platens. The compression causes the cross-
sectional area to increase and the friction that exists at
the top and bottom surfaces, where the specimen is in
contact with the platens, causes nonuniform flow. The
unconstrained sides of the sample will show the
nonuniform flow by bulging. A bulged sample is a clear
indication that the stress state was not uniaxial.

To overcome this difficulty with friction, a variety of
specimen geometries have been used, as shown in Fig.
13. Each specimen is compressed and the compressive
strain in the axial direction and the diametrical strain are
measured. Measurement is usually performed by impos-
ing a grid onto the side surface of the specimen and peri-
odically stopping the test to measure the change in di-
mensions of the grid pattern. When a cylindrical speci-
men is compressed, the strain path that it follows can be

Figure 12 Engineering stress-strain curve from a uniaxial
tensile test with material properties indicated.
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different, as shown in Fig. 14. The specimens are
compressed until fracture occurs to assess the metals’
workability during compression and produce a forming
limit curve. Typical fracture curves (or forming limit dia-
grams) for 1020 steel, 303 stainless steel, and 2024-T351
aluminum are shown in Fig. 15.

4. Friction Tests

The most common method used to determine the fric-
tion factor for a forging process is the ring compression
test. The test can be conducted at varying temperature

and speed, and with the lubricant and workpiece mate-
rial of interest. The workpiece material is machined into
a ring with dimensions usually in a 6:3:2 ratio of the
outer diameter to the inner diameter to the thickness.
The ring is compressed in the thickness direction to a
given level of deformation and the new inside diameter is
measured. Friction calibration curves can be used to de-
termine the friction factor from the amount of deforma-
tion imparted to the ring and the change in inner diam-
eter (Fig. 16). Rings of other dimensions can be used but
the appropriate calibration curves must be used for the
specific starting geometry.

VII. DEFORMATION MODELING METHODS

A diagram illustrating the input and output as well as the
constraints, which must be considered when trying to
model a bulk deformation process, is shown in Fig. 17.

Figure 13 Schematics of compression test specimen
geometries: (a) cylindrical sample; (b) tapered sample;
and (c) flanged sample. (From Ref. 10.)

Figure 14 Strain paths for compression tests of cylindrical
specimens with various height (h)-to-diameter (d) ratios
and various lubrication conditions. (From Ref. 11.)

Figure 15 Cold upset compression failure criteria: (a) 1020
steel and 303 stainless steel; and (b) 2024-T351
aluminum. (FromRef. 11.)
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The input parameters fall into three major categories—
geometrical parameters, process parameters, and mate-
rial parameters. Constraints imposed by either the prod-
uct requirements or by the equipment should also be con-
sidered and incorporated into the model. Often models
flag situations where one of the constraints is exceeded,
rather than directly imposing the constraints.

The result of the modeling effort is the determination
of process geometry and process performance conditions.
Models, especially if they are complex and account for
the fine details of the process, can take a long time to run
and often the results cannot be determined in “real time.”
The models are normally used to provide a more detailed
understanding of the process, rather than in a control
scheme. For control of a specific bulk deformation proc-
ess, empirical models based on historical operating data
are often best suited for the task.

What occurs within the core of a model is shown in
Fig. 18. In essence, the model must adhere to the laws of
deformation mechanics. The relationships between stress
and strain both within the deforming metal as well as
within the tooling and at the interface between the
workpiece and the tooling must be obeyed.

The stresses that are generated within the workpiece
and the tooling must satisfy the equilibrium equations,
yield criteria, metal flow properties, and stress boundary
conditions. Likewise, the strains generated from these
stresses must satisfy compatibility equations as well as
incompressibility requirements and any imposed dis-
placement boundary conditions.

For a model to be exact and complete, all of the require-
ments in Fig. 18 must be met for a given set of input param-
eters. The complete and exact solution, except in very sim-
ple cases, cannot be obtained. Often it is necessary to sim-
plify the model by allowing some of the deformation me-
chanics requirements to be relaxed. Although this simplifi-
cation does not give an exact solution, the solution obtained
is often quite reliable for many processing situations.
Simplifications are often necessary to obtain solutions. The
amount of time and effort one is willing to invest is often
directly proportional to the closeness of the solution to the
exact solution. To get extremely close, a large investment of
time, personnel, and funds is often needed.

To describe each of the individual techniques, a spe-
cific example will be used. The sample problem will be
the open die compression forging of a right circular cyl-
inder between two flat parallel platens (Fig. 19). This
simple example is used primarily for illustrative purposes.
It is equivalent to the initial breakdown (or pancaking)
of an ingot or bar in an open die press or forge. This
problem will be examined via the slab equilibrium, slip
line, upper bound, and finite element method (FEM) tech-
niques. The methods describe herein can be applied to
other bulk deformation processes.

A. Slab Equilibrium

In the slab equilibrium technique, a small element (or slab)
is extracted from the deforming workpiece (Fig. 20). A
force balance is performed on this small slab. This balance
of forces leads to a differential equation, which relates the
stresses in the workpiece to the geometrical variables of
the process. With the use of a yield criterion, an assumption
of the principal stress directions, and some knowledge of
the boundary conditions, a solution to the differential
equation can be obtained. For simple geometrical shapes,
an analytical solution is often achieved. For more complex
shapes, the solution can only be obtained by numerically
solving the differential equation. The solution relates the
actual values of the pressure needed for deformation to
the geometry, friction, and material properties.

For the forging of a cylindrical disk, an analytical
solution can be obtained for pressure as a function of

Figure 16 Ring test calibration curve for the determination
of constant friction factor for rings with a 6:3:2
geometrical ratio of outer diameter/inner diameter/height.
(From Ref. 12.)
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Figure 17 Factors involved in modeling of bulk deformation processes. (From Ref. 13.)

Figure 18 Fundamental mechanics involved in the core of the modeling of metalworking processes. (From Ref. 14.)
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the radial position along the disk. The solution is as
follows:

(23)

(24)

(25)

where p is the pressure at any point, σo is the material
flow strength, µ is the coefficient of friction, a is the ra-
dius of the disk, r is the radial position, h is the thickness
of the disk, pAVG is the average pressure, and F is the load.

The slab equilibrium provides a solution at a discrete
point in time. To determine how the load varies with dis-
placement, an assumption of how the metal changes shape
as a function of time must be used. If a uniform shape
change is assumed (i.e., the disk remains as a right circular
cylinder during the deformation—no bulge or foldover),
then a load-displacement curved can be determined.

For an initial disk with the values for the parameters
listed in Table 3, the load-displacement curve, up to a
75% reduction in thickness, is shown in Fig. 21. The
pressure distribution across the top of the disk can also

be obtained from this method by using Eq. (23). Figure
22 illustrates this distribution for three different
reductions—25%, 50%, and 75%. The large increase in
the center of the disk is due to friction and this shape is
usually called the friction hill.

B. Slip Line Method

The slip line method is a classical approach to the analysis
of deforming bodies. The term slip line is misleading to
many metallurgists because they have a specific definition
for the term. In mechanics, the slip line method probably
should be called “maximum shear stress plane”
technique.

In slip line method, a network of maximum shear
stress planes is superimposed onto the deforming body.
There are a variety of restrictions on the generation of
such a network. The network must adhere to specific
shape requirements and boundary conditions, and
provide a realistic flow field for the deforming material.
The method is only valid for plane-strain conditions.
Because the open die compression of a right circular

Figure 19 Schematic of open die disk forging process.

Table 3 Properties and Dimensions for Open Die Disk
Forging Example

Figure 20 Schematic of slab equilibrium analysis for disk forging: (a) general geometry; and (b) slab element used for analysis.
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cylinder is axisymmetrical and not plane strain, the
analysis of this problem cannot be performed with the
slip line technique.

Figure 23 shows a plane-strain open die forging,
which has been solved by the slip line method. The fig-
ure also contains the relative averaged pressure for the
deformation as predicted by the slab equilibrium tech-
nique. The plane-strain flow strength of the metal σo� is

 times greater than the uniaxial flow strength σo.
The inserted diagrams show the network of maximum
shear stress planes, which is used for each point in the
solution. The slip line method predicts a forging load,

which is lower than the load predicted by the slab equi-
librium method.

The slip line technique imposes a velocity field on the
deforming material through the positioning and
orientation of the maximum shear stress network. Hence
the velocity field is an implicit assumption within the
method.

C. Upper-Bound Models

The upper-bound technique is an energy method where
the energy per unit time needed by the workpiece to
undergo deformation is set equal to the externally
supplied energy per unit time. The primary power (energy
per time) terms that must be calculated for the workpiece
include: the internal power of deformation, the power to
overcome friction, and the shear power. The internal
power is determined from the assumed velocity field and
is calculated from the strain rate field. The frictional
power term is the power needed to overcome any tool-
workpiece frictional interaction. The constant friction
factor model is usually assumed for this type of analysis.
The shear power is determined by calculating the energy
per unit time associated with the internal shear that
occurs over any assumed internal surfaces of velocity
discontinuity.

For the open die forging of a right circular cylinder,
the upper-bound solution is given as:

(26)

Figure 21 Comparison of load vs. reduction curves for
the modeling of disk forging via several methods.

Figure 22 Comparison of pressure distribution over the top
of the disk during forging via two different modeling methods.

Figure 23 Comparison of the plane-strain forging analysis
by slab equilibrium method and slip line field method.
(From Ref. 15.)
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where m is the constant friction factor. The first term
inside the parentheses in Eq. (26) is the internal power
term and the second term is the frictional term. For the
simple forging process being examined here, there are no
shear power losses.

The upper bound, such as the slab equilibrium method,
only determines a solution at a discrete instance in time.
Because the velocity is assumed, the solution at other time
increments is readily available as long as the flow does not
change the shape of the workpiece to one for which the
solution is invalid. Figure 21 shows the load-displacement
curve for the forging of a right circular cylinder with the
same properties assumed for the slab equilibrium solu-
tion. A constant friction factor of 0.50 was assumed, rather
than the value for a coefficient of friction.

The upper-bound solution does not provide a stress
field, hence a plot similar to Fig. 22 for the upper-bound
approach cannot be determined.

One of the advantages of the upper-bound technique
is that it determines a value for the deformation load,
which is greater or equal to the actual load. Hence with
the use of this method, there is a built-in safety factor for
specifying the size of the equipment to be used.

A major use of the upper-bound method is to predict
conditions where a process-induced defect may form
within the workpiece. Because it is an energy technique,
a comparison between the energy needed for sound flow
can be made to the energy needed for defect flow. The
flow field, which requires the least amount of energy, is
the one most likely to occur. For example, this method
has been successful in developing criteria for the preven-
tion of central bursts in wire drawing and extrusions,
central bursts in double hub forging, central bursts in
rolling, side surface cracking in forging with double ac-
tion presses, cavitation in impact extrusion, fishskin de-
fects in impact extrusion, and the beginning of the pip-
ing defect in extrusions.

D. Finite Element Analysis

The finite element method (FEM) is the technique that
has received the most research effort during the last sev-
eral decades. It is the one that produces an over-whelming
amount of information about the process that is being
modeled. The technique was developed in the 1960s for
the analysis of elastic deformation in large complex struc-
tures (e.g., aircraft, bridges, buildings, etc.), which have
a variety of constraints and loading conditions. The tech-
nique was extended in the 1970s and 1980s to the plastic
deformation of metals.

In a FEM analysis, the workpiece and tools are
discretized into a number of points, called nodes. The
more points in the model present, the more accurate is
the solution, but the more time it takes for the computer
to calculate a solution. The nodes are linked to one an-
other by elements, which obey specific deformation laws.
The workpiece is given specific constraints, loads, and
displacements, and an equilibrium solution is sought. If
the displacements and loads are given as a function of
time, the solution can be obtained as a function of time.
The solution consists of the stresses and strains that exist
at every node within the body and the tooling. Various
interpolation methods are used to calculate values be-
tween the nodes. The solution to metal deformation
problems requires the use of a computer and a skilled
operator to interpret the results properly.

For the forging of a right circular cylinder with the
properties given in Table 3, the load-displacement curve is
shown in Fig. 21. The pressure across the top surface of
the disk at reductions of 25%, 50%, and 75% is shown in
Fig. 22. In both of these figures, the FEM solution is com-
pared to other solutions. A mesh for this quarter disk was
a grid of 20×20 square elements with a width of 0.025 in.
The tooling was meshed with 16×7 rectangular elements
0.0714×0.0875 in. The original mesh and the deformed
mesh at 75% reduction are given in Fig. 24.

In contrast to the other techniques, the velocity field
is not assumed by the FEM analysis but is generated
within the analysis itself. This forging of a right circular
cylinder at 75% reduction exhibits both foldover and
bulge (Fig. 24). Foldover is when the side surface of the
disk comes in contact with the tooling surface. Bulge is
when the center region of the free surface moves out-
ward at a greater rate than the regions closer to the plat-
ens. Because the FEM is a numerical method, which pro-
duces a solution at a discrete number of points, the curves
shown in Figs. 21 and 22 for the FEM analysis are not
smooth.

Finite element method analysis can provide a large
amount of information about the process. For example,
the effective strain contours that exist within the forging
at 75% reduction are shown in Fig. 25. The maximum
strains occur in the center of the disk and at the original
corners of the disk. The material directly beneath the plat-
ens in the center of the disk undergoes the least amount
of strain. This type of information is useful for the pre-
diction of possible shear banding. In addition, if the final
properties of the product are dependent on the amount
of strain, an indication of property gradients within the
workpiece might be obtained from such a figure.
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One of the advantages of the FEM technique is that
realistic material properties can be assumed for the de-
forming workpiece and the tooling. All the other analy-
sis methods normally are performed with idealized me-
chanical properties for the workpiece and the tools.

E. Modeling Limitations

Although modeling of bulk deformation processes is a very
powerful and useful tool, there are several limitations that
exist in all of the techniques. The first is an adequate de-
scription of the constitutive behavior of the deforming
workpiece. In almost all cases, some simplification of the
actual material flow behavior is assumed. To be accurate,
the flow behavior should be known and mathematically
characterized as a function of strain, strain rate, and tem-
perature. If a good mathematical description for the mate-

rial behavior exists, then FEM analysis could use it. Un-
fortunately, these descriptions, even for common metals
and alloys, are not often available.

The second limitation for all of these methods is in the
modeling of the frictional interfaces between the tooling
and the workpiece. The two friction models, which are used
in these modeling methods, are simplifications for the com-
plex interactions that occur at the tool-workpiece interface.

A third limitation is the speciflcation of boundary con-
ditions. The boundary conditions used for the analysis
have a direct and profound effect on the results that are
calculated. Poor choice of the boundary conditions, or
choosing conditions that make the analysis easier rather
than reflective of the real operation can result in mis-
leading or erroneous results. The boundary conditions
must be chosen with caution and care to ensure that the
results validly reflect the reality of the process.

Figure 24 Finite element mesh for open die disk forging: (a) before deformation; and (b) after 75% reduction in
height. (From Ref. 16.)

Figure 25 True strain contours predicted by FEM for the open die disk forging after 75% reduction in height. (From
Ref. 16.)
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