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PREFACE

This book brings together the elements of the mechanics of plasticity most pertinent to
engineers. The presentation of the introductory material, the theoretical developments and
the use of appropriate experimental data appear within a text of 15 chapters. A textbook
style has been adopted in which worked examples and exercises illustrate the application of
the theoretical material. The latter is provided with appropriate references to journals and
other published sources. The book thereby combines the reference material required of a
researcher together with the detail in theory and application expected from a student. The
topics chosen are primarily of interest to engineers as undergraduates, postgraduates and
practitioners but they should also serve to capture a readership from among applied
mathematicians, physicists and materials scientists. There is not a comparable text with a
similar breath in the subject range. Within this, much new work has been drawn from the
research literature. The package of topics presented is intended to complement, at a basic
level, more advanced monographs on the theory of plasticity. The unique blend of topics
given should serve to support syllabuses across a diversity of undergraduate courses
including manufacturing, engineering and materials.

The first two chapters are concerned with the stress and strain analyses that would
normally accompany a plasticity theory. Both the matrix and tensor notations are employed
to emphasise their equivalence when describing constitutive relations, co-ordinate
transformations, strain gradients and decompositions for both large and small deformations.
Chapter 3 outlines the formulation of yield criteria and their experimental confirmation for
different initial conditions of material, e.g. annealed, rolled, extruded etc. Here the identity
between the yield function and a plastic potential is made to provide flow rules for the ideal
plastic solids examined in Chapters 4 and 5. Chapter 4 compares the predictions from the
total and incremental theories of classical plasticity with experimental data. Differences
between them have been attributed to a strain history dependence lying within non-radial
loading paths. Chapter 5 compiles solutions to a number of elastic-perfect plastic structures.
Ultimate loads, collapse mechanisms and residual stress are among the issues considered
from a loading beyond the yield point.

In Chapter 6 it is shown how large scale plasticity in a number of forming processes can
be described with slip line fields. For this an ideal, rigid-plastic, material is assumed. The
theory identifies the stress states and velocities within a critical deformation zone. The
rolling Mohr's circle and hodograph constructions are particulary useful where a full field
description of the deformation zone is required. Alternative upper and lower bound analyses
of the forming loads for metal forming are given in Chapter 7. Bounding methods provide
useful approximations and are more rapid in their application.

Chapters 8-10 allow for material hardening behaviour and its influence upon practical
plasticity problems. Firstly, in Chapter 8, a description of hardening on a micro-scale is
given. It is shown from the operating slip processes and their directions upon closely packed
atomic planes, that there must exist a yield criterion and a flow rule. There follows from this
the concept of an initial and a subsequent yield surface, these being developed further in
later chapters. The measurement and description of the flow curve (Chapter 9) becomes an
essential requirement when the modelling the observed, macro-plasticity behaviour. The
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simplest isotropic hardening model is outlined in chapter 10. Also discussed here is the
model of kinematic hardening for when a description of the Bauschinger effect is required.

In Chapter 11 the theory of orthotropic plasticity for rolled sheet metals and extruded
tubes is given. These two models of hardening behaviour are extended in Chapter 12 to
provide predictions to plastic instability in structures and necking in sheet metal forming.

A graphical analysis of the plasticity induced by longitudinal impact of bars is given in
Chapter 13. The plasticity arising from high impact stresses is shown to be carried by a
stress wave which interacts with an elastic wave to disfribute residual stress in the bar.
Chapter 14 considers the control of plasticity arising in conventional produetion processes
including: forging, extrusion, rolling and machining. Here, the detailed analyses of ram
forces, roll torques and strain rates employ the principles of force equilibrium and strain
compatibility. This approach recognises that there are alternatives to slip lines and bounding
methods, all of which are complementary when describing plasticity in practice.

Thanks are due to the author's past teachers, students and conference organisers who
have kept him active in this area. The subject of plasticity continues to develop with many
solutions provided these days by various numerical techniques. In this regard, the material
presented here will serve to provide the essential mechanics required for any numerical
implementation of a plasticity theory. Examples of this are illustrated within the final
Chapter 15, where my collaborations with the University of Liege (Belgium) and the
Warwick Manufacturing Centre (UK) are gratefully acknowledged.
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LIST OF SYMBOLS

The intention within the various theoretical developments given in this book has been to
define each new symbol where it first appears in the text. In this regard each chapter should
be treated as self-contained in its symbol content. There are, however, certain symbols that
re-appear consistently throughout the text, such as those representing force, stress and strain.
These symbols are given in the following list along with others most commonly employed in
plasticity theory.

O.P

aJ, ft?
P>*
3
e, Y

e
a, T
Of % °3
am

*
i
&
M
p., v
4>,Ji
0
d,m
f
V

P
A
I,H,F

curvilinear co-ordinates (slip lines)
kinematic hardening translations
Schmidt's orientation factors
friction and shear angles
rolling draft
normal and shear strains
normal and shear rates of strain
micro-plastic strain tensor
equivalent plastic strain
direct and shear stress
principal stresses
mean or hydrostatic stress
micro-stress tensor
transformed stress
tensile and compressive strengths
equivalent stress
friction coefficient
Lode's parameters
scalar multipliers
angular twist
die angles
hardening measure
Poisson's ratio
density
extension (stretch) ratio
hardening functions

a, h, I, z lengths
A section or surface area
b, t breadth and thickness
c propagation velocity
C, T torque
«?!, «j, e% principal engineering strains
eti distortions
ep subscripts denoting elastic-plastic
E superscript denoting elastic



 

MV

E,G,K
f
F,G,H,L..
F,P
Hfj, Cm

Hm, HyUma

I,J
?uh>h
/ „ J2, J%

K
l,m, n

m, n
M
n
P
P

Q
Q,S

rB,z
rnrt
R
RUR2

u,v,w
U
v, a
y
W
x,y,z
x.
X(

x,z
Y(=ao),k
z

LIST OF SYMBOLS

elastic constants
yield function (plastic potential)
anisotropy parameters
force
orthotropic tensors
orthotropic tensors continued
second moments of area
strain invariants
stress invariants
stress deviator invariants
buckling coefficient
direction cosines

Pr. anisotropy parameters continued
half-waves in buckling
bending moment
hardening exponent
pressure
superscript denoting plastic
stress ratio
shape and safety factors
polar co-ordinates
incremental strain ratios (r values)
extrusion ratio
radii of curvature
back tensions
displacements
strain energy
linear and angular velocities
volume
work done
Cartesian co-ordinates
spacial co-ordinates
material co-ordinates
equivalence coefficients
tensile and shear yield stresses
Considere's subtangent

Q (= 6^) rotation tensor/matrix
B, C, G, L deformation tensors
E(=£ g ) infinitesimal strain tensor/matrix
F, H deformation gradients
m, n, u unit vectors
M (= IQ) rotation matrix
S nominal stress tensor
T(=er9) stress tensor/matrix
T (=00 deviatoric stress tensor/matrix
U, V stretch tensors



 

CHAPTER 1

STRESS ANALYSIS

1,1 Introduction

Before we can proceed to the study of flow in a deforming solid it is necessary to understand
what is meant by the term stress. Various definitions of stress have been used so it is
pertinent to begin with explanations as to how it arises and is quantified. Firstly, it is
essential that the tensorial nature of stress is appreciated. It will be shown that stress is a
symmetrical second order Cartesian tensor. Where deformation is small (infinitesimal) we
can represent stress in both the tensor component and matrix notations. Stress is first
introduced for simple uniaxial and shear loadings. A combination of these loadings gives
both normal and shear stress, these eomprising two of the six independent components that
are possible within a stress tensor. The transformation properties of stress are to be
examined following a rotation in the orthogonal co-ordinates chosen to define the stress state
at a point. Alternative stress definitions are given when it becomes necessary to distinguish
between the initial and current areas for large (finite) deformations. Finite deformation will
affect the definition of stress because the initial and current areas can differ appreciably. The
chosen definition of stress becomes important when connecting the stress and strain tensors
within a constitutive relationship for elastic and plastic deforming solids.

The following analyses will alternate between the engineering and mathematical co-
ordinate notations listed in Table 1.1. This will enable the reader to interchange between
notations in recognition of the equivalence between them.

Table 1.1 Symbol Equivalence fa Engineering and Mathematical Notations

Quantity

Material co-ordinates
Spacial co-ordinates
Material displacements
Spacial displacements
Unit co-ordinate vectors
Direction cosines
Unit normal equation
Unit normal column matrix
Normal stress
Shear stress
Normal strain (see Ch. 2)
Shear strain (see Ch. 2)
Stresses on oblique plane

Engineering Notation

x,y,z
X,T,Z
u,v,w
U,V,W

/, m, n
uB = lu» + wu^+«ua

ffx, a,, fft

ex, eP ex'

a, r

Mathematical Notation

*H-^2!^"3

«!»«a> «3

uu u2, u3
tti, U25 U3

n = /tUj + l2u2 + l3Uj
B={/, / 2 / , } T

^11» ^ 2 2 ' ^ 3 3

* U ' ^ 1 3 ' ^ 2 3

au',an',aM'
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Note that a rotation matrix M employs the direction cosines in the above table for a co-ordinate
transformation between Cartesian axes 1, 2 and 3, in each notation as follows:

M = hi

*31

hi

hi

<B

hi

*33

s h
h

ml

"h

« i

"a

«3

1.1.1 Direct Stress

Direct stress a measures the intensity of a reaction to externally applied loading. In fact, a
refers to the internal force acting perpendicular to a unit of area within a material. For
example, when a uniaxial external force is either tensile(+) or compressive(-), c is simply

a=±W/A (1.1)

where W is the magnitude of the externally applied force and A is the original normal area
(see Fig. 1,1a). The elastic reduction in a section area under stress is negligibly small and
hence it is unnecessary to distinguish between initial and current areas within eq(l.l).
Elasticity is clearly evident from the initial linear plot of stress versus strain in Fig. Lib.

W W

Ultimate tensile strength

s*—^
"Tensile yield stress

l + x

Engineering strain, e-x/l

(a) (b)

Figure 1.1 Direct tensile stress showing elastic and plastic strain responses

Note, from' Fig, 1.1a, that the corresponding direct strain e is the amount by which the
material extends per unit of its length as shown. For displacements under tension or
compression,i.e. ± x, occurring over a length I, the corresponding strains are:

e = ±x/l (1.2)

This engineering definition of strain applies to small, elastic displacements. With larger
deformations in the plastic range a true stress is calculated from the current area and plastic
strains are calculated from referring the displacement to the current length. The true stress
and true strain are developed further in this and the following chapters.
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1.1.2 Shear Stress

Let an applied shear force F act tangentially to the top area A, as shown in Fig. L2a.

Ultimate shear strength

* . F (acting on area A) 5

^aj Engineering shear strain, y = tan 4> (b)

Figure 1.2 Shear distortion showing elastic and plastic strain responses

The shear sfress intensity t, sustained by the material as it maintains equilibrium with this
force, is given by

T=F/A (1.3)

The abscissa in the shear stress versus shear strain plot Fig. 1.2b refers to the angular
distortion that a material suffers in shear. The shear strain is a dimensionless measure of
distortion and is defined in Fig. 1.2a as

y=tan(fr=x/1 (1.4)

In eq( 1,4) <f> is the angular change in the right angle measured in radians. Within the elastic
region the shear displacement x is small when it follows from eq{1.4) that, with a
correspondingly small tf), the shear strain may be approximated as y ~ $ (rad).

The original area .4 in eq(1.3) will depend upon the mode of shear. For example,
consider the two plates, in Fig. 1.3a joined with a single rivet, subjected to tensile force F.
Since the rivet is placed in single shear, A refers to its cross-sectional area and F to the
transverse shear force. In a double shear lap joint in Fig. 1.3b the effective area resisting F
is doubled and so r is halved.

(a)
X \ S I — » r

77
\ \ X XX X

j v

(b)

Figure U Riveted joints in single and double shear
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1.2 Cauchy Definition of Stress

Consider an elemental area da, on a plane B, mat cuts through a loaded body in its deformed
configuration (see Fig. 1.4).

Figure 1.4 Force <5F transmitted t t o u $ i area da

Let a unit vector n, lying normal to & at P, be directed outward from the positive side of B
as shown. Due to the applied loading, an elemental resultant force vector 3F, acting in any
direction on the positive side of da, must also be transmitted to the negative side of B if the
continuum is to remain in equilibrium. The traction acting across da may be found from
considering the lower half as a free body.

1.2.1 Stress Intensity

Let an average stress intensity, or traction vector tm, be the average force per unit area of
da, so that

<5F = rw«5a or dFi = r * da (1.5a,b)

The alternative expression (1.5b) has employed the componente r^"5 of r m in co-ordinates,
x, (where r = 1, 2 and 3). Equation (1.5a) shows that dF will depend upon the size and
orientation of da. The vector r s * emphasises this dependence upon the chosen area da at
P. For a given P, r'm) is uniquely defined at the finite limit when & tends to zero. This limit
will fiirfher eliminate any momente of $F acting on 3a. Thus, fromeq(l .5a), the traction forany
given normal direction n, through P, becomes

jtf? J i? dF

rW _ j j m _ — o r j,M _ — i (l.5c,d)
,5o-,o da da da

Equation (l.Sd) reduces to the simple forms given in eqs(l.l) and (1.3) when a single force
acte normal or parallel to a given surface. Where oblique forces act, the total stress vector
r(l* may be resolved into chosen co-ordinate directions, xf. To define a general stress state
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completely, it is sufficient to resolve r(n> into one normal and two shear stress components
for the positive sides of orthogonal co-ordinate planes passing through point P. Such
resolution reveals the tensorial nature of stress since it follows mat mere will be nine traction
components when three orthogonal planes are considered. To show this, let n, (/ = 1,2,3)
be unit vectors in the direction of the co-ordinates xt so that r °' , r * ' , r "" become the
traction vectors on the three faces shown in Fig. 1.5.

Figure IS Tractions across the three faces of a Cartesian element

B/ (iThe three traction vectors r B/ (in which n̂  are also unit
planes) may be written in terms of the scalar intercepts rt '

t normals to the three orthogonal
that each vector mates with x,

as follows;

r = rT nx + r2 n 2 + r3 n 3 = rs n;

r z = rj iij + r2 n 2 + i

r ' - r , r2 n3

n3 = r, n,

n , = r, ' n,

which, by the summation convention, may be contracted into a single equation;

where i,j =1 ,2 and 3. The nine scalar components rt ' form the components of a
order Cartesian stress tensor av= r^ . Thus, the system of eqs( 1.6a) becomes:

(1.6a)

i second

Equation(1.6b) satisfies force equilibrium parallel to each co-ordinate directions. This
equilibrium condition will appear later with the alternative engineering stress notation (see
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eqs(l.lla,b,c)). The Cauehy stress tensor, T, with components &y (where i,j = 1,2, 3), is
defined in from eq(i.6b) when the co-ordinates xt are referred to the deformed configuration.

1.2.2 General Stress State

WitMn a general three-dimensional stress state both normal and shear stresses components
comprise the tensor components av within eq(1.6b). Two conventions are employed to
distinguish between these components and to identify the directions in which they act. In
the engineering notation, IT denotes normal stress and r denotes shear stress. Let these
appear with Cartesian co-ordinates x, y and z, as shown in Fig. 1.6a.

i

V -

1

r
-

/

/

Y
/

/
—1» ff,
\ ,—+>

y

/ '

4

0

I

h

/

f

(v
°n /

On

(a) (b)

Figure 1.6 General stress sates in (a) engineering and (b) mathematical notations

A single subscript on a identifies the direction of the three normal stress components. The
double subscript on r distinguishes between the six shear components. The first subscript
denotes the direction of the stress and Ihe second the direction of the normal to the plane on
which that stress acts, e.g. TV is a shear stress aligned with the jc-direction on the plane whose
normal is aligned with the y-direetion (Note: some texts interchange these subscripts by
writing me normal direction first). Only three shear stresses components are independent.
The complementary nature of the shear stresses: rv = tyM, r s = tm and fyz= TV, ensures that
moments produced by the force resultants about any point are in equilibrium. To show this,
take moments on four faces in the x-y plane about a point along the z-axis in Fig. 1.6a:

which leads to TV = r^. In Fig. 1.6b, an alternative Cartesian frame xt (xlt x2 and x$) is
employed to identify the stress components according to the mathematical tensor notation.
Here, the single symbol er is used for both normal and shear stress components. They are
distinguished with double subscripts referring to directions and planes as before. Thus, alx

is a normal stress aligned with the 1-direction and the normal to its plane is also in the xr

direction. Normal stresses will always appear with two similar subscripts in this notation.
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Different subscripts denote shear stresses, e.g. al2 is aligned with the ̂ -direction but acts on the
plane whose normal is aligned with the x,-direction. Great care must be token not to confuse
generalised co-ordinates: JC,, X2 and x, with the system of co-ordinates 1, 2 and 3 used in the
following section to identify principal stresses. Since shear stress is absent along principal
directions we may employ a single subscript 1, 2 or 3 with a to identify principal stresses
unambiguously.

1.2.3 Stress Tensor

It is seen that six independent scalar components of stress are required to define the general
state of stress at a point. This identifies sttess as a Cartesian tensor of second order. The
components appear in the tensor notation as al} = aM {where i =j = 1 , 2 and 3). Note that a
vector is a tensor of the first order since it is defined from the three scalar intercepts the
vector makes with its co-ordinate axes. The following section shows that the scalar
components of the stress tensor may be toinsfcrmed for any given rotation in the co-ordinate
axes. These tensor components are often expressed in the form of a symmetrical 3 x 3
matrix T. The following matrices of stress tensor components are thus equivalent and we
shall alternate between them throughout this and other chapters.

ay

an

°22 °23 (1.7a,b)

The matrices (1.7a and b) are symmetrical about a leading diagonal composed of the three
independent direct stress components.

1.3 Three-Dimensional Stress Analysis

Let an oblique triangular plane ABC in Fig. 1.7a cut through the stressed Cartesian element
in Fig. 1.6a to produce a tetrahedron OABC. The six known independent stress components:
ax, ay, OJ , tv = ryx, Tia= T^ and tn = tv now act on the back three triangular faces OAB,
OBC and OAC in the negative co-ordinate directions.

n(Z, m, n)

(b)

Figure 1.7 General stress state far a tetrahedron showing direction cosines to oblique plane ABC
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Since the element must remain in equilibrium, the force resultants produced by the action
of these stresses are equilibrated by a normal stress a and a shear stress ron the oblique
plane ABC in Fig. 1.7a. The objective is to find this stress state (0, tf in both magnitude and
direction, by the methods offeree resolution and tensor transformation.

1.3.1 Direction Cosines

It is first necessary to find the areas of each back face. Let the area ABC in Fig. 1.7b be
unity. Construct a perpendicular CD to AB and join OD. A normal vector n to plane ABC
is defined by direction cosines I, m and n, measured relative to x, y and z respectively as
follows;

I = eosa; m = cos/? and « = cosy (1.8a,b,c)

Then, as Area ABC = %AB x CD and Area OAB = &AB x OD:

(Area OAB) / (Area ABC) = OD / CD = cos y= n

Hence: Area OAB = n. Similarly: Area OBC = / and Area OAC = m. The direction cosines
are not independent. Their relationship follows from the equation of vector n:

n = (1.9a)

where u*, Uy and uz are unit vectors and n x n ând n are scalar intercepts with the co-
ordinates x, y and z, as shown in Fig. 1.8a.

(a)

Figure 1.8 Scalar intercepts for (a) normal vector n and (b) unit normal un

The unit vector nn, for the normal direction (see Fig. 1.8b), is found from dividing eq(1.9a)
by the magnitude |n|:

î , = (« I / ln | )«»+(VM)n, + (VW)n« Cl-9b)

Substituting from eqs(1.8a,b,c): I = cosa= nx/\n\, m = cos/?= nT/\n\ and n = CQSJ^ nj\n\,
eq(1.9b) becomes
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It follows that I, m and « are also the intercepts that the unit normal vector u, makes with x,
y and z (shown in Fig. 1 Jb) . Furthermore, since

the direction cosines obey the relationship:

1.3.2 Force Resolution

(1.10)

(a) Magnitudes of a and t
Let a and r be the normal and shear stress components of the resultant force or traction
vector r, acting upon plane ABC in Fig. 1.9a.

F^ure 1 ^ Stress state for the oblique plane ABC

The components of vector r are rx, ry and rz as shown. Since r must equilibrate the forces
due to stress components applied to the back faces (see Fig. 1.7a), it follows that

(1.1 la)
(1.11b)
(1.11c)r, = It-

Writing eqsfl.l la,b.c) in the contracted form: ri = Oytij, it is seen that these become a re-
statement of eq(1.6) in which tfy = afl. Using the engineering notation, the corresponding
matrix equation, r = Tn, gives

Now as the area of ABC is unity, eris the sum of the rs, ry and rz force components resolved
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into the normal direction. This gives

c = r^cos*?+ ryca%fl + rtcosy= rj+ rfm + rzn (1.12a)

where, from eqs(l.l la,b,c)

a= aji+ aym
2+ 0zn

% + 2{lmTv + mnTn + lnTa} (1.12b)

The magnitude of the resultant force on ABC is expressed in two ways:

r2 = rx + r* + r? = a2 +

.-. t2 = r1- o2 = r? + r / + r / - a2 (1.12c)

and substituting eqs(l.lla-c) into (1.12c), t can be found.

(b) Directions of a and r
Since ff lies parallel to n» the direction of a is also defined by I, m and n for the plane ABC.
The direction of r in the plane ABC is defined by the directions: ls = eosar,, ms = cos/| and
ns = cos f5 (see Fig. 1.9b). Because rx, ry and r2 are the resultant forces for the x, y and z
components of cand r, this gives

rx = a cosa + tcosas = la+ lsr
rf = acosfl+ rcosfl, = ma+ m,r
rt = CTCQS j^+ rcosfs = na+ ngr

Re-arranging gives
ls = (rx-la)fr (1.13a)

(1.13b)

Example 1.1 A stress resultant of 140 MPa makes respective angles of 43°, 75° and 5O°53'
with the x, y and z-axes. Determine the normal and shear stresses, in magnitude and
direction, on an oblique plane whose normal makes respective angles of 67°13', 30° and
71°34' with these axes.

Referring to Fig. 1.9a, first resolve r = 140 MPa in the x, y and z directions to give its
components as

rx = 140 cos 43° = 102.39 MPa
r, = 140 cos 75° = 36.24 MPa
rt = 140 cos 50°53" = 88.33 MPa

The normal stress is found from eq(1.12a), in which I, m and n are the direction cosines for
the normal:

ff= rxl + rym + rzn = r,cosff + ryeos/?+ r8 cosy
= 102.39 cos 67°13' + 36.24 cos 30° + 88.33 cos 71°34' = 98.96 MPa

Equation (1.12c) supplies the shear stress on this plane as

r = y/ (r2 - a2) = v' (1402 - 98.962) = 99.03 MPa
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and eqs(1.13a,b,c) gives its direction cosines as

I, = (rx - la)/T= (102.39 - 98.96 cos 67°13')/ 99.03 = 0.647 (a, = 49°41')

ms = {ry - ma)/T= (36.24 - 98.96 cos 30°)/ 99.03 = - 0.500 (fls = 120°)

ns = (rz - no~)/r= (88.33 - 98.96 cos 71o34ry99.03 = 0.576 (f, = 54°50')

from which it can be checked that: ls
z + ms

2 + n,2 = 1.

1.3.3 Stress Transformations in Tensor and Matrix Notations

It is now shown that components <?and rin eqs(1.12a,b) appear as componente in a general
tensor transformation law for stress. The general transformation law for a tensor follows
from the dyadic product of two vectors. The equations for any pair of arbitary vectors a and
b (see, for example, Fig. 1.10a) will appear in Cartesian co-ordinates: Xy, x2 and x3, as

a =
b =

%u3 =
= btu,

(1.14a)
(1.14b)

where a, and bt are the scalar intercepts and Uj are unit co-ordinate vectors. Figure 1.10a
shows each of these for the vector a.

(b)

Figure 1.10 Components of a vector in co-OKtinate ftame x,, x3 and x, and x,\ x,' and x£

Let the co-ordinate axes rotate about the origin to lie in the final orthogonal frame x{, x/ and
JC3', as shown in Fig. 1.10b The equations of the stationary vectors a and b become

a = ax ux

b = fejV
(1.15a)
(1.15b)

^ + 03^ = 0;^

Next, consider the method for expressing this rotation. It has previously been shown that



 

12 BASIC ENGINEERING PLASTICITY

flie components of a unit vector are the direction cosines (see eq(1.9c)). Thus, unit vectors
u/, %' and 1%' in the frame x{, x£ and x3', may each be expressed in terms of unit vectors u,,
% and %, for the original frame xif x% and x3, as follows;

< = 4 I % + 4 2 % + 4 J % (1.16a)
(1.16b)
(1.16c)

Using the summation convention eqs(1.16a,b,c) may be contracted to a single equation:

To confirm this, sum eq(1.16d) over j = 1 , 2 and 3, to give

and, substituting i = 1,2 and 3 provides the three relations in eqs(1.16a,b,c).The directions/^
(i, j = 1, 2 and 3) in eq(1.16d), define each primed direction relative to the unprimed
direction. That is: 1$ = cos(z/, xj). For example, lu = cos (x/, xt), ln = cosO^', .%) and I13 =
cos(xj', x3) define the directions of x{ within the frame xt, % and x3. It follows that the
direction cosines lv are the components of the following rotation matrix M:

M = hi 22

hi hi

(1.17a)

An orthogonal property of this matrix is that le l^ = ^ft or MM1 = I. In full, this is:

M M T =

hi

hi

hi

hi

*22

hi

hi

h3
hi.

hi

hi

hi

hi

ht

hi

hi

hi

hi

1

0

0

0

1

0

0

0

1

which contains the following relationships between cosines for each direction:

hi* + In + In1 = 1 « • « , ' = IJu = « > ! = D for x/

hi + In + la = 1 « « %' = hit* = %T% = 1

4i" + IB* + ̂ a = 1 K • < = h, hi = u»T«» = 1

Additional relationships apply to pairs of orthogonal directions:

ha.

4ihi

(1.17b)

= 0 (u/ • u2' = lu tti = U J X = 0) for x/ and x/

= 0 (%' • < = 44. = %T% = 0) for xi and xj' (1.17c)
= 0 (V • < = lulM = u/ttj = 0) forx( and %'
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The abbreviated expressions in parentheses show the equivalent equations appear in the
respective notions of a direct tensor (i.e. the dot product), indicial tensor components and
a matrix. Since 1% = {lu la l13 }

T etc, denote column matrices it follows that a row matrix
is formed from the transpose: u^ = {ln ln ln}. Apart from the dot and cross products of
vectors, the direct tensor notation will not be adopted further. Instead, we shall alternate
between the tensor component and matrix notations in our consideration of the stress and
strain tensors and the relationships that exist between them.

Combining eqs(1.14) and (1.15), the vectors a and b may be expressed in both systems
of co-ordinates as

a = a,

from which the vector transfomation laws follow:

a, = a! lfi = lj aj and b, = bj lM = lfib} (1.18a,b)

In the matrix notation eqs(1.18a,b) become

where a, a', b and b' are column matrices, e.g. a = {sj a2 as}
T. To invert eqs{1.18a,b),

multiply both sides by lu;

lid®! = 4,hiaj ~ $vaj ~ ak

where from eq(1.17b,e) 6% = 1 for & = j and £% = 0 for k * j . Reverting to i,j subscripts:

alstltjOj and, similarly, bl = ll}bj (1.19a,b)

Correspondingly, to invert the matrix eq(1.18c) pre-multiply both sides by (MT )~l. This
gives

( M T r 1 a = ( M T r ! M T a ' = I a ' = a' (1.19c)

Since the inverse of the square matrix M will obey MM"1 = I and as MMT = I, a further
orthogonal property of the rotation matrix is that M ~l = MT. It then follows that

and eq(1.19c) becomes
a' = Ma and, similarly, b' = Mb (1.19d,e)

A second-order Cartesian tensor may be formed from the dyadic product of two vectors.
Note that this differs from the cross product which resulte in another vector lying normal to the
plane containing the two vectors. The tensor or dyadic product of two vectors, a and b, is written
as

a® b = (aiUi)® (bju} = albj(.ul» Uj)

The tensor so formed appears as
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where K$ = a^ (K = ab1) are the components of a second order Cartesian tensor K for which
the unit vectors (dyads) u, and u, appear in linear combination. The components K^ may be
referred to both sets of orthogonal axes JC, and x' through the vector transformation laws
(eqs(1.18a,b)). These give

and putting Km' — af' bq' leads to the transformation law

K^l^l^K^ (1.20a)

Equations(1.19a,b) provide the components of the the inverse transformation matrix K- as

Setting Km = ajbt, the general transformation law for any second order tensor is obtained:

Kt; = l¥lMKm (1.21a)

In converting eqs(1.20a) and (1.21a) to matrix equations, similar subscripts must appear
adjacent within each term to become consistent with matrix multiplication. That is

or K =
or K ^

Alternatively, direct matrix derivations are given by eqs(1.18c,d) as

(1.20b)
(1.21b)

K = a bT = (MTa')(MTb')T = M ^ a ' b'J) M = M T K' M
K' = a' b ' T = (M a) (M b)T = M (a bT) MT = M K M T

It has been previously established that the physical quantity called stress is a second order
tensor. The stress tensor must therefore transform in the manner of eqs(1.20) and (1.21).
Normally, it is required to transform the known components of the stress tensor opq in axes
JCI, x% and x3 (Fig. 1.11a) to components o '̂ in axes x{, x% and x3', as shown in Fig. 1.1 lb.

Figure 1,11 (a) Generalised stress components ami (b) a rotation in orthogonal axes
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It follows from eq(1.21a) that the law of transformation is

o» = L L OL or T ' = MTMT (1.22a)

where T = av and T ' s 05J and M = l r Writing the stress transformation law (L22a) in fall:

V ln

hi

hi

h*
hz

hi

hi

*33

hi hi 1

H2 2̂2

h, lU

hi
(L22b)

This gives one normal and two shear stresses for each of the three orthogonal planes in the
x/ (i = 1,2 and 3) frame. In the analytical method, the stress state for a single oblique plane
ABC (Fig. 1.7) was found. We can identify ABC with the plane lying normal to x{ (say)
with directions: In, ln and lu. The stress components for this plane (%', % ' and % ' ) , are:

'11

[hi hi hi]
n

hz

'13

(1.22c)

The normal and shear stress referred to in eqs(1.12b and c) now become 0= on' and T=
^{{Ouf + (ojif}- Clearly, ris the resultant shear stress acting on plane ABC and # a ' , an'
are its components aligned with the axes x/ and x3'.

It is important to note here that the prime on stress in eqs( 1,22a-c) refers to the normal
and shear stress components for the transformed axes xf. They are not to be confused with
deviatoric stresses £|' and T, shown in Fig. 3.3. The stress deviator has the hydrostatic part
of the stress tensor removed, i.e. a,- = av - Vs 4 j % . or, T ' = T - % I tt T (see eqs(3.9a,b))
and retains the property of transformation, as in eq( 1.22a).

1.4 Principal Stresses and Invariants

The three principal planes are orthogonal and free of shear stress. The three stresses normal
to these planes are, by definition, principal stresses. Their magnitudes and orientation will
now be derived from the known stress components for non-principal axes.

1.4.1 Magnitudes of Principal Stresses

For this let us employ the engineering notation, where the stress components shown in Fig.
1.6a correspond to the 3 x 3 matrix given in eq(1.7a). When the shear stress ris absent for
the plane ABC (I, m, n) in Fig. 1.7a then the normal stress a becomes a principal stress.
Force resolution in the x, y and 1 directions modifies eqs(l.l 1) to:
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ry = mtr

rz = no=
That is

(1.23a)

Writing the direction cosines in a column matrix u = {I m n}J, the equivalent tensor
component and matrix forms of eq( 1.23a) will respectively appear as

(ffs - adi}) u, = 0 or (T - crl) u = 0

By Cramar's rule, the solution to am found from the determinant

H~
- o)

= 0

(1.23b)

(1.23c)

Contracted forms of eq(1.23c) appear, in the two alternative notations, as

det(or9 - £r4) = 0 or det(T - aJ) = 0

Expanding eq(1.23c), leads to a cubic (or characteristic) equation

(ax- e%[(af - a)(at - d)- r^rw] - T^IX^O, - o) - ryju] + ^[r^r^ ra

a3 - {ax + ay + 0,)^ + (axay + 0^ + ofix - v^ - t£ - tj- )a
Ir^r^ - axt^ - ayvj - atr^) = 0 (1.24a)

The three roots (the eigen values) to eq( 1.24a) give the principal stress magnitudes oi, t% and
£%. Equation (1.24a) is usually written as

a3- Ji0-E + J2ff~/3 = O (1.24b)

The principal stresses are unique for a given stress tensor. The coefficients J t, Jz and J3 in
eq( 1.24b), are therefore independent of the co-ordinate frame, x, y, z, in Fig. 1.6a, chosen
to define the stress tensor components. Jx, J2 and J% are therefore called invariants of the
stress tensor ffg. Equation (1.24a) must include an orientation where x, y and z coincide with
the principal sfress directions 1,2 and 3. Thus the invariants may be expressed either in terms
of general stress components (subscripts x, y and z) or in terms of principal stresses (subscripts
1, 2 and 3):

j j = ay + ff; + e?, = ax + oy + ffj = aH = tr T (1.25a)

J% =

^°0 = ̂  [ (tr
ax ay a, + 2 v

= det («%) = det T

- tr T2] (1.25b)

(1.25c)
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Also given in eqs(1.25a-e) are the contracted tensor and matrix expressions. The former is
to be employed with tensor subscripts i,j = 1,2,3. Repeated subscripts on a single symbol,
or within a term, denote summation.

"Where there are exact roots to eq{ 1.24a), the principal stresses are more conveniently
found from expanding the determinant (1.23a) following substitution of the numerical values
of the stress components. Otherwise, the major «•„ intermediate o| and minor «, principal
stresses (a1>ai> a0 must be found from the solution to the cubic eq(1.24a). The Cayley-
Hamilton theorem states that a square matrix will satisfy its own characteristic equation. For
the 3 x 3 stress matrix, T, eq( 1.24b) becomes

T 3 - J 1 T 2 + / j T - I / s = 0 (1.25d)

Substituting from eqs(1.25a-c), the theorem states that T must satisfy:

T 3 - T2tr T + V6T [ (tr T)2 - tr T 2 ] - I detT = 0 (1.25e)

Taking the trace of eq( 1,25d) gives an alternative expression for J3:

tr T ' — J tr T 2 + / tr T — 3 / = 0

and substituting from eqs( 1.25a and b) gives

J3 = - ( t r T ) 3 - - t r T t r T 2 + - t r T 3
3 6 2 3

1.4.2 Principal Stress Directions

Let the direction cosines for at be llt m, and nt within a co-ordinate frame x, y, z.
Substituting for the applied stresses into eq(1.23a), with a= oj, leads to three simultaneous
equations in llt mt and nv Only two of these are independent because of the relationship:
I* + m* + «j2 = 1. (see eq(1.10)). A similar deduction can be made for further substitutions:
es,(£j» w»2, %) and <%(ij,»%, «j) into eqs(L23a). It follows from eq(1.9c) that the principal
sets of direction cosines; (lt, mx, n{), (/lf Hi, « ^ and (13, m y n J define the unit vectors
aligned with the principal directions (see Fig. 1.12).

x - 2

Figure 1.12 Principal directions
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They are
+ njU, (1.26a)

j + %Uj (1.26b)
m3u y + »JUJ (1.26c)

The three unit vectors are orthogonal when their dot products are zero. For the 1 and 2
directions:

% ' Ha - (h«, + >»lUy + % U j • (Jjll, + MjUy + %!!,) = 0

Now u / u, = u/ Uy = 11/ uz = 1 and u* Uy = n/ u,. = uf uz = 0. The further dot products,
!%• % and %• Uj, determine the full orthogonality conditions;

0 (1.27a)
0 (1.27b)
0 (1.27c)

The relationships (1.27a-c) are ths only conditions that satisfy the simultaneous
equations(1.26a-c), confirming that the principal stresses directions and their associated
planes are orthogonal. In feet, u a ( * = 1,2,3) in eqs(1.26a,b,c), define the eigen vectors for
the characteristic eq(1.24b). Since its roots are the eigen values O"B (m= 1,2,3), eq(1.23b)
becomes

aiSlBi = ajislmj = 0e lmt or (T - «r.I )u a= 0 (I.28a,b)

To show that these forms are identical to eqs(1.23a), put a = 1 in eq(1.28a) and expand for
i = l over/' = 1 , 2 and 3:

% / n + oi2/la+ff,jl,3 = <r,/ii (for j = 1,2,3)

hi i<hi - °i) + 1̂2 % + la % ~ 0

When converted to the engineering notation this becomes the first of eqs(l .23a), i.e.
I (o, - 0) + mr^ + nTXZ = 0. Post-multiplying eq(1.2ia) by /^ gives

^ ' ^ 1 = ^ . ^ . Cl-28c)

Then, for ar= 1 andp = 2 and « = 2 andp = 1, eq(1.28c) gives

Subtracting these leads to

but since iTy = a^ and Gi# 0^, it follows that
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In the engineering notation this is eq( 1.27a): lt lz + mt»% + nt % = 0, thereby confirming that
directions 1 and 2 are orthogonal. Further pairs of substitutions: (&= l,p = 3; a=3,p = 1)
and (sr= 2,p = 3; m= 3tp = 2) will confirm eqs(1.27b,c). Within the three column matrices:
Uj = {/u ln IB}T , % = {(M ln lm)r and u3 = {l3l li2 Iw}7* which definite the 1, 2 and 3
directions respectively, the orthogonality conditions are written as

To show that a principal stress state exists when a rotation in the co-ordinates aligns them
with the principal stress directions, eqs(1.22a) and (1.28b) are, respectively

Pre-multiply eq(1.29b) by i(> and substitute from eq(1.29a) gives

where t = {ax (% o^}T are the principal stresses.

Example 1.2 The stress components (in MPa) at a point within a loaded body are: ox = 5,
ay=7, at = 6, t^ = 10, tm = 8 and tn = 12. Find the magnitudes of the principal stresses and
the maximum shear stress. Show that the principal stress directions are orthogonal.

It follows from eq( 1.23c) that the principal stesses cubic (or characteristic equation)
may be found either from (i) expanding the determinant:

5-a 10 8

10 1-0 12

8 12 6-ff

= 0

or (ii) from direct substitution into eq( 1.24a). These give

ff3- 1 8 ^ - 2 0 1 0 - 3 6 2 = 0

from which the invariants in eq(1.24b) are identified as: Jy = 18 MPa, J2 = - 201 (MPa)1 and
/ 3 = 362 (MPa)3. The roots to this cubic are identified with the principal stresses according
to flf, > £% > £% as follows: at = 26.2, oj = - 2.37 and a% = - 5.83 MPa. Thethreedirection
cosines for the 1-direction 0j, nt,, MJ, are found from substituting oi = 26.2 MPa into
eq(1.23a):

- 21.2 Z, + 10m,+ 8«i = 0

101,+19.2 m1+12n, = 0
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of which only two equations are independent. To solve for /,, m, and «, from these equations
let a vector: a = a,u, + a2u, + «,u3 of arbitary magnitude |aj = x/(a,2 + a,2 + a3

2), lie along the 1-
direction. Setting l[=a[i |a|, m, = as / |a( and «, = o, / |a| enables ax to be set to unity (say) from
which «, = 1.222 and fl3 = 1.122. Hence |a| = 1.937 and /( = 0.516,«, = 0.631 and M, = 0.579.
Thus a unit vector (eq(L26a)) may be identified with the 1-direction as:

i% = 0.516U, + 0.63 lii, + 0.579ut

Similarly setting c^ = - 2.37 MPa in eq(L23a) leads to a unit vector for the 2-direction as

% = Q.815U, - 0.15311, - 0.560u,

Finally, setting c% = - 5.83 MPa in eq(1.23a), leads to a unit vector for the 3-direction as

% = 0.265% - 0.761U,, + Q.592us

Taking the dot products of ux, 1% and Uj shows that u j • u 2= u f u 3= u %» u 3= 0, so
confirming that the directions 1,2 and 3 are orthogonal.

1.4.3 Reductions to Plane Stress

Consider the non-zero plane stress components ox, ay and tv, shown in Fig. 1.13a. Direction
cosines: I = eoso, m = eos/?= cos (90° - cfy = sin a and n = 0 define the direction normal to
the oblique plane in x, y and z co-ordinates.

(a) O

Figure 1.13 Plane stress in x - y and x% - *, co-ordinates

Substituting into eq( 1.12a) gives the normal stress on the oblique plane

0=

r=

a+ ay sin2a+ 2TV COS orsin a
ff + £ry sin

2flf + T^ sin 2«

ff,) cos 2*+ tv sin

and from eqs(l.ll) and (1.12b), the components of the traction vector r are:
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rx = GX cosflf + t^sin ar, ry = ê  sins + i^cosa'and rt = 0

The shear stress on this plane is found from the substitution of rx, ry and rz into eq(l. 12b) as

^sin2 a+ r^sin 2a)1

0 ( 1 - 2sin2^]
r2 = (azcos &+ c^sin a f + (e^sin a + r^cos df - {e^

= (of - axay + o*) sin2*cos2ar+ rw sin 2«[ax(l -
2 2 2 sin12a)

- rv(oi - 60 sin 2arcos
= [^(ax- 00 s i n 2 « - i^cos2s] 2

r = % (oi - op sin 2ar - r^cos 2m

The respective matrix forms for this plane reduction is found from the transformation
eq(1.22a): T ' = MTMT in which T and M are now 2 x 2 matrices:

°2l' ff
2/

=
"̂ 11 ln CTii °i2

hi hz

where, In = cos*, ln = cos(90 - ei) = sin a, 4 i = cos(90 + a) = - sinarand i^ = cosaf. Figure
1.13b shows that the stress state (au', %') applies to the x/ - direction and thus the matrix
equation reduces to

<
=

hi hi

°\\ axi hi

hi

where the following associations are made with the engineering notation an = ax, <% = flf,
and 0I2 = TV in the co-ordinate directions and <?u' = cand a^ = rfor the oblique plane.

In finding the plane principal stresses (0; and 00, the invariants in eqs(1.25a-e) become:

1 x y, 2 x y t ^ and J3 = 0

and the principal stress cubic eq( 1.24b) reduces to a quadratic

a2 - (ax + a-y)ff+ (trx ay- rv
2) = 0

The solution gives the two principal stresses as roots

a%2 = ¥i(ax+ cry) ± ¥i A (ax - ayf + 4 r ^ ]

where the positive discriminant applies to ov

1.5 Principal Stresses as Co-ordinates

Let the co-ordinate axes become aligned with the orthogonal principal directions 1,2 and
3 so mat the applied stresses are the principal itresses: o1 ><% > 0^, as shown in Fig. 1.14.
Because there is no shear stress on faces AGO, ABO and BCO, the expressions for the
normal and shear stresses (0, $ upon the oblique plane ABC are simplified.
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Figure 1.14 Oblique plane set in principal stress axes

Replacing x, y and z in eqsCl.l 1) and (1.12) with 1,2 and 3 respectively and setting TV =
= r^ = 0 gives the following reduced forms;

(1.30a,b,c)

(1.31a)

= loj, r2 = mOi, r3 =

The traction across ABC can be written as

from which

r=

The direction cosines for rare, from eqs(1.13),

ls = (r1-lff)/T=l(a-1- a)ft
ms = (r2 - wiff) IT= mlo^ - a) IT
ns = (r3 - «cr) / r = ra (ff3 - <j) IT

(1.31b)

(1.32a)
(1.32b)
(1.32c)

In the mathematical notation, when xt, Xj and *, in Fig. 1.11a are aligned with the
principal stress co-ordinates (1,2 and 3), the transformation eq( 1.22b) becomes

"L2

fa
3̂3

0

0

0

ff22

0

0

0

%

'n hi
ln in

lu ^

hi

hi

hs

This will contain the expressions (1.31 a,b) for the normal and shear stresses on a single oblique
plane ABC. Identifying direction cosines /,„ lX2 and ln for the normal to ABC gives its three
stress components as
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11
7n

0

0

0

an

0

0

0

%

in which cr= oj/ and r s V [ (%')2 +

1.5.1 Maximum Shear Stress

It can be shown from eq(1.31b) that maximum shear stresses act on planes inclined at 45°
to two principal planes and are perpendicular to the remaining plane. For the 1-2 plane in
Fig. 1.15, for example, the normal n to the 45° plane shown, has directions I = m = cos 45°
= 1A/2 and n = cos 90° = 0. 3

\ n (I, m, n)

Figure 1.15 Maximum 45" shear plane

Substituting /, m and n into eq(l .3 lb), the maximum shear stress for this plane is

T%i = a/fl + a£n - (o|/2 + e^flf = V* (tr? + of - 2<7^) = V4 (^ -
r M = ±J4(oi -c5) (1.33a)

where the subscripts 1, 2 refer to those principal planes to which r i s equally inclined.
Similarly, for the plane inclined at 45° to the 1 and 3 directions {l = n= lMl and m = 0), the
maximum shear stress is

i-fli) (1.33b)

and, for the plane inclined at 45° to the 2 and 3 directions, where n = m = 1/̂ 2 and I = 0, the
maximum shear stress is

ffs) (1.33c)

The greatest of the three shear stresses, for a system in which at > <% > % is *"„„= r w .
When the 45° shear planes are considered in all four quadrants they form a rhombic
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dodecahedron. The normal stress acting upon the planes of maximum shear stress are found
from eq(1.31a). For example, with l = m = \H1 and M = 0 for the 45° plane shown in Fig.
1.13, the normal stress is

ff=M(0l + fl&) (1.33d)

1.5.2 Octahedral Plane

The octahedral plane is equally inclined to the principal directions. It follows from eq(1.10)
that the direction cosines of its normal are I = m = n = 1A/3 {a= fi= y= 54.8°). Substituting
these into eq{L31a), gives the octahedral normal stress

ffo = %(Gi + ^+«73) (1.34a)

Since aa is the average of the principal stresses it is also called the mean or hydrostatic
stress, am. The octahedral shear stress is found from substituting I = m = n = 1/V3 in
eq(1.31b):

- IT,
(a, -

r0 = % /[(oi - ^ ) Z + (<r2 - ffj)2 + (oi - ^ ) 2 ] (1.34b)

Combining eq(1.34b) with eqs(1.33a,b,c) gives &o in terms of the three maximum shear

ro = (2B) ^(r^ + rM
2 + rM

2) (1.34c)

The direction of ro is found from eqs(1.32a,b,c) as

(1.35a)
(1.35b)
(1.35c)

"When the eight octahedral planes in all four quadrants are considered they form the faces of
the mgular octahedron, shown in Fig. 1.16.

3

Figure 1.16 Octahedral planes
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Here, tro and r0 act on the eight planes while T%.%, r M and %3 act along their edges. The
deformation that arises from a given stress state may be examined on an octahedral basis.
Since ao acts with equal inclination and intensity it causes a recoverable elastic volume
change irrespective of the principal stress magnitudes. Superimposed upon this is the
distortion produced by %. Since eq( 1.34b) shows that the magnitude of ro depends upon
differences between the principal stresses, a critical value of ra will determine whether the
deformation will be elastic or elastic-plastic. In Chapter 3 it is shown that a yield criterion
may be formulated on this basis.

Example 1 3 Given the principal steesses at = 7.5, at = 3.1 and c% = 1.4 (MPa) find (i) the
maximum shear stresses and their directions and (ii) the magnitude and direction of the
normal and shear stresses for the octahedral plane. Confirm the answers using a Mohr's
stress circle.

r,MPa

A*

Figure 1.17 Mohr's circle showing max shear and octahedral shear planes

(i) From eqs(1.33a,b,c) the three shear stress maxima are:

rM = ± %(7.5 - 3.1) = ± 2.20 MPa, at 45° to the directions 1 and 2 and perpendicular to 3
r2.3 = ± M(3.1 - 1.4) = ± 0.85 MPa, at 45° to the directions 2 and 3 and perpendicular to 1
r,.3 = ± ^4(7.5 - 1.4) = ± 3.05 MPa, at 45° to the directions 1 and 3 and perpendicular to 2

(ii) From eq(1.34a) the normal stress on the octahedral plane is:

aa = % (7.5 + 3.1 + 1.4) = 4.0 MPa equally inclined to directions 1,2 and 3

The octahedral shear stress is, from eq( 1.34b),
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r0 = % •[ (7.5 - 3.1)* + (3.1 - 1.4 ) 2 + (7.5 - 1.4 )2] = 2.57 MPa

with direction cosines, from eq(1.35a,b,c):

lo = (7.5 - 4.0 ) / (73 x 2.57} = 0.786

mo = (3.1 - 4.0) / (73 x 2.57) = - 0.202

n0 = (1.4 - 4.0) / (73 x 2.57) = - 0.584

Mohr's circle (see Fig. 1.17) confirms each answer. The maximum positive shear stresses
are the vertical radii of the three circles at A, B and C. Complementary negative shear
stresses are associated with the reflective points A', B' and C . To locate the octahedral plane,
mark off lines ai&=p= 54.7° (I = m = n = 1/73) from oj, e^ and ff3 as shown. With centres
C M and CJ_J draw arcs to intersect at a point P whose co-ordinates are &g and TB. When P
is coincident with A this locates a maximum shear plane where tt= fi= 45° and y~ 90°.
Similarly with P at B and C the orientation of two farther shear planes are confirmed.

1.5.3 Reductions to Plane Principal Stress

The plane stress transformation equations are particular cases of the foregoing 3D equations.
In Fig. 1.18a, the applied principal stresses are er, and a2 and the oblique plane is defined with
respective directions: / = cosflf, m = cos(90* - a) = sinaand n = 0 for directions 1,2 and 3.
and 3.

(a) (b)

Figure 1.18 Reduction to plane stress

Substituting these into eq(1.31a,b) gives the normal and shear stresses for the oblique plane:

a= oi cos2 ar+ ^sin2 a= oi (1 + cos 2a)/2 + aj(l - cos 2s>)/2
er= %(ai + 00 + %(oi - fit;) cos 2a

t2= <T,2COSZ«+ o^sin2flr- (ojeos:!ir+
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Alternatively, these can be found from the transformation matrix T ' = MTM T. In MI, this
takes the plane form

°2 l ' ff22'.
=

hi hi

'21 *22 0 «,
hi hi

In h2.

Referring to Fig. 1.18b, the direction cosines for the xt' axis become: ln = cos a and ln =
cos(90 - flf) = saw and for the %' axis: 4i - cos (90 + as) = - sinar and 122= cosaf. The
required stress components «ru' and a%{ for the plane normal to x,' are found from the
reduced matrix multiplication:

hi hi

hi 1hi

0 h
hi

where the correspondence is «ru' = trand CTB' = r. Full matrix multiplication will also supply
those stress components <%', <%' on the plane normal to %', as shown in Fig. 1.18b.

1.6 Alternative Stress Definitions

The components ffy, of the Cauchy stress tensor T, appearing in eq(l .6), refer to the elemental
deformed area da of the surface on which the stress traction vector r w acts. Thus, as the
foregoing stress transformations apply to the geometry of the deformed material, the
stress components are said to be true stresses. Provided deformations are less than 1%, as
with the elasticity of metallic materials, it is unnecessary to distinguish between the initial
and current areas. A nominal stress, calculated from the original area, will give the Cauchy
stress with acceptable accuracy. For example, in a tensile test on a metal, it will only become
necessary to convert nominal stresses to true stresses within the reduced cross-sectional area
when deformation advances well into the plastic range. However, it is unacceptable to
calculate Cauchy elastic stress components from the original area where large elastic
deformations arise in certain non-metals. When the elastic extension in an incompressible
rubber reaches 300% the cross-sectional area will have diminished by 67%. This means that
the nominal stress is only 1/3 of the true stress! Clearly, the choice between initial and
current areas can become critical to defining stress properly. The Cauchy definition may be
regarded as a true stress. Alternative definitions of nominal stress, given by Piola and
Kirchhoff, employ the original area for convenience.

In Fig. 1.19 the resultant force <SF is shown for both the reference and current
configurations, Xt and xt, respectively. The traction vectors rTO and r°* are associated with
the vectors N and n, lying normal to the reference and current areas *M and fia. The
corresponding stress tensors are T (with Cauchy components <% in*,) and S (with nominal
components Sg in X-). Since the force $? is common between the two configurations, it
follows from eqs(l.S) and (1.6) that i*0 = i*0, when:

or (1.36)
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Sa

xl,X1

Figure 1.19 Tractions in reference and current configurations

To express the relationship between n, N, Sa and SA it is convenient to take, without loss
of generality, infinitesimal triangular areas. Let vectors dk0' and Srf® lie along the sides of
Sa and vectors SKf1'* and <SX® lie along the sides of SA as shown. The areas appear within
their cross products

or

or

(1.37a)

(1.37b)

where e^ is the alternating unit tensor. The latter gives: (i) unity for clockwise permutations
of differently valued indices, i.e. em = e231 = % 2 = 1, (ii) minus unity for anticlockwise
differently valued indices, i.e. em = em = em = - 1 and (Hi) zero when any two or more
indices are the same, e.g. em = %j = 0 etc. Now, since x = x (X) or x, = x, (Xj), it follows:

^ J or <5z = (3xf dX)SK (1.38)

Substituting eq(1.38) into eq( 1.37a) and making appropriate changes to the indices,

n, Sa = %epOV BX^SX™ (dxkf axr)fflr»

Multiplying both sides by dx,/ dX^ leads to

nddxJdX^da = Vieljk(dxl/dXp)(dxildXq)(dxkf3Xr)MM « , » (1.39)

Use is now made of the identity

%F j pF i ,F4 r (1,40a)

where Ftp = 3JC, tdXp etc, are the deformation gradients and J = det F = |ck, fdXj | is the
Jacobian determinant:
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dxlfdX1

dx3/dX1 Sx$/dX2

A simple physical interpretation of / is as a ratio between material densities (or volume
elements) in the undeformed and deformed configurations. That is, J = pBlp= d WdF0.
Combining eqs{1.39) and (1.40);

and substituting from eq( 1.37b)

(1.41)
or

or

The matrix form may further be expressed as

Substituting eq(L41) into eq(1.36) gives

= Sl,i or

This transpose of the nominal stress tensor (S^ = S) defines the first Piola-Kirchoff stress
tensor. It is seen that the components Spi are related to the Cauchy sixess components a^ and
the deformation gradients as follows;

p pxi)ail or ST = (detF)(F-1T)T

Note that the nominal stress tensor is

S¥ = (det FXdXJdx^ajp or S = (det F) F^1 T

(1.42a)

(1.42b)

It follows from eqs(1.42a,b) that S^ * S^ (or S * ST) so that the tensor is not symmetric. A
second, symmetric Piola-Kirchoff stress tensor S ' can be introduced within the relation

= S ' F T (1.43a)

Post-multiply eq(L43a) by (F1")"1 gives

(1.43b)
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and also
(§T) = (S I F T ) T = FS t T

S'T = F~I(ST) (1.43c)

Substituting eq(1.42a) into eq(1.43b), it follows that

- 1 T(F T ) - 1 (1.44a)
from which the transpose is

S lT = (detF) F - ^ F - ' T )T = (det F) F-»TT ( F " 1 ) 1 (1.44b)

Equation (1.44b) can also be derived from substituting eq(1.42b) into eq(1.43c). With the
following symmetries; (FT)" ' = (F" ' ) x and T = TT, it follows from eqs(1.44a,b) that S ' =
S 'T but this tensor has no physical interpretation. Finally, the relationship between the two
Kola-Kirehoff stress tensors is found from eq( 1.43a):

() ( ) = F S ' or S^F 'HS 1 " )

Now, from eq(1.44a), the tensor S', with components S¥\ is written in terms of the Cauchy
stress tensor as

5 , ; = (det F) (dX^) (fflJ/aOq, (1.44c)

This form of nominal stress tensor is suitable for the formulation of certain finite constitutive
relations. Note that when the deformation gradients remain small during infinitesimal
straining the distinction between the three stress definitions disappears, with the reductions
to eqs(l .44a,b,c) showing that T = S' and S T = I S ' .

Example 1.4 Express the Cauchy stress tensor T in terms of deformation gradients F, the
density ratio p Ipo and (i) the nominal stress tensor S, (ii) the first Piola-Kirehoff stress tensor
Sr and (iii) the second Piola-Kirchoff stress tensor S'.

(i) Writing eq( 1.42a) as

the transpose gives S as

S = J F - 1 T

Pre-multiplying by F gives the Cauchy stress T as

T = (l/i)FS = (p//?o)FS or av = (p/pa) FikSkJ

(ii) Again, from eq( 1.42a) we write
ST = J T T ( F " 1 ) T

Post-multiplying by F T

from which

or ^ =
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(iii) Writing eq{ 1.44a) as
S' = J¥'lrT(Wryl

Post-multiply by F*:
g-FT = J F - l T

Pre-multiply by F:

/ ) F S I F T ( / ) F S ' F T or ^

The final result in <i) and (ii) shows that since T = TT men FS = (FS )T. That is, the matrix
product FS is symmetrical. The stress tensors, most often employed for finite studies, are
those of Cauchy {eq 1.6) and Piola-Kirehoff (eqs (1,42a and 1.44c)), depending upon whether
they are to be found from the current or initial areas.
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Exercises

1.1 Given the following stress tensor components (in MPa): crn = 2, <% = 2, an = 3, % = 1, % = 3
and the first invariant Jj = 5 MPa, determine % , the principal stresses and the maximum shear stress.

[Answers: 1, 6.4,0.6, - 2,4.2 (MPa)]

1.2 Find the principal stresses for a stress tensor with the components: % = 1, % = 4, % = 1, o\2 =
% = 2, <% =s oil = 3 and % = % = 6 (MPa}. Show that their directions are orthogonal.

[Answer: #, = 10, CT2 = 0 and a, = - 4 (MPa)]

1 J The principal stresses: o\ = 15.4, o\ = 12.65 and % = 6.8 (MPa) act at a point. Determine the
normal and resultant shear stresses acting upon an oblique plane whose normal is defined by the unit
vector: u n = 0.732 u, + 0.521% + 0.439u3. What is the state of stress upon the octahedral plane?
Check your answers graphically.

[Answers: a= 12.63, r = 3.38, % = 11.17. % = 3.51(MPa)]

1.4 The stress state at a point is described by the stress components: an = 14, an = 10, % = 35, o\2

= <%, = 7, % = % = - 7 and % = % = 0 (MPa}. Find the normal and resultant shear stresses acting



 

32 BASIC ENGINEERING PLASTICITY

upon a plane whose normal Is defined by the direction cosines: I = 2/-/14 m = - 1/-/14 and n = 3A/14.
[Answer; a= 19,21, r = 14.95 (MPa)]

U The stress state at a point is described by the stress components: an = 6, % = 0, % = 0, % = %
= 2, % = % = 2 and«% = % = 4 (MPa). Find the principal stresses, the greatest shear stress and the
state of stress upon the octahedral plane.

[Answer. o, = 8, o| = 2 and a, = - 4, ro = 4.9, ffo = 2(MPa)]

1.6 Determine the invariants J,, / 2 and Jj for the stress tensor components: an = 6, % = 6, % = 8,
"fe = °ii = ~3» flb = flfe = 0 {MPa). Show that the same invariants values apply to me principal
stresses for this system. Determine the octahedral shear stress and the maximum shear stress and the
planes on which they act.

[Answers: Jx = 20, J2 = 123, Jj = 216, r. = 2.625, tM = 3 (MPa)]

1.7 Transform the following non-zero components of a stress matrix: an = 15,«% = 5, % = 20, a^
= O;j = - 10 and &u = % = 0 (MPa) using the foEowing non-zero components of a rotation matrix:
ln = 0.6, ki = 1, lm = 0.6, Ja = - IJJ = - 0.8.

[Answers: ^ , ' = 18.2, <%' = 5, % ' = 16.8, % ' = «%,' =- 6, CT1S' =<%,' = - 2.4, 05,' = % ' = - 8 (MPa)]

1.8 What are the deviatoric stress components corresponding to each of the stress tensors given in
Exercises 1.1-1.4?
[Answers: au' = %, «,/=«%, <J,/ = ~ % ; cru' = - 1, an' = 2, « , / = - 1; ffn' = 3.78, ff,/= 1.03,

iJ,,' = - 4.81; ff,,' = - 5.67, «%' = - 9.67, Oj,' = 15.34 (MPa)j

1.9 Show, from the general transformation law ctj - l^a^, that the relationship between the shear stress
rexpression (1.12c) for any oblique plane is the resultant of its two shear traction components.

1.10 The following stress tensor components (in MPa): ou = 1, ffu = 5, an = - 5, ojs = 0, aa = 0 and
Ojj = - 1 apply to Cartesian axes x,»xt and Xj. Determine the stress components for a rotation to new axes
x,\ * / and .1/ defined by the respective orthogonal vectors:

a = u, + 2ii| + 3u3, b = «! + Uj - U) and c = - 5u, + 4u2 - u3-

[Answers: «r,,' = - 1.286, aa' = 1.319, c,,' = 1.980, <%/ = 6.667,«%' = - 2.762 and asi' = - 5.381 ]
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C H A P T E R 2

STRAIN ANALYSIS

2.1 Introduction

The amount of stretch, compression and distortion within a deforming solid is defined in
terms of its strain. Various definitions have been used so it is pertinent to begin with
explanations as to how strain is defined. As with stress, it is essential that the tensorial nature
of strain is understood. Where deformation is small (infinitesimal) we examine: (i) the
representations of strain in the tensor component and matrix notations and (ii) the manner
in which distortion is decomposed into strain and rigid body rotation. It will be recognised
from this that stress and strain are identical second rank Cartesian tensors with similar
transformation properties. In fact, displacement derivatives will define the strain tensor
components when metallic materials suffer infinitesimal elastic deformations. The strain at
the limit of elasticity may be exceeded one hundred times by plastic deformation in a metal.
Comparitavely large elastic strains in non-metals can arise from rapid rates of straining.
Since the infinitesimal definition of strain is inappropriate under these conditions, alternative
finite strain measures are discussed. Among these are the natural or logarithmic strain, the
deformation gradient and the extension ratio.

In Chapter 1, direct and shear strain components were shown to accompany stress for
respective uniaxial and shear loadings (see Figs 1.1 and 1.2). The two strains can co-exist
in various combinations under combined loadings. In general, six independent strain
components appear within the general strain tensor. As with stress, the following strain
analyses will alternate between the engineering and mathematical notations (see Table 1.1)
to enable the reader to recognise their equivalence.

2,2 Infinitesimal Strain Tensor

A line element in an unloaded body may distort in a number of ways when forces are applied
to it. In general, the element can translate, rotate and change its length. Length changes and
angular distortions are normally associated with direct and shear strain components
respectively. Rotations and translations, arising from rigid body motion, do not strain a
body. When infinitesimal displacements of line elements arise from a combination of these
motions, it becomes necessary to separate the physical deformation from rigid body motion.

2.2.1 Distortion and Rotation

Here it will be necessary to specify the deformation that arises from applying the six
independent components of the stress tensor Oy to a body element. In the engineering
notation, Fig. 1.6a identifies these components as erx, oy, at, v^, tm and tyr Two types of
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distortion arise: (i) direct strains e^, ey and 4 from ox, oy and OJ and (ii) angular distortions
and e}l from and ryr Let one corner of the body element, A x dy x

originally lie at the origin O in the .x-y plane, as shown in Fig. 2.1a.

1 I

(a)
bx

(b)

Figure 2.1 Distortion of a comer in the x-y plane

The angular change to the corner is composed of pure shear strains, due to t^, ta and t^,
with superimposed rigid body rotations. By subtracting rotations from the angular change,
the shear strain associated with shape change is found. In Fig. 2. lb, the angular changes,
ev and e^, to the corner are shown. With superimposed direct strains, ex and e^, due to trx

and ay, the comer is also displaced from O to O' in the x and y directions. The respective
displacements, « and v, are each functions of the Cartesian co-ordinates: u = u(x, y, z) and
v = v(x, y, z). Thus, line elements Ax and Sy will change their lengths in proportion to the
displacement gradients. The latter define the two direct strains in the x-y plane as

j = du/dx and e^ = dv/dy (2.1a.b)

In general, & * Sy and e, * e^ and so the angular changes are unequal. That is: ev * e^
where ev = Butdy and ev = dvldx. The engineering shear strain y*, is defined as the total
angular distortion to the right angle:

= duJBy + dvfdx (2.1c)

In Fig. 2.1b the distorted corner is rotated so that it becomes equally inclined to the x- and
y - directions. This configuration defines two tensor shear strain components as

with their associated rotations

m^ = e^ - ev = dufdy - %(dufdy + dvtdx) = yk(dufdy - dv(dx)
a^ = e^ - ^ = dvldx - V4(3«% + dvldx) = - W{duldy - dvfdx)

obeying skew-symmetry, m^ =- m^. Further strain-displacement relationships, similar in
form to eqs(2.1a,b,c), will apply to normal and shear distortions in the x-z and y-z planes.
These require a further displacement function: w = w(x, y, z), for the z - direction.
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Consequently, the complete distortion of a ¥olume element & x <fy x dfe may be expressed
as the sum of corresponding strains and rotations in the matrix form

eyz

*, *>*,
(2.2a)

where &)x = tyy = a>£ = 0. In the tensor component notation, eq(2.2a) appears as

ev = £fj + ty (for £ and /" = 1,2 and 3) (2,2b)

The strain and rotation components for each tensor in eq(2.2b) may be expressed in terms
of their respective displacement gradients. Firstly, the angular changes appear as

du du 8u
Bx dy dz

dv dv dv
dx By dz

dw dw dw
dx By dz

It follows that the strain matrix is

3M 1 J 9K BV

Bx 2 { By dx

1 j 3M dv I dv

9M dw

1 j dv dw

2 I &? + 3y

1 f 9K dw | 1 J dv dw I 9w

21, 8z dx j 2 { dz By j 3z

and the rotation matrix is

0

I ( du _ dv

^{ly &
1 | 9M _ dw

l["dz ~dx

U Bu 3v
2\dy Bx

0

1J dv 9w

l

du Bw
3z ~Bx

1 f dv _ Bw
| " !
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All direct and shear strain components appear within a linear combination of displacement
derivatives, i.e. the Eulerian infinitesimal strain tensor.

9M, du

dx. dx. or (2.3)

The Eulerian rotation tensor is defined as

1 dui _ du,

dx. dx. or (2.4)

in whch xt are the spacial, or current, co-ordinates of the deformed body (see Fig. 1.19).
When the corresponding engineering notation is required, the subscripts i and j on the
symbols u and x are to be read as: ut = u, % = v, J% = w, xt = x, x^ = y and x3 = z. Note that
u and V in eqs(2.3) and (2.4) define column matrices of their components: u = {wj a2 «3}T

and V = { 3/9JCJ a/clxj 9/&3}T . Hence uT and VT define their row matrices. Equation (2.2b)
shows that the 3 x 3 strain matrix E is symmetric (i.e. etj = t0 and that the 3 x 3 rotation
matrix Q is skew symmetric (i.e. &% = - 6$. Under applied principal stresses, when all the
rotations ca^ = 0, the deformation is said to be irrotational.

2.2.2 Strain Transformations in Tensor and Matrix Notations

It may be deduced that the transformation properties of the symmetric 3 x 3 strain matrix ev

are identical to those of Cauchy stress, the latter being a symmetric 3 x 3 matrix (cff = c (̂).
Thus, the transformation of an Eulerian strain tensor, following a rotation in the orthogonal
axes from xt to JC/, will obey a law equivalent in form to eq( 1,22a):

In full, eq(2.5a) becomes

or (2.5a)

*n °ia *i3

**2l C2t T3

3̂1 *32 *33

hi

hi

hi

hz hi

h2 ln

hi ?33

JP JP JP
en % %
% % ^3

% *S2 %

hz
h,

hi

hi

hi

hz
hi

(2.5b)

It follows that there is a correspondence between the stress and strain transformation
expressions. For this to be achieved, rmust be interchanged with the tensor definition of
shear strain (yf2). For example, to find the normal strain on an oblique plane in terms of
engineering co-ordinate strains, eq( 1.12b) is converted from stress to strain as follows:

e = + 4 n2 + 2 (Ime^ + mnen + lnea) (2.6a)

(2.6b)
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The principal strain cubic is similarly deduced from eq( 1.24b) as

where the strain invariants are

(2.7a)

ey+ et= 3, = tr E

4 =
h=

(2.7b)
- tr E 2 ] (2.7c)

= det E (2.7d)

Because of Ifae identical nature of stress and strain transformations, the directions of the
principal sfress and strain axes are coincident It is not possible to convert the general shear
stress expression (in eq(1.12c)) directly to shear strain without firstly specifying the initial
perpendicular directions to which the shear strain applies. Performing the matrix
multiplication (2.5b) for any one tensor shear strain (i.e. with i * j) provides a method for
finding the shear strain between a pair of perpendicular lines. For example, with i = 1 and
j = 2, eq(2.5b) becomes eu' = llp l^ sm. In the engineering notation this is equivalent to an
abbreviated matrix multiplication:

m, £ £
xy y

«,* (2.8a)

(2.8b)

Alternatively, the generalised shear strain (eq(2.8b)) will appear within the tensor and matrix
notations as

¥iy=llieijlls = nl"En1' (2.8c)

where column matrices u / = {ln lu ln}
r and %' = { 4i In l-a 1T express the direction

cosines of unit vectors aligned with a given pair of perpendicular directions: x/ and JC/. It
is possible to identify the correspondence between r in the stress eq( 1.12c) and ffl in
eq(2.8b). Referring to the plane ABC Fig. 1.7a, the perpendicular directions are those
defined by the direction cosines (1.13a»b,c) for the shear stress rand those (1.8a,b,c) for the
normal stress a. That is, in eq(2.8b) 4, mt and B2 are identified with I,, ms and ns in
eqs(1.13a-c) and llt m1 and nt with (, m and n in eqs(Ua-c). Equation (2.8b) will then
supply the shear strain for original perpendicular directions: one parallel to the normal sixess
a and the other aligned with the direction of the resultant shear stress r in Fig. 1.7a.
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Example 2.1 The state of strain at a point is specified, in the engineering notation, by the
following components of its strain tensor (x 10"*): ex= 1, s^= 1, st = 4, sv= ~ 3, £^ = ^2
and Eyz = - V*2. Determine: (i) the normal strain component in a direction defined by the unit
vector* u = (1/2)11, - (l/2)Uy + (1A/2)UJ, (ii) the shear strain between the normal and a
perpendicular direction whose unit vector equation is u = - (1/2)^ + (l/2)u^ + {1/^2)1^,
(iii) the invariants and (iv) the principal strains.

(i) Substituting I = 1/2, m = - 1/2 and n = 1/̂ 2 together with the component strains into
eq(2.6a) gives the normal strain

4 = I(lf2f x 1] + [(- 1/2)2x 1] + K1A/2)2 x 4 ]
+ 2 [(l/2)(- l/2)(- 3) + (- l/2)(l/v*2)(- y/2) + (l/2)(l//2)(\/2)] = 6

(ii) The engineering shear sixain f is found from eq(2.8b). The direction cosines: Ij = 1/2,
mt — - 1/2 and nt = 1/V2 apply to the normal direction and 4 = ~ 1/2,»% = 1/2 and % =
apply to the perpendicular direction. (Note: lt 4 + tn^ w2 + nx n2 = 0.)

y/2 x 10'* = [ (l/2)(- 1/2) x 1] + [ (- l/2)(l/2) x l ] + [ (l/i/2)(l/%/2) x 4 ]

- l/2)(- l/2)](- 3) + [(

+ (- 1/2X1/^)1(1/2) = 0

This zero value for y shows that there is no change in the right angle between the two
perpendicular directions, i.e. they are principal directions and therefore the normal stxain
found in (i) is one of the principal strains.

(iii) The invariants Jlf J2 and /3 are found from eqs(2.7b,c,d):

hi 10"8 = [(lXD + (1X4) + (4X1) - (- 3)2 - (- v̂ 2)2 - (^2)2] = - 4
hi 10"12 = det (£y) = 1(4 - 2) + 3( - 12 + 2) + V2(3/2 - 42) = - 24

(iv) The invariants give a principal strain cubic, from eq(2.7a)

e% - (6x m-*)e% - (4 x 10"%)e+ (24 x 10"12) = 0

for which one root is 6 x 10" *. The two remaining principal strains may be found from the
coefficients a, b and c within the quadratic equation (as2 + be+c) as follows:

[s - (6 x 10"*)Ka£J +be+ c) = r* - (6 x 10"*)g2 - (4 x 10"n)s+ (24 x 10" n ) = 0

Equating coefficients gives a = 1, b = 0 and c = - 4 x 10"8 . The quadratic equation
simplifies to e2 - 4 x 10"8 = 0, for which the roots are: £ = ± 2 x 1 0 " 4 . Thus, the principal
strains are identified as: et = 6 x 10"*, e% = 2 x 10"* and e3 = - 2 x 10*.

2.2.3 Reduction to Plane Strain

Putting I = cose; m = cos (90°- «•) = sinar and n = cos 90°= 0 in eq(2.6b), leads to the normal
strain in the direction of x' in Fig. 2.2a.
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r

(b)

Figure 2.2 (a) Plane co-ordinate and (b) displacement transformations

ej = e% l
= ex

m1 + ez n

n2sin2a+ yv simrcosar
ey) cos 2a + sin 2a (2.9a)

The normal strain in the / - direction is found from setting I = cos (90 + a) = - sino; m =
cosfif and n = 0 in eq(2.9a). This gives

By cos 2
smec cosa

) cos 2a - sin 2m (2.9b)

The shear strain between the primed directions x' and / is fovmd from eq(2.8b). For the x1-
direction, we set: lt = cosa, m 1 = cos (90°- a) = sxaa and n x = cos 90° = 0 and for the / -
direction, set J2 = cos (90 + a) = - sins, m^ = coses and % = 0:

,,(cos2 a - sin1 a)

, sin 2a + Vkey sin 2a+%yxy cos 2a

cos2a (2.9c)

The strains given in eqs(2.9a-c) may be confirmed from direct differentiation of the
displacements according to the infinitesimal strain definitions (2.1a-c). Figure 2.2a provides
the geometrical relationships between the co-ordinates:

x = x1 cosflf - / sine
y = x' sinar + / cosa

The displacements of a point P as it moves to P* (see Fig. 2.2b), are given by

u = M cos^ + v sinar
V = - u sina+ v cosa

where M and v are the displacements of P* along x and y and M' and v' are the displacements
of "P' along x1 and y', as shown. The normal strain and shear strains in the x'-y plane are
found from eqs(2.1a-c):
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ex' = du'/dx1 = (du'/dx)(dxldx!) + (

= [ (du/dx)(du'Bu) + (dvBx)(du'idv)](dxfdxf) + [(du/By)(di/Bu) + (dvfdy)(3dBv)](dyB£)

= [(du/dx)cosa+ (8v/&)sin<3J3cosflf+ [(du/dy)cosm+ (dvidy)sinm]sina

= EX cos2flf+ e^ %\n%m +

= ^ (ex + ey) + ¥i (ex - £y) cos 2«+ % %y sin 2 or

[(du/dx)(dv'fdu)

= [ - (du/dy) sin^+ (dv/dy) cos«r]cosff + [ - (du/dx) since + (dv/dx) cma](~ sina)

= V6 (e^ + £y) - i4 (e, - gy) cos 2» -

= (dv'Bx)(Bx/B/) + (Bv'By^ByBx1) + (du'Bx)(dx/dy') + (du'fdy)(dy/dy')

= [{duldx)(dv'Bu)+(dvBx)(dv'fdv)](dxBx') +[(duBy)(dv'Bu) + (Bvfdy)(dv'Bv)](ByBx')

+ [(8M/&)(8M'/3«) + (dvBx)(du'/dv)](dx/dy) + [(Butdy){du'Bu) + (BviBy)(du'/Bv)](dy/By)

= [ - (du/dx) sinff + (BvBx) eosflf ]eos«r+ [ - (Bufdy) sinaf+ {dvBy) cosff ]sinar

+ [(du/dx) COS0+ (dv/dx) suw]( - sina) + [(dufdy) cosa+ (dvBy) sin»]cos^

= - 2(3M/3x)sinflrcosa+ 2(5v/8y)sinflfeosaf+ [(BvBx) + (Bufdyy\(coszei - sin2^)

¥iy^ = - ¥i (ex - ey) sin 2a + Viyxy cos 2ee

It is shown in Section 2.4 that infinitesimal strain transformation equations refer to line
elements in the current configuration (the deformed solid). However, with the small elastic
strains involved here, there is negligible error in choosing line elements in the original
reference configuration (the undeformed solid). Thus, the strain components ex, s, and yv

may be identified with the nominal (engineering) strains in which displacements are more
conveniently referred to the initial geometry.

23 Large Strain Definitions

When strains exceed 1%, we cannot employ the same approximations used previously for
deriving the infinitesimal strain-displacement relations. A number of large (finite) sixain
definitions are available and these are reviewed here. They can be applied wherever large
deformations arise, say, in the stretching of rubbery materials and in deforming metallic
materials at very rapid rates under impact loading.

2.3.1 Natural, True or Logarithmic Strain

The theory of metal plasticity employs an incremental strain definition. This was first
employed by Ludwik [1] and Hencky [2], who referred the change in length <S of a given
line element to its current length, I. This gives an incremental strain 3e= Mil, for which the
true, or natural, strain is characterised by any one of the integrated quantities:
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(2.10a)

i = ln( l + e) (2.10b)

e-

where the nominal (engineering) strain e = dUl, refers <3? to its original length la. These
two measures of strain, e and s, arc approximately equal for nominal strain values less than
2%. The logarithmic strain proYides the correct measure of the final strain when defommtion
takes place in a series of increments. For example, let an initial length lB increase to a final
length lf, under an incremental tensile loading for which there are six intermediate lengths:
4, 4» 4» If h and 4 • It follows from eq(2.10a) that the final, true strain s = In (lft la), will be
given by the sum of the increments:

e= In ft/ IJ + In (y 4) + In (l3f 4) + In (l4i 4) + In (lsf Q + In (l6f ls) + In (lfl l6)

=in K/,/ 0(4/ my my hw my hw wi=i» (V i)

Here, as with all proportional loading paths, the final strain does not depend upon the
intermediate strains, i.e. the same strain would be achieved if a single continuous loading
were to produce lf. Applying the engineering strain definition to each stage of the
defommtion shows that successive strains are not additive under uniaxial loading. That is,

(h - Qiia + (4 - y/4 + (i3 - 4)/4 + (h - hVh + (h - Wh + (h - Wk * (tf - ioyia

The logarithmic strain measure will therefore account for the influence of a strain path more
reliably than engineering strain. This particularly applies when the load path changes
direction under a non-proportional loading, giving a final strain that depends upon the
history of strain. The essential tensorial character of normal strain is retained within this
logarithmic definition but there is not a corresponding shear strain. Large shear strain is
expressed as y = tan$=xll (see Fig. 1.2) but this will only approximate to the engineering
shear strain i.e, y = tan$ «$rad, for distortion angles $ < 10°.

2.3.2 Extension Ratio

The extension ratio is a measure of large deformation, often used in rubber and polymer
mechanics. It is, simply, the ratio between the final length I and the initial length la:

where the unit vector u subscript denotes the original direction of lB. Elastomeric fibres and
polymers can stretch by multiples of their original lengths to give typical engineering strains
of between 500% and 600%. The extension ratio bears a simple relationship to the
engineering strain e. When lo is aligned with a unit vector u, in the x - co-ordinate direction:

If an incompressible (constant volume) deformation of a unit cube occurs withour shear,
eq(2.1 lb) supplies a relation between the principal extension ratios:
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(1 + e,)(l + e2)(l + <%} - i = 0 or J, 4 4 , - 1 = 0 (2.12a,b)

Note that it is only when the strains are small can the left-hand side of eq(2.12a) be
approximated to

«! + et + e3 = 0 giving Ay + Aj + Ay = 3

2,3.3 Finite Homogenous Strains

(a) Direct Strain
Consider uni-direetional straining of a line element PQ, aligned with the x - direction, as
shown in Fig. 2.3. Let end points P and Q, with co-ordinates P(x, 0,0) and Q(x + &c, 0,0),
move to new positions P* and Q'.

y 4

P* Q'
m a

&

Figure 2.3 Finite extension of a line element aligned with the A- - direction

Given that the displacements of point P to P* are «, v and w in the x, y and z - directions
respectively, the co-ordinates of P' become P"(x + «, v, w). Now, these displacements are
functions of the co-ordinates: u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z), and so it follows
that the co-ordinates of point Q' are

u), v+ dv, w+ Sw]

and, since both 3y and & are zero in the unstrained configuration,

3(x + «) = & + (du/dx)&, dv = (dvfdx)dx and Sw = {dwldx)Sx (2.13a)

The finite normal strain for P*Q' is expressed as

{{P'Q')2 - (PQfMPQ)2 = {{& + (dutdx)dxf + [(BvBx)&f + [{dw/dx)&cf -

= [1 + (du!dx)f + (dvldxf + (dwfdxf - 1

2^G = 2{(duldx) + ¥i [(du/dxf + (dv/dxf + (dwfdxf]} (2.13b)

The quantity { } in eq(2.13b) was proposed by Green and Adkins [3] as a finite strain
measure. This is written as eG and bears the following relationship with the extension ratio
A = i ( o ) = P'Q'/PQ:

A2-l = 2£c or £G = W ( i 2 - l ) (2.13c)
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Also, e° relates to the engineering strain e = P'Q'/PQ - 1:

e = v/{[l + (du/dx)f + (dv/dxf + (dw/dxf} - 1

= v/[l + 2{(duldx) + %[0ufdxf + (dv/dxf + (dwfdx)2]}] ~ 1

- Al + 2sG) - 1 = A - 1 (2.13d)
where

eG = %[(l + e)*- l] = e + ¥iei (2.13e)

(b) Volumetric Strain
The strained volume F, accompanying finite deformation, appears in terms of the three
principal extension ratios Alt A^ and i j and the original volume Vo, as

(2.14a)

Substituting eq(2.13c) into eq(2.14c):

(V/VJ* = (1 + 2£1
C)(1 + 2^°)(1 + 2%G)

from which we can write

Ml (V f VJ1 - I] = (ef + e2
G + %G) + 2 (£ 1 °g / + sfe3

0 + e2
a ef) + 4et°s2

G e3
B

(2.14b)

Note that /,G, lt
a and /3

G are the invariants of a principal Green strain cubic

which is identical in form to eq(2.7a).
A relationship between the three deformation measures is found from substituting the

engineering volumetric strain A = (V - V0)l Vo into eqs(2.14a and b):

- 1] (2.14c)

Equation (2.14c) reduces to a simple approximation for infinitesimal straining;

A « gi + e2 + e3

(c) Shear Strain
Finite shear strain refers to an angular distortion similar to the infinitesimal shear strain
expression (2,1c). Consider the shear deformation between two originally perpendicular line
elements PQ and PR, lying in the X-Y plane (Fig. 2.4a). Finite shear deformation is identified
with the cosine of the angle $ between P'Q' and P'R' in the deformed configuration (see Fig.
2.4b). Local co-ordinates x, y and z, with origin at P\ are aligned parallel to the original axes
X, Y and Z, whose origin lies at point P. Note that points R' and Q' do not remain in the x-y
plane. Green's finite shear strain is defined as: 2BV

G = cos$, where cos$ is the dot product
of unit vectors n, and % aligned with FQ* and P'R'. The scalar intercepts made by nj and
% with x, y and z, are the direction cosines for each vector. Hence, using eq(2.13a),

ni = (1 + Sw/&)ux + (Bv/dx)}^ + (Bw/dx)^ (2.15a)
% = (du/dy)ux + (1 + dv/dy)^ + (9w%)u, (2.15b)

where ux, u, and u2 are unit vectors in the x, y and z - directions.
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(a)

Figure 2,4 Finite shear deformation referred to an x, y, z ftame

The finite shear strain becomes

Substituting eqs(2.15a,b) into eq(2.16a) gives

(b)

(2.16a)

2 B / = cos$= ( 3 K % ) ( 1 +dufdx) + (dvldx)(l + dvldy) + (Bwfdx)(dw/3y)
= {dutdy + dv/dx + (du/By)(duldx) + (dvBx)(3v/dy) + (dw/dy)(dwfdx)} (2.16b)

In the small strain theory, product terms in eq(2.16b) are ignored. Taking the result with the
identity cos$= sin {nfi. - (f>) - (ft 12 - 4>) rad, the infinitesimal shear strain is recovered:

yv = 2ev = (ft/2 - # ) = du/dy + dv/dx

In finite deformation, the engineering shear strain yv is the angular change to the right angle,
originally between PR and PQ. The relationship between the finite shear strain 2^,G and yv

follows from an alternative expression for the dot product of the vectors P'R' and P'Q':

F R ' - P ' Q ' H

sin yxy =

cos (7T/2 - yv) =

FR'P'Q' _

| sin

B y )

where PR = |FR' j and PQ = IFQ* [ under pure shear. Then, from eqs(2.13c) and (2.16a),

2 eft
sm yxy = (2.16c)

and again, when the shear strains are small, sin yv»
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(d) Combined Normal and Shear Strain
Figure 2.5 shows the line element PQ with unstrained co-ordinates P(x, y, z) and Q(x + <&,
y + 3y, z + &). In general, PQ will displace to P'Q' with both extension and rotation in the
manner shown.

z 11

P*(z + a, y + v, z + w)

Figure 2.5 Finite extension and rotation of a line element PQ

Let the displacements of point P to P* be M, V and w, so that the co-ordinates of P* become
P'(x + u,y + v,z + w). The co-ordinates of Q' become [x + u + S(x + w)» y + v + d(y + v),
z + w + 3{z + w)], where

<?(x + «) = & + (du/dx)& + (duJdy)dy + (dufdz)& (2.17a)

3 (y + v) = Sy + (dv(dx)& + (dvfdy)dy + (dvidz)&, (2.17b)

S(z + w) = & + (3W/&E)& + (8w/3y)efy + (3w/Sz)& (2.17c)

Set the infinitesimal lengths of PQ and P'Q' in Fig. 2.5 to & and &' respectively. The
direction cosine I' for P'Q' is found from dividing eqs(2.17a) by &'. This gives

' = S(x + M)/&' = &/&' + (du/dx)&/&' + (du/dy)3y/&'

(dufdx)(Sx/&) + (du/dy)(Syi&)

Substituting for the direction cosines of PQ in the undeformed configuration I = dx/&, m
= Sy/& and n = &JSs, with A — &'/&, gives

i I ' = (1 + du/dx)l + (dutdyjm + (dutdz)n (2.18a)

Similarly, from eqs(2.17b and c), the two remaining direction cosines for P'Q' appear as

Im' = {dvldx)l + (1 + dvIBy)m + (Bv!dz)n (2.1 Sb)
X n = {dwldx)l + (BwBy)m + (1 + 3w/3z)n (2.18c)

Squaring and adding eqs(2.18a-c), and noting that (/)2 + (mf + (n'f = 1, leads to an expression
in the extension ratio
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from which Green's finite strain is defined as

e° = W (Az - 1) = {l2ef + m1ef + n\G + 2 (Ime^ + mn^ + Insj1)} (2.19a)

Within the right-hand side of eq(2.19a) are the components of sG, aligned with the co-
ordinate axes x, y and z. These are of the form «,G and 2 ^ ° as in eqs(2.13b) and (2.16b).
These are, in &11,

sx
a = (dufdx) + W[{8u/dxf + (Bv/Bxf + (dw/dxf ] = V6[(iJ 2 - 1] (2.19b)

^,G = (dvfdy) + ̂ [(3«/3y)2 + (dv/dyf + (dwfdyf ] = W[(^)% - 1] (2.19c)

4° = (dw/dz) + W[(3uldz? + (dv/dz)2 + (dw/dzf ] = Wi(Aj 2 - 1] (2.19d)
2sJ1={du/dy+dvfdxHdufdy)(dutdx)+{dv/dx)(dv/dy)+(dw/dy)(dwBx)}=Alc? (2.19e)

J } A j - (2.19f)

=Ayi
t (2.19g)

where eqs(2.19b and e) correspond to expressions (2.13b) and (2.16b), derived previously
for finite uni axial strain and finite shear strain. An alternative derivation to eq(2.19a)
employs 2e°= [ff'Q')2 - (PQ)2] / (PQf - Substituting from eqs(2.17a»b,c), gives the finite
normal strain measure (2sG) for P'Q' as

{[(x + u) + efe + (8M/3X)& + (Bu/dy)Sy + (duldz)dz -(x + u)]1

+ l(y + v) + Sy + (3v/3z)<& + (dvidy)dy + (dvfdz)&. - (y + v)]2

+ [(z + w) +<fe + (9w/obt)<Sc + (3w/3y)^ + {3w/az)&- (z + w)f}

It is seen that the normal strain expression (2.19a) is identical to its infinitesimal
counterpart (eq 2.6a), previously associated with a tensor transformation for strain. It now
becomes apparent that finite strain components are defined to preserve a similar tensor
transformation. That is: e®' = 1^1^^°, where the prime refers to the rotated axes. Note,
from eqs(2.19e-g), how the shear extension ratios Av, A^ and A^, relate to Green's shear
strain. Substituting eqs(2.19e-g) into eq(2.19a), gives 2e° in terms of extension ratios

{A2 -l) = P(A* - 1) + m 2 ( i / - 1) + «2(42 - 1) + 2(lm4J
2 + mnA^ + hAj) (2.20a)

2 + n%2 - (I2 + m% + n2)

from which
A1 = I2A? + m%2 + n%2 + 2 (lmAv

2 + mnAJ- + inAj) (2.20b)

The right-hand side of eq(2.20b) is identical in form to the right-hand sides of eqs(2.6b) and
(2.19a). It follows that the finite shear strain definition will also ensure that extension ratios
conform to a transformation equation A£' = lip liq J^2.

Example %2 Convert the following matrix of Green's strain ^ to an appropriate matrix of
extension ratios that will allow their transformation.

1 3 - 2

3 1 - 2

- 2 - 2 6
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Then perform the transformation A^?' = l¥ lk A^1, given rotations in the co-ordinates from x
to x1 and y to y'. Unit vectors, aligned with the directions x and y', are given by

and u / =

respectively. Confirm the result from the corresponding transformation; ev
a' = l^l^ ^ G .

Firstly, the unit vector u,, describing the rotation from z to z, can be found from the
cross product:

1». U .

1*2 J_ J_
^ 3 </6 i/6

1 1

1 1 1

Note: u / • u,' = u/» n,' = u,,'" «/ = 0, Converting sn
G to ^ 2 from eqs(2.19b - g), the required

ttansformation A^' = l^l^A^, becomes

•(2/3)

1A/3

0

1A/6

- l / i / 3

lAfc

W 6

-l / i /3

- l/i/2

3

6

- 4

6
3

- 4

- 4

- 4

13

•(2/3)

1A/6

I/1/6

W 3

-l / i /3

-l / i /3 -

0
l/i/2

l/i/2

=

4.667

-0.943

2.888

-0.943

2.333

8.166

2.888

8.166

12.002

The result may be checked from s,f' = l¥ lM ef

41
1A/6 I/1/6 1 3 - 2

3 1 -2
•2 - 2 6

2/3)

we
1/1/6

1/vS

-1/1/3

-1/1/3

0

l/i/2

-1//2

=

1.883 -0.4715 1.444

-0.4715 0.6666 4.083

1,444 4,083 5.501

from which A$' are found from eqs(2.19b - g). For example, A,2' = 1 + (2 x 1.833) = 4.667
and AJ' = 2 x (- 0.4715) = - 0.943.

2,4 Finite Strain Tensors

In Fig. 2.6, two sets of independent Cartesian co-ordinates are superimposed. Lagrangkm
material co-ordinates X, = Xlt X2 and Xj define the unstrained line element PQ in the
material at time t = 0. Eulerian spacial co-ordinates xi = xt, Jtj and JC3 , define the strained
line element pq after time t.

The co-ordinates Xt and JC( allow two mappings of the deformation. In the first mapping
the present position x, is a function of the original position X,:

xi = xl(Xj,t)=xl(Xl,X1,X3,t) or x = (2.21a)
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Figure 2.6 Finite deformation within material X, and spacial x, co-ordinates

The components dx,, of the current differential line element pq, are those of vector dx;

dKj = (ckj/aX}) dXj or dx = FdX (2.21b)

where F is a matrix of material deformation gradients components:

FIJ = dxttdXJ or F = x V T (2.21c)

where V = {d/dXt d/dXt 3/3X3}
T. The second mapping traces the original position from the

current position. This appears in the function

or (2.22a)

This inverse function will exist when the determinant of the Jacobian eq( 1.40b) does not
vanish. The components dX, of the vector dX» for the original differential line element PQ,
are then

6Xt = (SJfj / dxj) dxj or dX = H dx (2.22b)

where H = F" ' is the matrix of spacial deformation gradients

Hy = BXitBxJ or H = X ? T (2.22c)

where ¥={9/&! 3/ft% 3/3% }T, The square of the current differential length pq is given as

6XjdXj= <J8d*,dx, or |dx|2 = dxTdx (2.23a)

Substituting eq(2.21b) into eq(2.23a) with k and I as dummy subscripts

|dx| = alk(0xfiaXj) dXj[pxklaXi) dXt = {dxkidXj) dX,- {axk/dX{) aXt

i dX,dXj = GodXtdKj (2.23b)
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or
| | (2.23c)

The components G& of the right Cauchy Green deformation tensor G are defined from
eq(2.23b) as follows:

Gg = (axi/axJ)(&Jt/3Z/) = Ft»FJtf or G = F T F (2.23d)

Now the square of the current differential length PQ, is

dXtdX,= dgdXtdX; or |dX|2 = dXTdX (2.24a)

Substituting eq(2.22b) into eq(2.24a) leads to

|dX|a = 4 ( 8 ^ % ) dxjidXJdx,) 6xs = (SXJdx^ dx^dXJdx,) dx,
= (dXJdxtXdXJdXj) dXfdx, = Cu dxtdxj

or
|dXp = dxTCdx (2.24b)

where C is the Cauchy deformation tensor with components C s:

or C = H T H (2.24c)

The motion of point P to p may be expressed in terms of eimer the material or the spacial
components of the respective displacement vectors, U or u, in Fig. 2.6. Working with the
material displacement vector:

xt=Ut + X, or x = U + X (2.25a)
for which its derivative is

BxgfdXj = dU,/dXj + dX,BXj (2.25b)

Substituting from eq(2.21c) into eq(2.25b) gives

dv (2.25c)

where 317, idXj are the material displacement gradients. When working with the spacial
displacement vector,

x, = u, + Xi or x = u + X (2.26a)
the derivative is

+ dXtfdx} (2.26b)

and substituting eq(2.22c) into eq(2,26b) gives

Hv=3v-du,/dxj (2.26c)

where dujdxj are the spacial displacement gradients.

Example 2 3 Find the components of F, H, G and C given that Lagrangian components of
a particle motion x, = XjiX,, t) are as follows: xl=Xl + X3(e' - 1), % = Xz + X3(e' - e"') and
JC3 = X3 e', where e is a constant.
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Note that when time t=0,xt = X1,x1 = X2 and x3=X3, the spacial x, and material Xt co-
ordinates coincide. The components of the defonnation gradient are, from eq{2.2 lc),

Fn = dxi/dXj. = 1, F12 = 3x,/5J2 = 0, Fu = dxJdX, = e ' - 1
F21 = exj/9X, = 0, Fn= a^/cGC, = 1, F a = 3x2/8Jf3 = e' - e"'
Fn = a%/3X3 = 0, Fm = ajtj/aXj = 0 and F B = ajc3/3Xs = e '

These define the material deformation gradient matrix:

F =

1 0 (e ' - 1)

0 1 (e*-e"')

0 0 e'

Since / = det F = e' * 0, the inverse function X( = Xt (xt, t) exists. Its components are

e-'), X% = x%-x3{\-e,-'u) and X3=x3e"'

Hence, using eq(2.22c), the spacial deformation gradient matrix H is formed from its
components as follows:

En = dXlBxi = 1,Hn = dXJdxz = 0, Ha = B /̂obc, = - (1 - e"')
Hu = dX2/dxt = 0,Hn = dZf/dxi = 1, Hi3 = 3Z2/3x3 = - (1 - e"21)
ffji = 3X3/3JC3= 0, HJ2 = 3*3/9^ = 0, H33 = 3

1 0 - ( 1 -

H = 0 1 - ( l - i

0 0 c"r

which may be confirmed from H = F ~*.
The right Cauchy-Green deformation tensor G is found from eqs(2.23c) as

G =
1 0 0
0 1 0

(e'- 1) (e'-e~() e'

1 0 (e' - 1)

0 1 (e'-e"()

0 0 e'

1 0 (e' -1)

0 1 (e'-e"')

(e '- l) (e'-e'1) 3e2 '- 2e'+ e"21 - 1

The Cauchy deformation tensor C is found from H in eq(2.24c):

c =
1 0 0
0 1 0

-(e1- 1) -(1-e"2 ') c"'

I

0

0

0

1

0

- ( 1 -

- d -
e~

e"

e"
t

')

=

-d-e ')
-0-e-")
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Alternatively H and F can be found from the displacement gradiente in eqs(2.25c) and (2.26c).
The material displacement components follow from eq(2.25a) as

*/, = Xj-Xj = X, (e ' - 1), U2-x2-X1 = X3(tf-e't) and

These give fee material displacement gradients as

= X3(e' -

SUl/dXl = BUJdXz = dUtBX1 = 3U%/dX2= 3U3BX1 = 3Us/ajf2 = 0

3£/,/3X,= (e' - 1), BUifdX, = (e' - e"») and 3U3/dX3= (e' - 1)

when, from eq(2.25c):

0

0

0

0

0

0

(e»-

( e ' - o

(e»-

1)

"')

1) .

+

1

0

0

0

1

0

0

0

1
=

1 0 (e'-l)

0 1 (e'-e-*

0 0 e'

The spacial displacement components follow from eq(2.26a) as

u1 = x1~ X1 = x3(l - e''), u2=X2-Xi = xi(l - e'21) and u3

These give the spacial displacement gradients as

8M,/3X 3 = (1 - e " ' ) , 3M2/3JC3 = (1 - e"2*)

j = du%ldx% = 0

= (1 - e'!)

when, from eq(2.26c)

H =

1

0

0

0

1

0

0

0

1

-

0 0 ( 1 - e - ' )

- 0 0 ( l - e " 2 ( ;

0 0 ( 1 - e-'i

1 0 - ( l - e " f )

0 1 - ( l - e ~ 2 0

0 0 e"1

- e"')

Note that in this example F, H» G and C are time and not co-ordinate dependent In general,
F and G will depend upon t and Xt while H and C will depend upon t and Xj.

2.4.1 The Lagrangian Finite Strain Tensor

Two finite strain tensors arise from taking the difference between the squares of the current
and original differential lengths. They are the lagrangian and Eulerian measures, which we
shall now describe separately.

To find the Lagrangian strain take the difference between eqs(2.23b) and (2.24a) and
substitute from eq(2.25b):
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|dx |2 - |dX |2 = [ ( 3 ^ / 3 ^ ) 0 ^ / 3 ^ ) - l | ] M^
= I (3UJ3X, + 4)0£/*/3X; + <%) -
= [ dUj/dXi + dUJdK, + (BUJB

= 2LfdZidX/ (2,27a)

Lg is the Lagrangian or Green finite strain tensor, defined from eqs(2.23c) and (2,27 a) as

Ly = yiKdxJdX^dxJdXj) - Sy] = %[ BUj/dX, + BUJBXj + (BUJBXMdUJdXj)] (2,27b)

which is also written as
L = W ( G - I ) = ^ ( F T F - I ) (2.27c)

Note, the Lq tensor componente (2.27b) were those identified previously within eqs(2.19b-g)
as Green's strains, using the engineering notation. These correspond to a Lagrangian strain
measure since they were referred to the original material co-ordinates X(.

2.4,2 The Eulerian Finite Strain Tensor

Taking the difference between the squares of the current and original differential lengths,
from eqs(2.23a) and (2.24b), gives

jdx |2 - |dX |2 = [ 4 -

= [<| - ( 4 -
= [duj/dXf + dujdxj -

= 2Eiidxidxj (2.28a)

Ev is the Eulerian or Almansi finite strain tensor defined as:

Ev = %[4 - (dXJBx^idX^Sx,)} = Wlduj/dXi + Bu/Bxj - (3ukBxt)(3uJ3xj)] (2.28b)

which is written as
= % ( I - B - 1 ) (2.28c)

where C = B " ' in which B is the left Cauchy Green deformation tensor.

Bti = (3xi/3Xt)(3xlf3Xk) or B = FFT (2.28d)

Note, that the Eulerian tensor E refers to spacial co-ordinates x( and is less useful when it is
required to refer finite deformation to the original material co-ordinates Xs. However, in the
case of infinitesimal straining the product term in eqs(2.27b) and (2.28b) may be neglected.
This results in the Lagrangian and Eulerian infinitesimal strain tensors respectively. Since
the reference configuration is unimportant to small strain measures, it is traditional to refer
the Eulerian tensor (2.3) to the material co-ordinates.

Example 2.4 Determine the Lagrangian, Eulerian ami Cauchy finite strain tensors for the
Lagrangian description of motion given in Example 2.3.
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Using the matrices: G, C and F previously found, eq(2,27c) gives the Lagrangian strain
tensor, L = %(G - I):

1

0

_1 ) (e1

0

1

- e"') 0

(e'-l)

( e ' - e ' )

ei«_2e«+e-»'-i)

1
2

1

0

0

0

1

0

0

0

1
2

(e

0

0

'-D

0

0

(e'-e-' ) (3

<e'-

(e ' -

e*'-2e'

-1)

e")

+ e"

From eq(2.28c), the Eulerian tensor, E = ¥i( I - C), becomes

E= ±
1 0 0
0 1 0
0 0 1

1

0

-e"1)

0

1

-n-r2')

- ( 1 -
- d -

(2-2e^

-e-')

' + e^4')

1
2

(1

0

0

- e " ') (1

0

0

- e~ a i )

(1

(1

(2e-'

-e
- e

- e

)
-a.j
- 4, _

1)

From eq(2.28d) the Cauchy-Green deformation tensor is B = F F .

B =

1 0 (e'-l)

0 1 (e'-e"')

0 0 c'

1 0 0
0 1 0

(e'-l) (e'-e"') e»

(e'- l)(e'-e"') e'(e'-l)

l+fe'-e'')1 e'(e'-e-()

e'(e'-l)

Each component of L, E and B can be evaluated for a given time, t.

2.4.2 Extension (or Stretch) Ratios

The infinitesimal definition of the extension ratio is A = |dx|/|dXj. This may be expressed in
terms of both the material and spaeial co-ordinates. With unit vectors m and n, aligned with
line elements PQ and pq respectively, in Fig. 2,6, it follows that

m = dX/|dX|, n = dx/|dx| (2.29a,b)

and, from eqs(2.23c) and (2.29a)

A(J = |dx|2/ |dX|2 = Gy (dX ;/ |dX|) (6Xjl |dX|)

Alm? = Gt}m,mi or Am
2-mTGm (2.30a)

wherem= {m,»%»i3}Tisacoluinnmattix of me direction cosines m^ Now, from eq(2.27a)

|dx|2/ |dX|a - 1 = 21^ (dX,/ (dX|) (dX,/ |dX|)

and substituting from eq(2.30a)

jBii or AXm* - 1 = mT2Lm (2.30b)
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Combining eqs{2.3Oa and b) connects the material finite strain tensors L and G with the
extension ratio

4 ^ * = mT2Lm + 1 = mTGm (2.30c)

Also, from eqs(2.24c) and (2.29b)

= jf |dx|)

or (2.31a)

where n = f n, J% % } T is a column matrix of the direction cosines «,. Then, from eq(2.28b),

= 2By (dxj

Substituting from eq(2.29b)

or (2.31b)

Combining eqs(2.31a and b) connects the spacial finite strain tensors, E and C, to the
extension ratio:

2 = 1 - nT2En = nTCn (2.31c)

In general, A^^ * A^^, from eqs(2.30c) and (2.31c), unless n remains in me same direction
as m. One example where ^ m j = ^B , applies is to a stretch inclined at 45° to a pure shear
deformation. This stretch occurs without rotation so that m and n remain parallel at 45°.

Referring to Fig. 2.7, the angular change between the two line elements PQ and PR is
now required when these elements both stretch and rotate to their deformed positions pq and
pr. Figure 2.7 represents this deformation, both within our material co-ordinates X, and
spacial co-ordinates x,, in which the vectors dX(1) and dXa> map into dx™ and

x,,Xs

Figure 2.7 Shear deformation m material and spacial co-ordinates
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From the dot product: dsP • dx® = \i^1}\ (dx^l cos#:

cos® = • .32a)

where dx = jdx|. Substituting eqs(2.21b) and (2.23b) into eq(2.32a)

c o s # = ( 2 3 2 b )

The numerator and denominator of eq(2.32b) are divided by the product dX^'dX® to allow
cos$ to be referred to unit vectors 1% = dXtl)/dX(1) and m 2= dX^/dX05, aligned with the
unstrained line elements PQ and PR:

(Fi.f (FmJ

jGmj ym,Gm, i/mjGm, t/m2Gm
(2.32c)

Substituting eqs(2.23c) and (2.30a) into eq(2.32c) gives

c o s # .
(2-32d)

The original included angle 0, between PQ and PR in Fig. 2.7, is fiaund from the dot product
dXm • dX® = IdX031 |dXw | cosft in the spatial frame:

Substituting eqs(2.22b) and (2.24b) into eq(2.33a)

c o s g = ( 2 3 3 b )

Dividing eq(2.33b) by the product dxE1)dxa) and introducing the unit vectors n, = dx(1)/dx{1)

and n2 = dxP)/dxt2), aligned with strained line elements, gives

llj ylljCllj wl^

(2 .33 l ; )
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Substituting eqs(2.24c) and (2,31a) into eq(2.33c) gives

(2.33d)

which requires the spacial unit vectors n t and % for the elements pq and pr.

Example 2.S A unit square lies in the X% - X3 plane with one corner at the origin, as shown
in Fig. 2.8a. Sketch the deformed shape when the Lagrangian description of motion for a
given time is xl=X1 + BX2 X3,X2 = Xt + BJf3

2 and x3 = Xi + BX*. Determine: (i) the
extension ratio and the engineering strain for the diagonal joining the origin (0,0,0) to the
corner Q(0,l,l) and (ii) the change in the right angle at the corner point Q when B-\.

m, ,
P CO, 0,1}

s
s

Q (0,1,1)

m,

R (0,1,0)

x, /(a)

(b)

Figure 2.8 The Lagrangiaji deisaiption of deformation in a unit square

The deformed shape, shown in Fig. 2.8b can be found from substituting the material co-
ordinates (X, ,XltX3) into the spacial co-ordinate (x t, %, %) expressions. For example, the
material comer co-ordinates Q(0,l,l) map to spacial co-ordinates Q'[B, (1 + B), 1]. Further
substitutions for points X,- lying along the four sides, show that OR remains fixed in position,
P'Q' remains straight, P* remains in the J^rX, plane, OP* and Q*R,' become curved.

Equation (2.30a) provides an extension ratio where the unit vector m is aligned with the
unstrained diagonal OQ. That is: m = (1/^2)% + (1/^2)%, from which the column matrix
is m = {0 1/̂ 2 1A/2}T. Now, F is the matrix of derivates Bxt/dXj. Hence, G - F^F is

G = 0 1 2BX,

2BXt 0 1

Substituting m and G into eq(2.30c), with X1 = 0,X1 = X3 = l, gives
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72

1 B B

B 1+B2 B(2+B)

B B(2+B) (1 +SS1)

0

J_
72
J_
72

72B I 4 -+72B + 72B1] ( -L+72B+372B :

72 72

0

J_
72 = 1 + 2B + 4fl3

The engineering strain is from eq(2.1 lb):

From the displacement of Q to Q' shown, it follows that

OQ' = ^[B1 + (1 + B)2 + I2] = 7[2{1 +B + B2)]
and

OQ7 OQ = '/(I + B + B2)

This is not the same as A^ because the deformation in OQ is non-linear. In fact, A^ would
describe the ratio between the length of a curved trajectory OQ' to its original length.
Moreover, we should not expect the same stretch ratio i w from eq(2.31c) since Ihe
directions of n and m differ.

Unit vector components, which describe the unstrained sides PQ and RQ, are
respectively: m2 = {0 1 0}T and nij = {0 0 1 }T. Thus, the numerator in eq(2.32d) becomes

= B(2+fl)

1

B

B

B

(1+B2)

BA2+B)

B

B(2+B)

(1+SB2)

0

0

1
= [s at-B2) B(2H

0

0

1

In the denominator of eq(2.32d)» the stretch ratios for PQ and RQ are, respectively.

1 0]
1

B

B

1

B

B

B

(1+B2)

fl(2+B)

B

(1+B2)

B(2+B)

B

B(2+B)

(1 +5B2)

B

B(2+B)

(1+5B2)

0

1

0

0

1

0

= [B (1 +

= [B B(2H

B2) B(2

^B) (1 +

+ B)l

5B2)]

0

1

0

0

0

1

= 1+B1

1+SB2
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Substituting into eq(2.32d):

which, for B = 1, gives eos#= ^3/2. That is, 0= 30° amd so the change to the original right
angle PQR is 60°.

2.5 Polar Decomposition

Equations (2.26a,b.c) show that an infinitesimal displacement gradient is composed of the
sum of strain and rotation tensors. In the case of finite straining, a similar decomposition can
be made to the deformation gradient F. Let some intermediate position vector dx' lie
between the mapping of line element vector dX in its initial position to its current position
dx, in Fig. 2.6. The current position may be traced with two alternative local sequential
mappinp: (i) a stretch dx' = U dX, followed by a rigid rotation dx = R dx', or (ii) a rigid
rotation dx* = R dX, followed by a stretch dx = Vdx*. Thus, the final position dx is

dX (2.34a)

Comparing eqs(2.21b) and (2.34a) it follows that F is

or Fi} = dxj dXj = RmU^ = VmRv (2.34b)

where U and V are the right and left stretch tensors, being positive, symmetric and
possessing the same principal stretch values. Since det F = polp > 0, R is an orthogonal
rotation matrix, obeying

RRT = RTR = I or RikRik = RMRv = 4, (2.35a)

F, R, U and V will all depend upon position unless the deformation is homogenous, where
x = FX and the components of F, R» U and V become constants. Combining eqs(2.34b) and
(2.35a) gives relationships between U and V;

U = R T ¥ R and ¥ = RURT (2.35b,c)

Now, from eqs(2.34b) and (2.23c), G and its components G8, may be written as

G = F T F = (RU)T(RU) Gv = F&
JFlt

But as UT = U and IU = U = (R^R^U^
G = U2 = SjJ^Uy = U^ (2.36)

Let U* contain the principal stretches au fifj and ̂  of U. Substituting eq(2.36) into
eq(2.30a), gives

Aim
1 = mr(V'l)m (2.37a)
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Taking the principal stretch directions of U* as co-ordinates, so that nij is a unit vector
aligned with the major principal stretch direction, eq(2.37a) gives

4
0

0

0

4
0

0

0

4,

1

0

0
= ar,

(2.37b)

Thus, from eq(2.37b), A^. = at. Similarly, when further unit vectors i% = {0 1 0}T and
n% = {0 0 1 }T are aligned with their respective principal directions: A, , = a2 and
X{m j = af3. This means that the stretch ratios for the principal directions are the principal
values of U«

From eqs (2.34b) and (2.28d), B and its components fl8, may each be written as

= FF T = (VR)(VR)T

= V(RRT)VT =
=

But as
(2.38)

Let the principal directions of U be given by the three unit vectors 1%* (i = 1,2,3), with their
components in the Xt frame. They will satisfy an equation similar to eq(1.23b):

(U-flfilJu^O

Since RT Ru* = I u* = u*, eq(2.39a) can be re-written as

R (U - s-.IXRTR)Ui* = [ RURT - R (^I)RT ] (Ru,*) = 0

Substituting from eq(2.35c)

(2.39a)

(V - as ;) = 0 (2.39b)

When the principal directions of V are defined by the unit vectors v*s (i = 1,2, 3) they will
satisfy the equation

(V-AD< = 0 (2.39c)

Comparing eqs(2.39b and c) shows that: (i) the principal values of U and V are the same
since af = $ and (ii) R connects the principal directions of U and V within: v,* = Ru* or u*
= RT v*. Equations (2.36) and (2.38) show that U and V provide an equivalent physical
interpretation of G and B though G and B remain the more convenient measures of strain.

Principal stretch tensors U* and V* are calculated from the square roots of the eigen
values of G and B respectively. The 3 * 3 transformation matrix M of eigen vector
components (for G and B) will not, in general, equal the components of the rotation matrix
R as the following example shows. M appears in tensor transformation laws for U and V,
similar to eq( 1.21b);
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and V*

Reversing eqs(2.40a,b) gives (see eq 1,20b)

U = MTU*M and V = MTV*M

(2.40a,b)

(2.40c,d)

Alternatively, eqs(2.35b,c) allow the calculation of U from V and vice-versa, without first
finding their principal values.

Example 2.6 Find U, V and R for a Lagrangian description of fee following motion; JK, =
aXj + bXt ,Xj = ~ a%i + bX2 and x3 = cX% (where a>b>c). Show mat the principal values
of U and V are equal.

Having found the components Fit = dxtl SX}, G is found from eq(2.23c) as

G = F T F =

a

b

0

- a

b

0

0

0

c

a

-a

0

b

b

0

0

0

c

=

2a 2 0 0

0 2b2 0

0 0 c 2

from which U is obtained:

U = VG =

0 0

0 Jib 0
0 0 c

= IT

This result reveals that the directions of the principal, right stretches are aligned with fee co-
ordinates X,. The rotation R then follows from eq(2.34b) as

R = FU

a

-a

0

b

b

0

0

0

c

1

yfla

0

0 0

1 0
%/2£>

0 0 lie

4- 4-o

-4- 4-o
0 0 1

These components are direction cosines corresponding to rotating Xx and Xz by 45° about
fee fixed X3 axis. B is found from eq(2.28d) as

B

a

-a

0

b

b

0

0

0

c

a

b

0

-a

b

0

0

0

c

=

(a2 + A2) (-a2 + b2) 0

(-a2 + b2) (a2 + b2) 0

0 0
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The stretch tensor V is more conveniently found from V* = V B* when B* is referred to its
principal axes. The principal values of B* (i.e. eigen values) are the three real and positive
roots Pi (i' = 1,2,3) of the characteristic equation for B. They follow from the expansion to
the determinant (B - J3J) = 0:

0

0

c-fi
= 0

which gives fit = 2a*, fix = 2b2 and /?3 = c2. Hence, we have

B =

2 a 2 0 0

0 2&2 0

0 0 c 2

V = -/B =

-/2a 0 0

0 J2b 0

0 0 c

showing that the principal values of U and V (i.e. the components of U* and V*) are equal.
The eigen vectors v/ (i = 1,2,3), which define the orthogonal, principal axes of V*, are

found from the solution to:

For i = l , let Vj* = 1^+ »%%+ «ii% where Ui, u2 and i% are unit vectors aligned with the co-
ordinates Xj (see Fig. 2.6) and \, my and n1 are the intercepts (direction cosines) with Xf. In
eq(i) we write vector components Vj* = {̂  mt n,}T and substitute for matrix B to give:

(a1 + b% - A) h + (- a2 + b2) m, = 0
(- a1 + b2) lx + (a1 + b1 - A) « i = 0

Substituting fl1 = 2a2"m eqs(ii)-(iv) we find ^=1/^2, mt=- 1/V5 and n% = 0 giving:

Similarly, for 1 = 2 and 3, the eigen vectors are:

u2 and v3* =

(ii)
(iii)
(iv)

in which vs • va = v2 • v3 = vs • Vj = 0 confirms orthogonality in these vectors. The
components of these vectors define the transformation matrix M in eq(2.40a-d) so mat:

V =

1/V2 0

1A/2 1/-/2 0

0 0 1

0
0

0 0
0

0 c

1A/2

1//2
0

-1/^2
1//2

0

0

0

1
=

0
) 0

0 c
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Finally, we may check this result from F = VR:

0

) 0

0 c

1//2

0

1//2

1/V2

0

0

0

1
=

a

- a

0

b

b

0

0

0

c

2.6 Strain Definitions

It is seen that there is no single fundamental definition of strain. Indeed, the expressions for
the natural, Lagrangian, Eulerian strains and the extension ratio will all differ, even for a
simple uniaxial, finite deformation. Thus, the flow behaviour of a material will depend upon
the chosen definition of strain. The Lagrangian finite strain tensor, L in eq(2.27b,c), is more
commonly used for referring finite deformation in a solid to its original shape.

For infinitesimal strains, the differential products in eqs(2.27b) and (2.28b) may be
ignored. The Eulerian and Langrangian finite strain tensors E and L, will then reduce to
eq{2.3), implying that there is negligible displacement between the material and spatial co-
ordinates. Seth [4] related the three uniaxial strains to the extension ratio within a single
formula. Given initial and final lengths /„ and I respectively, these strains are expressed from
eqs{2.11b), (2.30c) and (2.31c) as

e« = (l/a)[l - (IJI)*] = (l/a)[l - ( l / i )B]

where a = - 1, a = - 2 and a = + 2 according to the engineering definition and those of
Lagrange and Euler respectively. Other values of a may lead to simpler constitutive
relations, e.g. when a is chosen to provide linear stress-strain behaviour, but the
corresponding stress definition becomes uncertain and the tensorial nature of strain is lost.

The reader will find further discusion of strain tensors and their transformation
properties in books on continuum mechanics [5-8].
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Exercises

2.1 A displacement vector u is described by its three components «(in spacial co-ordinates x,, as

* a and % = (ij

Detennine the components of infinitesimal strain and rotation matrices, «j and a^, for a point P(0,1,2),
whenfcj = J^= 1 and&3 = 2. What men is me change in the right angle between a pair of perpendicular
lines passing through P with direction cosines: (1A/3,1/^3, - 1//3) and (W14,2/^14,3A/14) with
respect to *,» % and JCJ?

2 2 The following infinitesimal, micro-strain components; eu = 600, cM = em = 0, £,2 = e2l = 200,
*» = sw - 400 m<* £ » = £3i = 200 0*U multipied by 10 *) define a strain tensor. Determine the
magnitude and direction of the principal strains, the maximum and octahedral shear strains. What is
the state of strain for a plane with normal direction cosines a= 0.53, fl= 0.35 and y= 0.77?

[Answers: 800,200, - 400,600,9.1,622 ( x 10 *)]

2 3 The components of a micro-strain tensor are en = 100, en = eI3 = 0,em = - 100, sn = en = 500
and eli=eil = - 500 in x,, Xj and % co-ordinates. Transform these to Jt/, x[ and.%' co-ordinates given
that the direction cosines for the x{- direction are: lu = 1/-/14, lu = 2/i/14, ln = 3/^/14 and those for
the JC/- direction are: £„ = l j a = 1, IB = - 1.

[Answers: en' = - 128.6, ea' = 666.7, £B ' = 538.1, en' = 138.9, eH ' = 198 and £2S' = - 276.23

2.4 Under plane-sixain deformation, a line element increases in length by 17% in the Xt - direction and
by 22% in the X2 - direction. What is the percentage increase in length and the rotation of a line
element originally at 45° to the reference configuration XY and X2 ?

[Answers; 27%, 2.4* to X{\

2.5 Given the three components of a spacial co-ordinate function x = x(X, 0 are xx = A,(X, + BX3),
j%=AJXJ and % = ASX3, where A and B are constants at time t, determine: (i) the components of the
deformation gradients F and F \ (ii) the left and right Cauehy Green deformation tensors G, G'r, B
and B"' and (iii) the Lagrangian and Eulierian strain tensors, L and E respectively.

2.6 The spacial co-ordinates x,, in Exercise 2.5, describe homogenous deformation at a given time t.
Find the new direction and the stretch of a line element originally equally inclined to a reference
configuration X,- (i = 1,2 and 3) at time t = 0.

2.7 Given that the spacial components of motion, x = x(X, I), are:

show that the material components of motion X = X(x, t), are:

Xi = I - xx + x2 (e' - *)] / [K(K - e' - e - ) ]

[K(K- e 1 - e ' ) ]

2 J The spacial position vector x has components: xl=Xi,x2 = Xi + KX$ and xi = Xi + ECX2, where
K is a constant. Determine the components of the displacement vector u = x - X (see Fig. 2.6) in both
material and spacial co-ordinates.

[Answers: «, = 0, Uj = KX% = Mxs - Kx^il - K1) and M, = KXt = k{xt - J&3)/(1 - K1)]
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2.9 Show that the components of G and L for x( in Exercise 2.8 are given as:

1
0

0

0
l*K2

2K

0
21?

1+KZ

0
0

0

0
K3

2K

0
2K

K2

Taking K = 1, determine the magnitude and direction of the principal Lagrangian strains.

Z10 Given that the material components of the displacement vector U (see Fig. 2,6) are: Ux = Kl X3
2,

U2=X^Xt and V3 = X^Xt, determine the components of the material displacement gradient dU,fdXj
and the material deformation gradient Ftj = dxJdXj. Hence confirm the derivative Fff = dU,/dXj + 3ir

2.11 Calculate the stretch ratio for a line element vector aligned with the X, - axis and another with
direction cosines (0, lMJ, 1A/2) w.r.t. Xt, following a shear deformation whose components x,, are
given in Exercise 2 J . Hint, use eq(2.13c) with the corresponding right Cauchy-Green components
Gs from Exercise 2.9. [Answer: 1, (1

2.12 Show from eq(2.28d) that the extension ratio 1 + K, found in Exercise 2,11, applies when
inverting the components from xt in x = x{X) to X, in X = X(x) upon forming the inverse of the left
Cauchy-Green components By., Explain why this is.

2.13 Determine ttie extension ratios X^ and A^ from eqs(2.30a) and (2.3 la) for a line element originally
aligned with the X2 - axis, following a motion with xt components given in Exercise 2.8. Explain why
these differ.

2.14 Determine, for the unit square shown in Fig. 2.8a, the extension ratio for the diagonal PR and the
change in the angle OPQ, when it is subjected to the same Lagrangian description x = x(X) of motion
(see Example 2.5).

2.15 Determine the deformation gradient for the Lagrangian motion x1=Xl + 2Xj, x, = Xt - 2X3 and
XJ = - 2Xi + 2Xj + JKj. Find R, U and V by polar decomposition and show that the principal values
of U and V are equal.



 

CHAPTER 3

YIELD CRITERIA

3.1 Introduction

Experiment has shown that an assumption of initial isotropy is usually a good approximation
when quoting a yield stress value for a polycrystalline material One exception is where the
yield stress becomes direction-dependent following a history of severe deformation
processing, as with the cold-rolling of sheet metals. There are two approaches, microscopic
and macroscopic, used in the analysis of this form of anisotropy. The first approach
examines the manner in which various slip systems control anisotropy within a given
structure. The second approach, which will be adopted here, quantifies the effect that
anisotropy has upon the initial yield surface. Typically, thie yield surface can display
different initial yield stresses in tension and compression, so that it appears asymmetric
relative to its stress co-ordinate axes. As with an annealed, isotropic material, it is
convenient to express the inherent, or residual, anisotropy, within the structure of a worked
material, with an appropriate yield function. Suitable functions are given for conditions of
isotropy, transverse isotropy and orthorropy. A second form of anisotropy, which
accentuates yield surface asymmetry, is induced by subsequent straining of a hardening
material beyond its initial yield point. This is a deformation-induced anisotropy, of which
the Bausckinger effect is one manifestation. To describe this, the initial yield function
requires a modification using a hardening rule (see Chapter 10).

Similar functions are often employed to describe the initial yield surface in metals and
the failure surface for brittle non-metals, despite their different responses to loading. In a
non-hardening metal, the yield and fracture surfaces are coincident and a single function
applies. The term elastic, perfectly-plastic is used to describe this. The material response
is elastic within the surface's interior region. Along its boundary, plastic flow occurs under
a constant yield stress. In contrast, a purely brittle material remains elastic to the point of
fracture, where the critical stress combination lies on its failure surface. However, as both
yield and failure surfaces bound an elastic interior they appear similar mathematically.

A flow rule describes the manner in which plastic strain depends upon a given
combination of stress. It will be shown in Chapter 4 that there are two types of flow rule
for elastic-perfect plasticity. These rules differ between their incremental and total strain
formulations, the former with and the latter without an association to the yield surface. The
incremental strain approach will be outlined here.

3.2 Yielding of Ductile Isotropic Materials

In Fig. Lib it is seen that a ductile metallic material will begin to deform and harden
plastically under a uniaxial stress when the yield stress is exceeded. In practice, the stress
state is biaxial or triaxial and the question arises as to what magnitudes of combined stress
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will cause the onset of yielding? Those who first attempted to answer this question sought
a suitable criterion based upon stress, strain or strain energy for the complex system that
could be related to the corresponding quantity at the uniaxial yield point. Where a material
yields isotropicaEy, the critical value of the chosen parameter at yield is independent of the
orientation of the stress system. All criteria may then be related to a constant uniaxial yield
stress F, which is most conveniently measured in a simple tension test (see Fig. 3.1a).
Isotropic yield criteria are normally expressed in principal stress form. The latter refers to
the stress system ax, a2 and a3 in Fig. 3.1b, where, conventionally, ffj > o2 > ai • The

stress transformation equations, given in Chapter 1, will enable these yield criteria to be
expressed in any two- or three-dimensional combination of applied direct and shear stresses.

(•)

Figure 3.1 Uniaxial and triaxial principal stress states

A number of yield criteria have been proposed over the past two centuries [1], though it is
now accepted that the criteria commonly attributed to von Mises [2] and Tresca [3] are most
representative of initial yielding in isotropic, metallic materials. It is instructive to consider
the derivation and verification of these two criteria using appropriate experimental data
available in the literature.

3.2.1 Maximum Shear Stress Theory

Attributed jointly to Tresca, Coloumb, and Guest, the maximum shear stress theory assumes
that yielding, under the principal stress system in Fig. 3.1b, begins when the maximum shear
stress reaches a critical value. The latter is taken as the maximum shear stress k at the point
of yielding under simple tension or compression. That is, k = YI2, which acts along planes
at 45° to the tensile stress axis, shown in Fig. 3.2a.

i f i

(a)
Figure 3.2 Maximum shear stress under uniaxial and triaxial stress states
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Under a principal, triaxial stress state (Fig. 3.1b), the greatest shear stress is, from eq( 1.33b),
rj.j = ¥i(ax - £73). This acts along the plane inclined at 45° to the 1 and 3 directions, as
shown in Fig. 3.2b. Equating ii_3 to the shear stress k = F/2, for the uniaxial case, leads to
the Tresca yield criterion

oj - % = F (3.1a)

Numerical values of oj and £% must be substituted into the left-hand side of eq(3.1a) with
signs denoting tension or compression, e.g. if oj = 30, o2 = ~ 15 and <73 = - 20 MPa, then
the left side value is 30 - (- 20) = 50 MPa, showing that the intermediate stress value is
irrelevant. Often, eq(3. la) appears in the alternative descriptive form

Greatest principal stress - Least principal stress = Tensile yield stress (3.1b)

In the case of plane stress, where e ,̂ aJt tv are non-zero, the principal stresses have been
derived in Section 1.4.3 (p.20):

o, - op* and «, = 0 (3.2)

where OJ is tensile (greatest positive value) and o*ais compressive (least negative value).
Setting ffy = 0 in eq(3.2) and substituting into eq(3.1b) gives a simplified Tresca criterion

or2 + 4 ^ = F 2 (3.3)

which defines the equation of a two-dimensional elliptical yield locus in axes of o, and x .̂

3.2.2 Shear Strain Energy Theory

This is the most commonly used yield criterion. It is named after Richard von Mises but the
crterion is also associated with others: Maxwell, Huber and Hencky. Huber proposed that
the total strain energy was composed of a dilatational (volumetric) component and a
distortional (shear) component. The former depends upon the mean, or hydrostatic,
component of the applied stress and the latter upon the remaining reduced, or deviatoric,
component of stress, as shown in Figs 3.3a-c.

Figure 3.3 Components of a triaxial stress stele
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Maxwell believed that hydrostatic stress played no part upon yielding. He proposed that
yielding occurred when the shear strain energy component of the total energy reached a
critical value. This value is taken to be the shear strain energy at the tensile yield point.
Alternative approaches, adopted by von Mises and Heneky, which lead to the same yield
criterion, are outlined below. It will be shown in the following section, that there is
considerable experimental evidence supporting a von Mises criterion for ductile, initially
isotropic, metallic materials.

(a) Shear Strain Energy Us

The total energy density for Fig. 3.3a is given by

U= j ffde = J (aldel

Substituting from the elastic constitutive relations:

- v{ff2

+ a,)]
}- v{ax +a2)]

where E is Young's modulus and vis Poisson's ratio. This leads to

U= (cr,2 + a2 + o±2)/(2E) - (v/E)(0{ a2 + ff,er3 + c, a3) (3.4)

The volumetric strain energy density arises from the hydrostatic component of stress (see
Fig. 3.3b):

£/,= Jg ffde= ftvmde+ amds+ amde

Substituting e= ffm/(3K) for the linear strain along an edge, where K is the bulk modulus:

Ur = am
2f (2K) = 3 ( 1 - 2 v)am

zl (2E)
= (l-2v)(ffx + a2+ff3)

2/(6E) (3.5)

where Om = aal3. Here a relationship between the three elastic constants has been used:
£•=3^(1 - 2v). Subtracting eq(3.5) from eq(3.4) leads to the shear strain energy associated
with the deviatoric stress, in Fig. 3.3c:

- 2 v)(ff, + a2+ai)
1l(6E)

(3.6a)

The value of Us at the tensile yield point is found from setting 0y = Y, 02
 = @s ~ 0 m

eq(3.6a):
£/s=(l+ V)Y2IQE) (3.6b)

Equating (3.6a) and (3,6b) provides the principal stress form of the von Mises criterion:

( a , - f f 2 ) 2 + ( f f J - a J ) a + ( a I - f f 3 ) 2 = 2Fa (3.7a)
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If one principal stress, say cr3, is zero the biaxial stress form of eq(3.7a) becomes

or,2 - o, c% + (4 = F2 (3.7b)

Substitutions from eqs(3.2) for CTj (tensile) and £% (compressive) will provide a general plane
stress form in terms of a%» oy and rv, Setting cr. = 0 within this reveals the more common
plane stress form of the Mises criterion:

^ 2 + 3 r ^ = F2 (3.8)

Subscripts x and y are often omitted from eq(3.8) to account for yielding under a given
combination of direct and shear stress, set within either Cartesian or polar co-ordinates.

(b) Octahedral Shear Stress Ta

This approach proposes that yielding, under the triaxial stress system in Fig. 3.1b,
commences when TO in eq( 1.34b) reaches its critical value at the tensile yield point, for
which crl = Y and o^ = «% = 0. This gives

which again leads to eq(3.7a). This is because the normal sixess for the octahedral planes,
i.e. «rD in eq(1.34a), is numerically equal to the mean stress am = %%, which produces
dilatation only. Thus, the distortion which occurs under ro, leads to yielding under a critical
combination of principal stress differences. Clearly, energy considerations are not required
when formulating the yield criterion in this way.

(c) Deviatoric Stress Invariants Ja' and J3'
Because the mean or hydrostatic stress plays no part in yielding, it follows that the yield
criterion should be a function of the deviatoric, or reduced, stress in Fig. 3.3c. This shows
that the deviatoric stress tensor a^ is the remaining part of the absolute tensor GJ after the
mean or hydrostatic stress ffm has been subtracted. This reduction applies only to the normal
stress components au , Gfe and ai3, since shear stresses an, an and #23 will cause no
dilatation. The introduction of the unit matrix I, equivalent to Kronecker's delta Sy, ensures
the correct reduction:

a-J = as- 8tlam or T ' = T - 1 1 tr T (3.9a,b)

where Sv is unity for i =j and zero for i * j . For example, with i = 1 and/ = 1 , 2 and 3,
eq(3.9a) gives

o-u' = <% - on = an - % (oh + % + <%)
°\% = °ii ( n o change)

With further reductions, it follows that the resulting deviatoric stress matrix T ' , in eq(3.9b),
is composed of an\ <%' and % ' and the original shear stresses an, an and % :

%

"a

1

0

0

0

1

0

0

0

1

(3.9c)
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When av' is expressed in the form f (cr^ = constant, this function is known as a yield
criterion and it predicts the onset of plasticity under a critical deviatoric stress state.
Moreover, as yielding is a property of the material itself/must be independent of the co-
ordinates used to define o%. Yielding must, therefore, be a function of the deviatoric stress
invariants / / , J2' and J3' since they will remain unaltered by co-ordinate transformation. The
deviatoric invariants may be obtained by subttaetmg ctm from the absolute stress invariants,
/ i , J2 and J3, in eq(l .25a-c). In terms of principal stresses the deviatoric invariants become

J,' = cr,' + ̂ ' + a; = (oi - om) + (<h~ <rm) + (a, - am)
= (al + al+ai)~3aa = 0 (3.10a)

- i2' = oi'^' + o i X + cr^ 1 =(ffr am){a%- am)+ (t^- ojfa - am)+ (<y, - aj{o3 - am)

tr, ff3) - (CTj2 + a? + a3
2)}

= - 1/6 [(a, - of + (ok' <%f + (oi - o%f] (3.10b)

i3 ' = er,'«%' cr3' = (oi - ajiaz - tjj(a3 - am)

4 [(2oi - oi - <%)3 + (2<h - oi - £%)3 + (2CTj - ^ - o 0 3 ] (3.10c)

The sign of the J2* expression (3.10b) is positive within its corresponding deviatoric stress
cubic as follows:

Note, for general stress deviator o-/, the invariants in eqs(3.10a,b,c) appear in the tensor and
matrix notations as

/,'=ffg' = t r T ' = 0 (3.11a)
J2' = V4«r8' Ojt' = Vt tr ( T ' ) 2 (3.11b)

j ; = % ou' ajl < = % tr (T ' ) 3 (3.11c)

Yielding begins when a function of the two, non-zero, deviatoric invariants J2' and J3\ attains
a critical, constant value, C:

f(Jt',J3') = C (3.12)

C is normally defined from reducing eq(3.12) to yielding in simple tension or torsion. For
example, when J3' is omitted from the function in eq(3.12),/is simply equated to / j to give
the von Mises yield function:

J2' = &2 (3.13a)

where i2 = Fz/3, is found from setting oj = F (the tensile yield stress) with ô  = #3 = 0 in
eq(3.10b). It follows from eqs(3.10b and 3.13a) that

[(Oi - ff2)
2 + (oj - a,f + (oi - as)2]/6 = F2/3 (3.13b)

which again gives the yield criterion in eq(3.8). It is this derivation, in which the second
invariant of deviatoric stress attains a critical value at the yield point, which has become the
yield criterion normally associated with von Mises.
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3.3 Experimental Verification

J.J.I Determination of the Initial Yield Point

Where a material displays a sharp yield point, as shown in Fig, 3.4a, the division between
the elastic and elastic-plastic regions is clearly defined and a yield stress is easily found.

Y •-

(a) (b)
Figure 3.4 Definitions of yielding

Key: B-Back extrapolation, Hntercept stiess, L-limit of Proportionality, P-Proof stress, T-Tangent stress

There may be some doubt as to what the inital yield stress value is for the many metallic
materials that display a gradual transition between their elastic and elastic-plastic regions.
Various definitions of yield have been employed to overcome such uncertainty in the
determination of yield stress. The most commonly used definition is the proof stress, i.e. the
stress at P in Fig. 3.4b. The proof stress corresponds to a plastic strain ep, offset by a given
small amount, usually taken from the range: 0.001% - 0.01%. Under combined stresses, a
similar equivalent plastic strain value is chosen to determine the amount that the component
strains are to be offset. This method is often employed to determine the combined yield
stresses necessary to construct a yield locus. One difficulty arising with this is that the usual
Mises form of equivalent plastic strain expression,

pre-supposes a Mises yield surface. If the yield points, so determined, do not lie on a Mises
locus the implication is mat another eF definition is required, corresponding to a locus that
would contain the yield points. Unfortunately, we have no way of knowing in advance what
the true yield function can be. All that can be said is mat the von Mises offset strain method
checks the validity of the Mises function. Many investigations on the shape of the yield
surface, reviewed in [4], have attempted to avoid this problem by employing low s Mises
strain values. This ensures that yield stresses, found from offsetting strains by other
definitions of ep, would all lie within a narrow range, just beyond the limit of elastic
proportionality L, in Fig. 3.4b.

An alternative, back-extrapolation yield point, B in Fig, 3.4b, is much simpler to locate
but its application requires large excursions into the plastic range. Since B is the junction
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in the bi-linear approximation to a stress-strain curve, it estimates of the yield stress at large
plastic strain. The extrapolation is suited to materials, e.g. alloy steels, that harden in an
approximately linear manner. It is less applicable to annealed materials with well-rounded
plastic regions, e.g. copper and aluminium. The figure shows that the proof stress P, found
from increasing the offset strain, will approach the back-extrapolation point B. Here the
determination of both P and B involves considerable plastic strain and this requires a new
testpiece for every stress probe. With repeated probing upon a single testpiece, the plastic
strains accumulate to confuse the initial reference condition for the material.

Of all the yield definitions available, that which derives a yield stress from the limit of
proportionality L, is the only one with physical significance. It divides the regions of elastic
lattice distortion from inelastic slip. It is because the stress value at the limit of
proportionality is sensitive to individual judgement tat alternative definitions have been
employed. Michno and Findley [5] have discussed instances in Fig. 3.4b, where the stress
intercept I and a tangent point T, of predetermined slope, have defined yield. More recently,
point L has been found consistently from the stepped change in temperature that occurs with
the transition from elastic to plastic deformation [6].

3.3.2 Comparisons Between Tresca and von Mises

Experimental determination of yield loci are usually conducted within the simplest two-
dimensional stress states. These allow comparisons to be made between experimental loci
and Tresca, von Mises and other predictions. An ideal comparison should employ a metallic
material with a well-defined yield point, such as low carbon steel, as in Fig. 3.4a. It is also
instructive to examine the influence of yield point definition for other materials with less
distinct yield points. For these, initial yield stresses can be determined at the limit of
proportionality, by the proof strain and extrapolation methods. The comments made
previously upon this issue are pertinent to the following comparisons.

(a) The ax versus o^ plane
A principal, biaxial stress state is achieved in the wall of a thin-walled tube when it is
subjected to combined internal pressure and axial load. The radial stress «% may be ignored
provided the diameter to thickness ratio of the tube exceeds 15. Yield loci have either been
determined from proportional or step-wise loading paths, these producing tensile stresses
lying within the first (positive) quadrant. In the remaining quadrants of the yield locus,
compressive buckling can precede yielding, particularly with yield definitions involving
larger amounts of plastic strain.

Table 3.1 summarises the test conditions for published data [7-12] used in the
construction of Fig. 3.5. The materials investigated had received a processing method,
involving heat treatment, to attain an initially isotropic condition. There was an obvious
yield point (y.p.) in En 24 steel [7]. In the remaining investigations [8-12], the yield stress
was identified with the limit of proportionality (l.p.) or with the proof stress at the indicated
offset strain value (e p ) . All stress paths were radial, with one exception [9], in which it was
shown that it was possible to determine the full yield locus in alloy steels from applying a
sequence of non-radial stress probes to a single testpiece. The choice of yield stress at the
l.p. minimised the accumulation of plastic strain arising from the repeated probing. To avoid
strain history effects from radial probing well into the plastic range, a new testpiece should
be employed for each stress ratios (<%/oi). This also applies when defining a yield point at
a large offset strain or by back extrapolation.



 

YIELD CRITERIA 73

Table 3.1 Experimental yieM point investigations in a,, at space

Material

En 24 carbon steel
SAE 1045 carbon steel
2W%Cr, 1% Mo steel
X-60 alloy steel
304 stainless steel
306 stainless steel
M-63 brass
14S-T4 Al alloy
Ni-Cr-Mo steel

Heat Treatment

annealed
hot rolled
stress relieved
normalised
stress relieved
solution treated
annealed
hot rolled
annealed

Yield Definition

y.p.
s = 0.7%
Lp.
Lp.
Lp.
Lp.
Lp.
*rp=0.2%
ep=Q2%

Symbol

X

•
0

V
A
o
1
H

•

Reference

7
8
9
9
9
9
10
11
12

The theoretical loci, shown in Fig. 3.5, are plotted with their axes normalised by the tensile
yield stress F.

aJY

Haigh

Figure 3.5 Tiesca, von Miseg aad Haigh yield loci in <7,, a, space

The von Mises prediction, eq(3.7b), becomes

(o|/ Y)1 - (a,/ F)(^/ Y) + {a.1 Y)2= 1

which defines an ellipse with a 45° orientation to its stress axes. The Tresca locus is found
from applying eq(3.1b) to each quadrant. For example, in quadrant 1, where 0 s ayIY< 1,
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the greatest principal stress is a2/Y= 1 (constant) and the least is a3f¥= 0. Also, in this
quadrant, where 0 <, ffz/Y< 1, the greatest principal stress is Oi/F= 1 and the least value is
(%/Y=0. The respective yield criteria, 0%/F and CT,/F= 1,, thus describe the horizontal and
vertical sides of the Tresca hexagon as shown. In quadrant 2, at /Y is greatest in tension
while o; /F is least in compression. Hence, the left sloping side of the hexagon conforms to
a^IY- £r,/F= 1. The completed Tresca hexagon is inscribed within the Mises ellipse. The
Haigh total energy yield critmon, as derived from eq(3.4), is also shown in mis figure. The
yield locus associated with this criterion has an elliptical equation involving Poisson's ratio;

but this is not often used since it assumes an influence of hydrostatic stress upon yield.
Overall, the superimposed experimental data in Fig. 3.5 lie closer to the Mises prediction
and appear independent of the test conditions. The conclusion to be drawn from these is mat
an initially isotropic von Mises yield condition applies to ductile polycrystalline materials.
Most data lies outside the hexagon, confirming that a Tresca prediction of yielding for mese
materials is conservative. It is shown later that where the yield points for an individual
material lie between or outside the two loci they may be represented by the function in
eq(3.12). The uncertainties in yield point determination may however cast doubt on the
requirement for an initial yield function to fit the test data precisely. This author's view is
that a von Mises function is adequate provided the material has been heat-treated to an
approximately isotropic condition. An examination of plastic strain paths under proportional
loading may provide a more definitive test of an appropriate yield function, given that
normality between the plastic strain path and the yield locus is accepted.

(b) The a versus tplane
The respective Tresca and Mises yield criteria are given in eqs(3.3) and (3.8). The total
energy theory (Haigh) follows from eq(3.4) as

(a/Y)1 + 2(l+ V)(T/Y)Z=1

Here we shall omit the subscripts x and y when applying yield criteria to this simple,
combined stress state, i.e a and r. The experiments, detailed in Table 3.2, were all
conducted on thin-walled tubes, subjected to torsion combined with either a circumferential
tension [7] or, an axial tension/compression [13-19].

Table 3.2 Experimental yield point investigations in a, t space

Material , Heat Treatment Yield Definition Symbol Reference

En 24 carbon steel annealed
En 25 carbon steel annealed
19S Al alloy stress relieved
1100-0 Al annealed
PA6 Al as-received
Brass as-received
Ti-50A Ti-alloy stress relieved
Copper (99.8%) annealed
Aluminium (99.7%) annealed

y-p-
y-p-
i.p.
l.p.
ep = 5Q(iz
~eF = 200/j
ep = 20ftE
b.e.
b.e.

X

o
V

•
; +

D

7
13
14
15
16
17
18
19
19
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These tension-torsion combinations include the original experiments of Taylor and Quinney
[19] who, in 1931, pioneered the backward extrapolation (b.e.) technique. With the
exception of the stepped-stress probes, employed by Ivey [14] and Phillips and Tang [15],
all other investigations, reported in Table 3.2, employed radial loading. Ellyin and Grass
[18] applied multiple, radial probes, eaeh emanating from the stress origin, to a single
testpiece. The final probe, which duplicated their initial probe, revealed little difference
between their yield stresses. Consequently, the effect of accumulated plasticjtrain, arising
from intermediate probing was avoided by employing a small, offset strain {e = 20(ie) to
define yield.

The comparison between theory and experiment in Fig. 3.6 reveals again that most of
the experimental data in quadrants 2 and 4 lie closer to the yield locus of Mises than to
Tresca, irrespective of the chosen yield definition. There is an obvious difference between
the von Mises and Tresca predicted shear yield stress. That is, the lengths of the semi-minor
axis are k = YN'i and F/2 respectively.

trlY

Figure 3.6 Tresca and Mises loci in a, x space

Figure 3.6 confirms that a Mises initial yield condition applies to ductile, isotropic materials
under combined a,tstress states. This observation was first made by Taylor and Quinney
[19], from their own results for copper and aluminium. Similar comments, made previously
on the influence of the definition of yielding in Table 3.1, again apply to Table 3.2. Despite
the uncertainty in yield point determination, it appears, from Fig. 3.6, that Tresca will
continue to provide a conservative estimate whatever the chosen definition of yield.

Note that hot-rolled [8,11] and as-received material [16,17], given in Tables 3.1 and
3.2, did not receive any further heat treatment prior to test It is possible that their departure
from a Mises initial condition is due to the influence of initial anisotropy. The latter is
evident when initial tensile yield stresses for orthogonal directions are dissimilar, but this
behaviour was not reported in these investigations.

There are many practical instances where direct and shear stress states are combined.
They arise from loading a shaft axially in tension or compression in combination with a
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transverse shear force or axial torsion. Combining a bending moment with a torque
produces a similar stress state. A combination of direct stress and shear stress exists at
points in the cross-section of a transversely loaded beam, away from its neutral axis.
Equations (3.3) and (3.S) may also apply to yielding under these superimposed loadings.

3.3.3 Influence of the Third Invariant

(a) Symmetrical Functions
The fact that some initial yield points for isotropic material do not lie on the Mises loci, in
Figs 3.5 and 3.6, suggests that initial yielding may conform to a more general function
containing both deviataric invariants. Firstly, note that Tresca's yield criterion may be
expressed as the following complex function [20] of these invariants:

/ = 4 J \3 - 27/ \z - 36k1 J ',* + 96k4J 't = 64k6 (3.14a)

where k, the shear yield stress, bears a simple relationship to the tensile yield stress Y, i.e.
Jfc = F/2. Substituting eqs(3.10b,c) into (3.14a), and factorising gives

[ « - < ) 2 - 4 F ] [ « - ff3')
2 - ttMKoi1 - o 0 2 - 4k2} = 0 (3.14b)

The familiar Tresca criterion follows from the last of the following solutions to eq(3.14b):

(ffj- a^ = 2k, ((%-ai) = 2k and {air ai) = 2k (3.14c)

in which (oi - o?,) = (oi' - a3"). There are many other isotropic functions containing both
invariants. Among these are the following homogenous stress functions for/in eq(3.12);

f=J\3-cJ'/ = k& (3.15a)
f=J'2-b(jyj'2)* = k* (3.15b)
f^V'jn-dJ'^k* (3.15c)

where c, b, and d are material constants and k is the shear yield stress. Unlike eq(3.14a), it
is now possible to select a value for the constants in eqs(3.15a-c) to fit the initial yield
behaviour of most metallic materials [21]. Of these three yield functions, the most well-
known is eq(3.15a), proposed by Drueker [22]. This is a homogenous function in stress of
the sixth degree, for which c must lie in the range - 27/8 z c s 9/4, to ensure convexity of
the yield surface. These limits are shown in Fig. 3.7 where bounding loci, corresponding to
the positive and negative limiting values e^, = 9/4 and - 27/8, ensure a closed surface [23].
It is seen that corners begin to appear at the negative limit for c^j,

Figure 3.7 also demonstrates how closely the data given for stainless steel [9] can be
represented by taking c = - 2ineq(3.15a). The corresponding locus/, represents the data
better than would be found from either Mises or Tresca. The following chapter will show,
by including J3' in a homogenous yield function, that the associated stress-plastic strain
relations become somewhat cumbersome. Consequently, the simplified relations associated
with the Mises yield function/= /2' are often preferred.

The subsequent yield locus/, shown in Fig. 3.7, is almost a rigid translation of the initial
yield locus/. Locus/applies to a plastic pre-stress P reached under a radial path having a
constant stress ratio R = a^a^. Comparing/ \afa reveals the manner in which the limits of
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Figure 3,7 Drucker function applied to initial and subsequent yielding in stainless steel

subsequent elastic proportionality have been altered by work hardening. In fact, when the
centre-co-ordinates (eeJY, <%JY) re-define the origin, eq(3.15a) may again be used as the
subsequent function/. This is the principle of kinematic hardening, to which we shall return
in Chapter 10.

(b) Non-Symmetrical Functions
Consider a linear combination of the two deviatoric invariants, i2 ' and J3\ in the following
form [21]:

iy
2K-nJi' (3.16)

in which n and p are constants. The tensile yield stress O] is employed within the
denominator of the second terrm in eq(3.16) to ensure homogeneity in stress. Functions of
this form account for so-called second order effects arising from incompressible plasticity
[24]. Among these effects are (i) non-linear plastic strain paths under radial loading [21],
(ii) the accumulation of axial strain under pure torsion [25] and (iii) a difference between the
initial tensile and compressive (00 yield stresses. Explicit fonns of eq(3.16) are found from
substituting J2' and J3' from eq(3.10b and c). For example, taking n = 1 in eq(3.16), within
a principal biaxial stress state (i.e. o% = 0), gives an initial yield function

/ = (3.17)
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The effect of (iii) above is revealed from respective substitutions <r, = at and CT, =- tre, each
with <% = 0. This gives

/ = of (1/3 + 2p 127} = flr?/3 - 2p<Jc
3/ (27a,) (3.18a)

Employing the ratio p = aja, in eq(3.18a) leads to a relationship between/? and p .

(2p/9)p% -pt + (2p/9 + i) = 0 (3.18b)

We may normalise the function/with a, from equating (3.17) and (3.18a). This gives

; - <7,/£T,)3 - (ax/a, 2p/9 (3.19)

Figure 3.8 presents yield loci, from cq(3.19), witb p = V4, %, 1,2 and 3. Equation (3.18b)
shows that these correspond to p = - 3, - 27/l4,0, 3/2 and 9/7 respectively.

Figure 3.8 Non-symmetrical yieM tod

When p = 0 (p = 1), the isotropic von Mises locus is recovered (broken line). For p=¥i
and p = 2, the loci are bounded by three straight sides, which contrasts with Tresca's six-
sided isotropic locus in Fig. 3.5. Convexity in these loci is ensured whenp lies in the range
- 3 <p< 3/2. This means that eq(3.19) is restricted to where one uniaxial yield stress is
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not more than 50% of the other. For example, taking an intermediate value p = - 27/14 at
^>=%, we find q exceeds erc by 33%. Because stress deviator invariants appear in eq(3.16),
the function preserves plastic incompressibility while accounting for any second-order
phenomena that may appear in quasi-isotropic, ductile polycrystals.

Uncertainty in yield point determination can cloud the influence that /3' has upon the
initial yield stress. It is also possible that initial anisotropy has a neater influence than J3',
in promoting deviations from the Mises and Tresca loci, shown in Figs 3.S and 3.6. This is
more likely far the non-heat treated materials in Table 3.2. It will, therefore, be appropriate
to consider later (see p. 83), a number of anisotropie yield functions.

3.3.5 Superimposed Hydrostatic Stress

We have seen that when a yield function is formulated from the stress deviator invariants it
assumes that initial yielding is unaffected by the magnitude of hydrostatic stress. This
simplifying assumption has enabled the development of various isotropic yield functions for
polycrystalline materials. The literature reveals experimental evidence, in support of this
assumption. High magnitudes of hydrostatic pressure, up to 3 kbar, when superimposed
upon torsion [26-28], tension [29,30] and compression [31], have not altered significantly
the yield stresses for mild steel, copper, aluminium and brass. To show this theoretically,
we assume a yield function of the general isotropic form/(/2', / 3 ) . With incremental
changes to /2' and J3', the change in/becomes:

dJ2' + (3//3J3') d/j' ] (3.20a)

Since/, J2' and J3' are functions of otj, the total differential is

d// da,j = [(df/dJzXdjydoj) + {8//a/3'Xa/3
</3c0] (3.20b)

Under torsion, with J2' = r2 and J3' = 0:

d / / d r= (3 / /3 J 2 ' ) x2 r

Under tension, the second invariant is

J2' = Mi(a'n
2 + a'n

2'•+ ff'S3
2)

so that: dJ^/da'n = a'n, BJ^/da'^ - o'n and dJt'/da\3 = a'n. The third invariant is

from which dJ3'f8a'n = tr'n
2, dJ3'/da}

n= a'n
l and 3/3'/3(7'S3= ff'3i

%. Substituting into
eq(3.20b) gives:

ijf/da'u = [Of/a/,1) 0'„ + (3//3JJ1) a'n2] (3.21a)
d//d«7'22 = [(3//3/2') ff'B + (3//3/3') a'n

%] (3.21b)
df/d<7'33 = [(3//3Ja') a'„ + (3//3/,1) a\i\ (3.21c)

It is apparent from eqs(3.21a-c) that a change d/ > 0 depends upon deviatoric stress and the
changes to the stress deviators. Thus, the flow stress remains unaffected by a superimposed
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mean, or hydrostatic, stress am of any intensity. This can also be shown from the total
differential, with respect to am:

= 0

where, for a hydrostatic pressure - p, imposed upon afJ:

% = 3am = [(oh ~P)

It follows that plastic flow is associated with the partial derivatives of /with respect to the
deviatoric stress. However, since ait has been removed from within the deviatorie invariant
function / , plasticity will depend directly upon the partial derivitives dfldaa. Thus,
incremental plastic strains appear within an associated flow rule:

de/ = dAdflda,j (3.22)

where dA is a scalar multiplier, which derives from the unique, equivalent stress-strain
relation for a given material (see Chapter 4). Note, however, mat a superimposed hydrostatic
pressure can increase the strain to fracture by inhibiting void formation prior to onset of
fracture [32]. In the absence of a superimposed pressure, the mean component of the applied
stress am = % (tru + (r12 + £%3) is of comparatively moderate intensity and lies within the
region where yield stress is unaffected by om. Few experimental data are availabe that show
an influence of mean stress upon yielding of anisotropic polycrystals. Consequently, given
an appropriate yield function, the associated flow rule should ensure that mean stress am

does not influence anisotropic yielding and subsequent plastic flow remains incompressible.
Under certain conditions, an allowance for the influence of a superimposed hydrostatic

pressure may be required. For example, the upper shear yield stress k = 200 MPa for mild steel
was reduced by 5-6% under/? = 3 kbar [26]. For pre-strained brass, with k lying in the range
110-190 MPa, variations to k between - 6% and 3% were observed when superimposing
pressure between 1 and 4 kbar [30], To account for these, Hu [27] separated the influence of
am upon yielding by including/, = oa in the yield function/(/,, Jj, J3'). Functions of this kind
are also required where the magnitude of am is critical to the ftiiure in brittle, non-metals and
to plastic flow in porous compacts. The following section develops one such failure criterion
for cast iron.

3.3.4 Influence of the First Invariant

Equation (3.16) does not allow the mean, or hydrostatic, stress to promote a difference
between cr(-and ac. Here, a yield, or fracture, function should contain the mean stress.
Conveniently, aa is proportional to the first invariant of absolute stress: J t = <7a = 3 am. Thus,
for brittle materials, which are influenced by hydrostatic stress, Jx is combined with J2' to
formulate the function. The latter will define a fracture surface in the absence of plasticity.
One notable example is cast iron, for which a fracture surface follows from a simple linear
sumof/j'and/j*;

Ji + eeJ1 = c (3.23a)
Substituting from eqs(3.10a,b),

i) = c (3.23b)

Constant c is found from substituting the uniaxial condition (at, 0,0) in eq(3.23b):



 

1/6 ( 2 ^ 2) + flr at = c

Since ay = a, and ax = - oc are the roots of eq(3.24a), it follows that
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(3.24a)

al
1+ol (ac - ff,) - OF, a, = 0?+ 3m ot - 3 c (3.24b)

Coefficients ineq(3.24b)giveff=%{0r.- at)sndc = % acat. Substituting into eq(3.23b),

[(0i- <hf+{ai- ^ ) 2 + (0 i - ^ ) 2 ] + 2or,{ffc/ff,- !)(<?,+ t%+^) = 2^ff, (3,25a)

Putting p = Of,/o", in eq(3,2Sa) leads to the Stassi fracture criterion [33]:

Setting 0} = 0 in eq(3.25b), provides a normalised, biaxM criterion used to predict the Stassi
fracture loci shown in Fig. 3.9.

aja,

Key:

Figure 33 Brittle fracture criteria applied to cast iron

-Stassi; Critoumb-Mota; Ranldnc; _____ -Modified-Mohr
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That is;
ff, fa, f - (ff, la,){(h<at) + ( + (P - v, + o ^ ) = P (3.25c)

for which p = &ci&t= 2,2.5 and 3 when principal stresses are normalised with at. Stassi
did not employ invariants for his derivation of eq{3.25b) but it is clear mat hydrostatic stress
accounts for the difference between tensile and compressive strengths in this material. In
Fig. 3.9, a comparison is made between various strength criteria, including eq{3.25c), and
experimental data for grey cast iron. A detailed description of the alternative predictions;
RanMne, Coloumb, Mohr etc, has been given elsewhere [1]. It appears, from Fig. 3.9, that
experiment is unable to discriminate between the various predictions since test data falls
mainly within quadrants 1 and 4. This is largely due to the difficulty in acquiring reliable
data under biaxial compression. Under biaxial tension, the low-stress combinations at failure
are not biased to any one theory. However, few data lying within quadrant 3 in Fig. 3.9,
suggest that Stassi's criterion will predict enhanced compressive strengths most reliably by
using the appropriate p value.

When the derivation is extended to include shear stress, Jt remains unchanged but
additional terms in an, % and £% appear within J2':

(3.26a)

(3.26b)

(3.26c)

+ 2<7, {p- l)(0h+ a%i+ % ) = 2/9 o}

Equation (3.26a) defines a locus in a reduced space alx, an, as

oil2 + 3<%2+ a, (p - l)an=p a,1

for which the normalised form is

(oh/ff,)2 + 3{oala,}% + ip- l)(au/at) = p

Figure 3.10 illustrates the fracture loci from eq(3.26c) for p = 1.25,2,2.5 and 3.

p =

Figure 3.10 Failure loci in %, an space (Key: • cast iron, • mmc)
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A few of this author's previously unpublished data for cast iron (5% ferrite with 6-12 mm
graphite flakes) and a metal matrix composite (17% volume of 3jtt, Si-C particles in a 2124
Cu-Al metal matrix) are shown in Fig. 3.10. Dissimilar, uniaxial strengths in each material
and the combined stress fracture values are predictable within the range of p shown.

We see that the major advantage of an invariant function lies in its reduction to any
given stress state. When ffe = a,, i.e. p = 1, the von Mises function is recovered and
hydrostatic stress plays no part in failure.

3.4 Anisotropic Yielding in Polycrystalls

In metallic materials, plastic-anisotropy is associated with a directional variation in yield
stress. None of the foregoing isotropic functions can display similar behaviour. Also, with the
exception of eq(3.16), they show yield stresses of equal magnitude irrespective of the sense
of stress. For example, from the symmetry of Figs 3.5 - 3.7, the magnitude of the uniaxial
tensile and compressive yield stresses are equal and the positive and negative shear yield
stresses are also equal. This assumption is reasonably consistent with the observed, initial
yield behaviour of annealed, or stress-relieved, metals and alloys. In the absence of heat
treatment, the orthotropic form of initial anisotropy in polycrystals is most common, arising
from the processing method, e.g. rolling, drawing and extrusion. An orthotropic material has
different initial yield stresses for axes lying parallel and normal to the direction in which it
has been worked. Cold-rolled sheet and extruded bar will often continue to display distinctly
different tensile stress-strain behaviour along these orthotropic axes, well into the plastic
range. This is apparent from a divergence in these stress-strain curves when overlaid.

3.4.1 Initial Yielding

In his pivotal paper of 1948, Hill [34] generalised the von Mises isotropic yield criterion to
account for anisotropic yielding in an orthotropic material. Hill's yield function describes
a yield surface whose stress axes align with the three principal axes of orthotropy in the
material. To establish the yield condition an applied sixess c^ must, therefore, be resolved
along the orthotropie axes. Writing the latter as x, y and z, the yield function is written as

where F, G, H, L, M and N are six coefficients that characterise an orthotropic symmetry in
the yield stresses. In fact, eq(3.27) is a restricted form of a general quadratic yield function
given later by Edelman and Drucker [35];

f(a \ - ! A r a a n ?8t

The fourth rank tensor C^ contains 81 components, similar to that used for defining a strain
energy function for anisotropic elasticity [36]. The number of independent components
reduces to 21 with imposed symmetry conditions: (i) ati = oitm the Cauchy stress tensor,
giving Cp, = CjU = Cm and (ii) coincidence between the axes of stress and orthotropy, which
gives Cm = Cm. With these reduced coefficients, the function can account for an influence
of hydrostatic stress upon anisotropic yielding. When the condition of incompressibility is
imposed upon eq(3.28), the number of independent coefficients is further reduced to 15.
The corresponding relation is found from substituting eq(3.28) into the flow rule, eq(3.22).
The incremental plastic strains become
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Se/ = SA df(o$dcru = SA x
Multiplying by <S& gives

the left-hand side is 6e£ = 0» when it follows that Cm = 0. This condition applies to normal
stress components, for which k = I, so that

Alternatively, the 15 independent componente will appear directly from the expansion of a

Mises generalised quadratic potential, written in stress deviator form:

/(<%') = ¥t Hm, at; ok,' = 1 (3.29)

In general, the elastic-plastic deformation of an anisotropic solid is characterised by two,
fourth-order tensors with 21 elastic components [36] and 15 plastic components. These
tensors will ensure elastic compressibility and plastic incompressibility, in common with
metals. With further reductions to the number of independent components Hvtt, eq(3.29)
reveals particular material symmetries. Among these are: orthotrapy (six coefficients),
transverse isotropy (3 coefficients) and a cubic form of anisotropy characterised by 2
coefficients [37]. The first of these corresponds to Hill's eq(3.27). The remaining two
symmetries follow from eq(3.27) by putting: {i)G = H with M = N and (ii) F = G = H with
L = M=N respectively. Wider application of the general forms of eqs(3.28) and (3.29) have
been demonstrated in the absence of such symmetry [38, 39]. Further applications and
developments to Hill's quadratic function have been made under particular conditions of
plane stress and plane strain [40-42]. Alternative yield criteria [43-50] for anisotropic
metals are summarised in Table 3.3 for various stress states (general, principal and plane).

Table 3.3 Yield criteria for various initially anisotropic conditions in metals

Reference Anisotropic Yield Function

M [43] / = Cu ffn*+ Cn On °a + c u au an + c a @n +CnfTn an + Cm Gn = 1
(ii) [44] / = :

(iii) [45] / = / 21 (Ji + km Oq £%') - CJ'/ = k6

(iv) [46] /=/((% - (hT + g(oi - Oj)™ + h(cr1- cQm

(v) [47] / = 30^ - 6ff/ a, - 6oi«r/ + 4ff3 + (4ax •

(vi) [48] / = E A p ^ i c r / ^ . for »+J + 2 i s 4
Ijk

(vii) [49] / = ai(&z- Oy)2 + % { o x - <^f + a3(<ry- trt)
2 + atry* + asT^ + a6TJ'

(viii) [50] / = A0i+Ba£+ Ca£ - Da^t^- Ec^ ff3 - Foi a3 + Lat + Mo% + N(% =
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In the plane, quadratic stress function (i) in Table 3.3, the cross-product terms in o r
introduce two additional constants (Hill has a total of four). This form was used to predict
the initial yield stresses in anisotropic sheet metal. The function (ii) is a normalised form
of Drueker's eq(3.11a) for a principal, biaxial stress state. The stresses, ax and % are
divided by their respective yield stresses, aly and aly, which differ between the 1- and 2-
directions. In eq(iii), Drucker's isotropic function is modified with an orthotropic quadratic
term. This form accounted for deviations from a Mises isotropic condition due to the
combined influences of / j ' and initial anisotropy. A non-quadratic function (iv) was
proposed by Hill [46] for principal stresses aligned with a material's orthotropic axes. The
constants am, a, b, c, f, g and h are all positive. It can be seen how this function has
modified the two isotropic, deviatoric invariants:

(a, - a,)2]

- ax~ a,)

It is also apparent from the first equation how Hill's orthotropic yield function (3.21)
modifies J2'. Using a non-integer exponent for eq(iv) in the range: \ <m&2t extends its
application beyond the quadratic form. In particular, by taking a = b = 0 and/= g = 0, this
equation has been shown to predict the plastic strain ratios arising from applying uniaxial
and equi-biaxial tension to rolled, polyerystalline sheets with planar-isotropy [51, 52].
Interestingly, in 1935, Bailey [53] predicted multiaxial, secondary creep rates observed in
steam piping at 850°C. The anisotroic flow potential, which was given later by Davis [54],
becomes similar to eq(iv) when a, b and c are set to zero. Note, that it is permissible to
compare the creep potential to a yield function in this way when creep rates are time-
dependent plastic strains. However, Hill [46] has shown that the terms containing the
constants / , g, h and m, when taken alone, cannot admit all forms of anisotropy. For
example, the four or more ears, which have appeared from cupping rolled sheet metal, are
unpredictable. The quadratic function, eq(3.27), can provide for two and, at most, four ears
in certain cases. An account of more ears requires a higher order polynomial yield function.
Bourne and Hill [47] showed that with five anisotropy coefficients, their cubic stress
function (v), matched the six ears observed in brass. A quartic function (vi), proposed by
Gotoh [48], represents up to a maximum of eight ears observed in soft aluminium and its
alloy. The explicit, plane stress, form of eq(vi) is

/ = A1a*+Aa ffx
3 0y + A% a? a? + A4 asa7

% + As ay* + (A6 a* + A1 axay + As aa?)
where eight coefficients A2.... A9, together with At = 1, provide a description of eight ears.
A further term: A0(alt+ ay f, is added where an account of compressibility is required.
These coefficients are found from the yield stresses under uniaxial tension and either
through-thickness plane strain compression, or in-plane equi-biaxial tension. Further
consideration of the yield criteria employed for forming rolled sheet metals is given in
Chapter 11 (see Section 11.8, p. 365).

3.4.2 The Bauschinger Effect

The quadratic yield functions, in eqs(3.27) and (3.28), assume that the tensile and
compressive yield stresses are equal for each principal direction in the material. This also
applies to all other homogenous stress functions in Table 3.3. It should be noted that Hill
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had originally intended his 1948 function for backward-extrapolated yield points, which do
show similar stresses in tension and compression. The unequal tensile and compressive
yield stresses which appear within non-homogenous yield functions are consistent with other
yield point definitions. We shall use the term Bauschinger effect here to denote this form
of asymmetry in the initial yield surface, though the effect is more often associated with a
subsequent yield surface (as with/in Fig. 3.7). A simple account of different positive and
negative yield stress values appears with linear stress terms in the yield function. Two such
functions are given in Table 3.3: eq(vii) in plane principal space and eq(viii) in general stress
space. Stassy-D'Alia [49] examined both forms after placing restrictions on certain
constants. We can arrive at a more general formulation of linear plus quadratic terms when
yielding remains independent of a superimposed hydrostatic stress. Equation (3.29) is
modified to

f(at; } = Htl fli/ + ¥Mlikl as/ akl> = 1 (3.30)

Figure 3.11 Yield loci in combined % , tra space
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When the 1-and 2-axes of orthotropy coincide with the axes of a plane stress state, <%, an

and au, eq(3.30) expands into

/ = L, oji+L, % +1^ au + Qj an
2 + Q2 e^2 + Q% % % + Q4 %

a + Qs oj, u Q6 % %
(3.31a)

The coefficients L and Q are derived from ffg and Hm using plastic incompressibility [55].
In a reduced stress space, an and % , eq(3.3Q) becomes

= Lx Q, an au = (3.31b)

Figures 3.1 la-d show four cases of anisotropy provided by eq(3.3 lb). The coefficients L
and Q provide equal and unequal yield stress intercepts as shown. When tensile and
compressive yield stresses differ, they become the roots to Qt oty +Llau- 1 = 0, in Figs
3.1 la, c and d. When forward and reversed shear yield stresses differ, they become the roots
to Q, ax£ + Lj«% - 1 = 0, in Fig. 3.1 la, b and d. The product term Qs an au, in eq(3.3 lb),
provides an inclination to the yield locus, as shown in Figs 3.1 la, b and c. A simple check
for the inclination is whether axial strain is produced from torsion. This requires an
examination of the direction of the outward normal at a point of intersection between the
yield locus and the the an - axis. An inclined normal has a component of axial strain aligned
with the crn - axis, in addition to a shear strain component, aligned with the aa - axis. This
effect is due to anisotropy and is not the second-order effect, previously associated with /3'.
Where no axial strain is observed, Q5 is set to zero, resulting in the locus of Fig. 3.1 Id.

When shear stress is absent along a material's orthotropic directions 1 and 2, eq(3.31a)
shows that the principal, biaxial stresses ax and o2, appear in dimensionless form:

/ = b) + fix Qt{Vzl<*nf+ u) = 1 (3.31c)

in which irlt is the tensile yield stress in the 1 - direction. Applications of eq(3.31c) have
shown good agreement with initial yield loci for anisotropic sheets of Ti-Al alloy and a
zircaloy [55]. An example of the former material [56] is shown in Fig. 3.12.
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Figure 3.12 Initial yield locus for anisotropic Ti-Al alloy
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It is apparent that, within this elliptical function, the five yield points may be fitted exactly
with an equal number of coefficients in L and Q. Comparisons of this kind are best made
at the limit of proportionality since an equivalent, anisotropic, offset strain cannot be
defined. Moreover, if yield were to be so defined, anisotropy, initially present in the yield
locus, would diminish with increasing offset strain.

To recover an initial Mises condition from eq(3.3O), we identify H9 and Hm with the
corresponding isotropie tensors:

Hu=6tJ (3.32)

and, for the general fourth-order isotropie tensor [57]:

Hm = lm = HA + M44* + v 4A (3.33a)

Substituting eqs(3.32) and (3.33a) into eq(3.30) gives

= 05/ + ¥1 (Aaa' % ' + (M^' Oy + v ffs' Ojl)

= tt ( p <^'<V + v <%'«%')

where o~ = utt' = 0. Putting p.= v =¥1 leads to the von Mises form

/(<%') = Vk oj/ «%'

It follows that, by setting A — 0 and /* = v = Vi in eq(3.33a), a reduced form of fourth order,
isotropie tensor is suited to stress deviators:

7^ = ̂ (44,+44*) (333b)

since this will lead directly to the von Mises condition. Note that eq(3.30) describes an
ellipsoidal yield surface and will not account for any distortion that may initially be present.

3.4.3 Distorted Yield Loci

The experiments described in Tables 3.3 and 3.4 have often revealed distorted yield loci.
Distortion, which appears to be a dominant feature in certain alloys, can be modelled when
cubic stress terms appear in the yield function. Consider, for example, an anisotropic yield
function formed from the sum of quadratic and cubic stress deviator terms [58]:

f(av') = W Hm^' au- + % Hvmm oj %' aj = 1 (3.34)

Restrictions upon the number of sixth-order tensor components HijUmn follow from
symmetry in the stress tensor 0;/ = e '̂, av' = a£ and a^ = #„,'. This gives Hijklim = HJtUmn
= ^p™ = Wpro,. With the axes of stress coincident with material orthotaspy axes, we further
have Hmim=HMmHij=Hmi^il=HipmM= BmMV=HWim. Moreover, a condition of incompressibility
is implied in using stress deviators in eq(3.34) and this reduces the number of coefficients
to 35. Hill's modified orthotropic function, eq(iv) in Table 3.3, is one form of eq(3.34),
where m = 2 in the first line of eq(iv) and m = 3 in the second line. The reduction in
eq(3.34) to a direct stress combined with a shear stress becomes:
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T6 ernaa
2 + T7 an

2aa = I (3.35a)

Figures 3.11e-h apply to eq(3.35a). These contrast with the quadratic predictions (Kg-
3.1 la-d) for four similar cases of anisotropy described previously. Clearly distortion is now
a consisitent feature within each case. Equation (3.34) can be written in a dimensionless
form when principal, biaxial stress directions are aligned with orthotropic axes 1 and 2:

(3.35b)

The coefficients Q and Tin eq(3.35a,b) are derived from H^ and Hi]Vmn in [48]. Equations
(3.30) and (3.35b) are applied to an initial yield locus for extruded magnesium in Fig. 3.13.

Figure 3.13 Yield locus for an orthotropie magnesium extrusion

The 5 constants, L and Q in eq(3.30), are determined directly from the five experimental
yield points shown. The determination of seven constants in eq(3.35b) requires an
additional yield point (interpolated) and a strain vector direction as indicated. It is seen that
both predictions represent the pronounced Bauschinger effect along each axis of orthotropy.
Both quadratic and cubic yield functions appear to describe the measured initial yield points
equally well. However, eq(3.35b) provides the better account of distortion appearing in a
locus connecting these yield points. Such distortion is linked to the direction of the plastic
strain increment vector through the normality rule, i.e. this vector is aligned with the
direction of the exterior normal to the yield locus. It appears from Fig. 3.13 that additional
yield points would be required to test an initial distortion prediction more precisely. In
general, the literature reveals far stronger evidence for a strain-induced form of distortion
within a subsequent yield locus than there is for distortion within the initial yield surface.

When it is required to recover a condition of isotropy from eq(3.34), HiM is defined
from eq(3.33b) and tf9ifcw appears as a general sixth order isotropic tensor [23]:
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4 4 4 + 4A4, + 4»4*4
+ 4*4*4 + 44,4* + 444* + 4 , 4 4 + 4™44, + 44*4, + 444 . ) C3-36)

Substituting from eq(3.36), reduces the second term in eq(3.34) to the third deviatorie
invariant: J3' = %Oj' o£ OjJ, when a = b = 0 and c = %. It fallows that the first two terms in
eq(3.36) are unnecessary for the recovery of this isotropic stress deviator.

3.5 Choice of Yield Function

It has been seen that the classical, von Mises and Tresca themes of yielding for metals may
each be formulated as a function of the stress deviator invariants. Such macroscopic
predictions to the initial yield surface provide for all possible stress combinations. However,
these do not offer information about the microstructural mechanisms of yielding, discussed
in Chapter 8, In consideration of subsequent yielding, where plastic strain paths, calculated
from eF = eT - (ME (see Fig. 1.1), remain linear, this indicates that a simple rale of isotropic
hardening may be applied for loading within the plastic range. This employs the concept of
an expanding yield surface which retains its initial shape and orientation, to which we shall
return in Chapter 9 and 10.

It has been seen that the departure from the isotropic function/^1) may either be due
to the influence of J3' (for an isotropic material), or to the presence of initial anisotropy.
Clearly, when selecting an appropriate yield function, checks are necessary to establish
precisely the initial condition of the material. Anisotropic yielding and flow behaviour may
be identified with distinct differences in the stress-sixain curves obtained from testpieces
machinal from different directions in the material. For rolled sheets, the off-axis tensile test
will reveal directional differences between yield stresses when anisotropy is present, but the
more usual measure of anisotropy for sheet metals is the r value. This is the ratio between
the plastic components of an incremental width and thickness strain in a tension test.
Anisotropy is revealed when r*\. The formability of sheet metal is enhanced when r > 1.
Bramley and Mellor [59] showed, from eq(3.27), how it was possible to describe the effects
of initial anisotropy in transversely isotropic sheets using the constant gradients of linear
plastic strain paths (see Chapter 11).

Alternatively, when isotropy is assumed in a tension test the material may be taken to
conform to the general isotropic function/(/j', J3% Substituting this for/into eq(3.22) gives
the plastic strain increment tensor;

/=<u [ (df/d^wwd^ + of/ajj-xa/j'/a**)] (3.37)

If Ci is the non-zero tensile stress, it follows from eqs(3.10b and c) that BJ^/Sai = 2c,/3,
dj^doi = - oj/3, 3/3'/3oi = 2o|2/9 and a/3'/5c% = - a?B. Then, from eq(3.37), the axial
and lateral plastic strain increments become

d£ t
p = d i [C3//aij'X2ffi/3) + (9//aj3')(2oi2/ 9)] (3.38a)

dsf = d i [(df/8Jt')(- OJ/3) + {9//5/j'){- Oi2/ 9)] (3.38b)

Dividing eqs(3.38a and b) gives the constant ratio d ^ / d s / —~Vt, irrespective of the yield
function/(/2', J3'). That is, the gradient of the lateral versus axial plastic strain plot remains
linear, with a gradient of - J4. Figures 3.14a-e compares this isotropic prediction with
experimental plastic strain paths for aluminium, steel, copper and brass.
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F^ure 3.14 Lateral versus axial plastic strain pattis under tension

The agreement found between the gradient of each plot and the theoretical gradients value
of - % confirms that testpieces machined longitudinally from extruded bars become almost
isotropic following heat treatment. In contrast, the interstage anneals employed for rolling
sheet metal may not leave the material in an isotropic condition. It will be seen later that it
is desirable to retain anisotropy arising from rolling when it enhances formability.
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Exercises

3.1 Show that the constants c» b and d in eqs(3.15a,b and c) are defined from the relationship between
F and* as follows: (i) F = i ( l / 2 7 - 4C/95)1*, (ii) F=9*/(27 - 4b)m and (iii) F=ik/( l /3 3 a - 2<#27)w.

3.2 Normalise the Stassi fracture criterion (3.2Sb) with the compressive fracture stress ac and plot the
family of loci in OJ, a^ space for p = oja, = 2,3 and » .

3 3 Construct the family of yield loci in a,v space from the unsymmetrical yield function:

within the range 1.5 <. p s - 3.

34 Construct a family of yield loci for the unsymmetrical yield function (3.16) for n = 2. Determine
the range of j» values that will ensure a closed yield surface.

3.5 Establish the right-hand sides of the expressions (iii) and (iv) given in Table 3.3 in terms of the
known yield stress o^ along the principal, 1- axis, of orthotropy.

3.6 Compare the yield criteria (i) - (viii), listed in Table 3.3, when they are reduced to a principal
biaxial stress space, i.e. for «, = 0 and r 9 = rM = TM = 0, as appropriate,

3.7 Derive from eq(3,22) the principal, plastic constitutive relations corresponding to each of the
isotropic yield functions given in eqs(3.15a -c).

3.8 The coefficients Lh L^, Qt, Q2 and ft in eq(3.31c) can account for four cases in which the tensile
and compie&sive yield stresses in the 1 and 2 directions may be the same or different under a principal
biaxial stress state a{, 05. Show each case with a plot similar to Fig. 3.11a-d.

3.9 Show how the coefficients Tlt T2, T,, r4, Qu fi2 and Q5 in eq(3.35b) can account for several
conditions of anisotropy under a principal biaxial stress stale OJ, c|. Show each ease with a plot similar
to Fig, 3.11e-h.

3.10 Reduce eq(3.27) to criteria of yielding under a principal, biaxial stress state (OJ, cQ for material:
(i) orfhotropy and (ii) transverse isotropy, where yield stresses are the same in the 2- and 3-directions.

3.11 Show tot Hill's yield criterion (3.27) reduces to a plane stress form:

when plane stresses q,, ĉ  and TV are applied within the plane of a thin sheet and aligned with the
orthotropic axes x and y (z is through the thickness). Use this equation to show tot the variation in
yield stress F with orientation #to x within the plane of the sheet, is given by:
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Y{0) =

. \ F m i 2 0 + Gco$*d + H + -(2N - F - 6 - 4H)sin220
^ 4

3.12 If, in exercise 3.11, the yield stresses in the three orthogonal directions x, y and z are denoted by
X, Y and Z respectively and P is the shear yield stress in the x-y plane of the sheet, show that the
coefficients F, G, H and N are given by:

X2

JV =
2{X2

3.13 Using the orthotropic yield function (3.27), examine how you would predict the onset of yielding
in an orthotropie sheet metal when a direct stress a is combined with a shear stress r in each of the
foEowing cases: (i) when both a and r are aligned with the in-plane orthotropic axes x and y and (ii)
when they are inclined at 0 to x and y, as shown in Fig. 3.15. Note, the presence of complementary
shear in each case.

I Answer (i):
2N

H + G
v = X 2 where X is the yield stress in the x-direction]

Figure 3.15

3.14 Using Hill's orthotropic function (3.27), examine how you would predict yielding in an
orthotropic sheet under in-plane biaxial stresses oj and t% in each of the following cases: (i) when oj
and Oj, are aligned with the in-plane orthotropic directions x and y respectively and (ii) when oj and
t% are inclined at 6 to * and y, as shown in Fig. 3.16. Note, that axis z is through the thickness.

[Answer (i> C2 - a a + <r2 = X i where X is the yield stress in the jc-direction I
K H + G * 7 H + G f

Figure 3.16



 

CHAPTER 4

NON-HARDENING PLASTICITY

4.1 Introduction

Non-hardening theories of plasticity are very useful for providing solutions to practical
problems with static indeterminancy, i.e, where satisfying force equilibrium alone is
insufficient, A solution is reached from combinining force equilibrium with the yield
condition and sfrain compatibility. Here it is convenient to distinguish between uniform and
non-uniform stress states. The two classical theories available are normally referred to as
Hencky-Dyushin and Prandtl-Reuss. Though formulated differently, each theory can provide
the total strain arising from realistic, non-uniform, multiaxial, stress states. The question
arises as to which theory is the more reliable? To answer this, a number of comparisons are
made between their predictions to the deformation in solid and hollow bars subjected to
combinations of axial load and torque, for which experimental results are available.

4.2 Classical Theories of Plasticity

Two classical theories of plasticity are the total strain (or deformation) theory of Hencky [1],
Illyushin [2] (also Nadai [3]) and the incremental (or flow) theory of Prandtl-Reuss [4,5].
It is instructive to examine the ease with which they can solve for the plasticity of a non-
hardening material subjected to both uniform and non-uniform, multiaxial, stress states. It
will be seen that, although each theory is constructed from different assumptions, they do
provide comparable solutions to the load-deformation behaviour and the internal stress
distributions under simple loading paths. Firstly, an outline of each theory is given.

4,2.1 Hencky-Ilyushin

In the formulation of the deformation theory of non-hardening plasticity, total strains are
used. The strains that arise from the application of normal stresses, within the plastic range,
are the sum of deviatorie and volumetric strain components. The latter is associated with
the mean normal stress. Shear deformation occurs independently under the application of
shear stress. In this way the total strain tensor must appear, in the respective tensor subscript
and matrix notations, as

3 /=$05 / + ( 4 % ) / ( 9 i p or E = $ T ' + <I t rT) / (9K) (4.1a,b)

where the scalar ^ > 0 during loading and (p=Q with unloading. The use of the Kronecker
delta SQ in eq(4.1a) ensures that the final volumetric strain term does not contribute to the
components of shear strain, since 3V = 0 for i * j . The absolute stress appears with the
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substitution of the deviatoric (or reduced) stress expression etq = av - 4j%/3, into eq(4,la):

ej =<f>0v+ [(1 - 2v)lE- #34,%/3 (4.2a)
or

E = «*T+[l/(3]£)~0](ItrT)/3 (4.2b)

where E = 3K(1~ 2\fy connects the three elastic constants. Equation (4.2a) indicates a
considerable simplification from assuming v= ¥i, i.e. an elastically incompressible material.
This provides a good approximation to the total strain tensor:

< = # « % - $ 4 , . % / 3 (4.2b)

This total strain theory has been used mostly for the determination of limit loads in structures
of elastically-perfectly plastic material [6,7]. Such loading involves combinations of tension,
torsion, bending, pressure and shear force. The theory provides for the resulting stress and
strain distributions of structures in both the elastic-plastic and fully-plastic conditions [6].
Equations (4.2a,b) are not linked to a particular yield function and therefore may be
combined with any suitable function, including those of Tresca and von Mises. The plastic
strain supplied by eq(4.2b) is probably the earliest example of a non-associated flow rule.

4.2.2 Prandtl-Reuss

In the derivation of the flow theory of Prandtl-Reuss, the total incremental strain tensor dej
is the sum of elastic and plastic incremental strain tensors. This gives

(1 - 2 v) 8., dff,, dff.,'
d< = de/ + dev" = di as' + —2 + — ' l (4,3a)

[ 3E 2G J

In matrix notation eq(4.3a) becomes

^ i i _ I _ M itr(dT)+ — dT' (4.3b)

Components of the plastic strain tensor dqf are identified with the flow rule of Levy-Mises.
That is , / in eq(3.22) is associated with the von Mises criterion of yielding/= WzOfj/o-/, in
which the stress deviator ô 1, ensures plastic incompressibility. The incremental, recoverable,
elastic strain de^e appears within [ ] in eq(4.3a). This tensor component form of Hooke's
law reveals that elastic strain is the sum of hydrostatic and deviatoric stress contributions to
elasticity. There is no contribution from the former under shear stress, since <fff = 0. Under
normal stress (6^ = 1) this component will be small without a superimposed pressure. Here,
an assumption of elastic incompressibility (v = W} will reduce eq(4.3a) to an acceptable
approximation:

d^/ = <U os,1 + dav' / (2G) (4.3c)

In eqs(4.3a,c), the scalar multiplier d i will characterise the changing nature of the plastic
hardening behaviour for the material. This is normally defined from uniaxial tension where
the equivalent stress and the equivalent, incremental plastic strain are connected from within
the first term in eq(4.3c)".

deP = d i f O - ~O\ =* d i =
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in which O = 0{ e ). In the case of a non-hardening, perfectly-plastic material O = F =
constant Note, that it is then possible to integrate eq(4.3a) to give the components of a total

strain tensor as

0
- p

2F C"

' -p

(1

0

- 2 v ) .
3£ '

l - 2 v )

' ** 2G
(4.3d)

The integration assumes that the components of the stress deviate tensor a$ in eq(4.3d)
increase: (i) proportionately, or (ii) in a stepwise manner. This allows stress components to
be separated within the integral. The following example will illustrate how condition (ii)
applies to a combination of a single shear stress and a single direct stress.

4.2.3 Theoretical Comparison Between Hencky and Prandtl-Reuss

We can further examine the differences in formulation between the compressible forms of
the deformation and flow theories from making a theoretical comparison between eqs(4,la)
and (4.3a), Take, for example, a stress system composed of combined tension an and one
shear stress component aa. The Hencky eq(4.1a) gives the total direct and shear strains as

= % [ 2 0 / 3 + 1/(910] (4.4a)

(4.4b)

where 6n = 1 and 4a = 0. From the Prandtl-Reuss eq(4.3d), we have

(4.4c)

.„• - / 2F 13
- 2 v ) , J _

- 2v) + J _
3£ 3G

3G
d a ,

(4.5a)

=•22 = f
-p

2 F

B

2F

E~ -P "II f

f ds f
a +

o Z J o L
0

(1 - 2
3E

( l - 2 v )

1
6G

1
6G

(4.5b)
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{ 2Y J 3£ ^ { 2G

1

2F 2G

(4.5c)

It will be seen that the total strain predictions are different except for the case where the
stresses increase proportionately, i.e. &nlon = constant. The corresponding total strain ratio
is, from the Hencky eqs(4.4a and c),

) au (4.6a)

and, from the Prandtl-Reuss eqs(4.5a and c), this ratio becomes

Y12 [ 3 F / F + 1/G

e'x \ sp1Y + 1/(91) + 1/(3G) (4.6b)

The total strain ratios in eqs(4.6a and b) are approximately equal when we identify (ft =
(3 eF)/(2Y) and take the reciprocals of the elastic constants to be negligibly small. The ratios
in eqs(4.6a,b) are exactly equal when the deviatoric stress contribution to plasticity is
separated from within each ratio. That is, bom give YaP^enF = 3(°k/<'ii)- IQ general, the
plastic response from the deformation and flow theories of plasticity are identical under
proportional (radial) loading conditions.

Note that, in contrast to the Prandtl-Reuss flow theory, the Hencky eq(4.2a) makes no
specific identity with the elastic and plastic components of the total strain. Nor does Hencky
depend upon the strain path as it rests solely upon the final strain condition. Consequently,
Hencky's load limit predictions may be in error for certain non-proportional stress paths in
which the history of deformation is influential. In contrast, the flow theory traces the path
through an incremental strain summation. We next examine this area of uncertainty from
making further comparisons between theory and experiment Also, a consideration is given
to the influence of the elastic component of strain upon compressibility and total strain.

4,3 Application of Classical Theory to Uniform Stress States

Near-uniform stress states are achieved from the application of various loadings to thin-
walled tubes and plates. Experiments that combine tension, torsion and internal pressure in
thin-walled tubes have often been used to provide data for the appraisal of a plasticity
theory. The nature of hardening assumed should reflect that in a given material. Here, we
examine variations in stress with strain from two theories of non-hardening plasticity without
a simplifying assumption of incompressible elasticity. A comparison is made with the results
from four different experiments in which one component of total strain is held constant.
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4.3.1 Combined Tension-Torsion with Constant Shear Strain

Hohensemer [8] conducted the original experiment in which a thin-walled tube of non-
hardening, low-carbon steel was extended longitudinally while the shear strain ya at yield
was held constant. This gave

ya = k/G = 2Y(l+v)/ (V3E) = constant (4.7)

where k = F/V3 and E=2G(l + v). It is required to determine the variations in the ensuing
axial a and shear v stresses with total axial strain e\ according to the two theories of
plasticity. The von Mses yield criterion (3.8) is used, in which the shear stress through the
wall of the tube is taken to be uniform, and the influence of radial stress and hoop stress are
small enough to be neglected. Stress subscripts will be omitted for simplicity when we
identify & = an and r= trlt. Equation (3,8) is written as

rl = Yz =*• SZ + 3T2 = 1 (4Ja,b)
for S=a/Y and T=tfY.

(a) Hencky
The deformation theory (4.2a) provides the following total axial and shear strain components
under the stress combination a, t:

f ()
3 3E

y'=2#r (4.9b)

Putting y' ~ 7o~ constant in eq(4.9b) defines the scalar multiplier for the ensuing
deformation as (j» = yo/(2r). Substituting into eq(4.9a) and expressing r, from within
eq(4.8a), leads to

S' = a7° + a-2v)v (4.10a)

a2)

Substituting from eq(4.7), gives the normalised form of eq(4.10a);

e'E 2(1 + v) (4.10b)

which is to be used with the normalised yield criterion, eq(4.8b).

(b) Prandtl-Rems
The application of the flow theory (4.3a) supplies total incremental strains, each as the sum
of elastic and plastic components:

(4.11a)
(4.11b)
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Now, putting df* = Q in eq(4. lib) gives d i = - drJ(2tG). Substituting this into eq{4.1 la),
we find

de* = da
3TG E

where from eq(4.8a), d r = - adal{3f). Substituting this into eq(4.12a) gives

is' = azdcr dff a2dtr
3 G ( F 2

(4.12a)

(4.12b)

Integrating eq(4.12b) by partial fractions

3 G j [ Y+a F - a
o

6G [Y - a
a a

+
(4.12c)

Taken with E = 2G (1 + v), eq(4.12e) reduces to the normalised form

e'E = ( l - 2 v ) S + (1 + v) . f 1 + S
Y 3 + 3

(4.12d)

Figure 4,la-e compares the predictions supplied by eqs(4.10b) and (4.12d) with
Hohensemer's experimental results.

1,0

0.5

-

(a)

r

1.0

, 0.5

$ ,T

1.0

(b)

S asymptote

0.5 1.0 0
S= off

1 0 1

Figure 4.1 Shear yield strain constrained under increasing tension

Both theories appear to be in reasonable agreement with observed experimental trends.
Figure 4.1c shows that the total axial strain increases with S initially at a gradient of E,
Thereafter, e'EfY becomes infinite as S approaches unity asymptotically. Also, T= tlY
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approaches zero simultaneously as y' becomes a permanent strain. The feet that Hencky
appears to be more representative of this data led early workers [9,10] to favour a total strain
formulation. Now, however, the generally held view is that the Prandtl-Reuss theory is more
reliable in the presence of stress gradients and non-radial loading. The deviation found between
the flow theory and this experiment is likely to be due to the occurrence of some hardening and
a disparity with the von Mises yield criterion for the steel in question. The Heneky theory
retains more than an historical interest since as we see here and later, for other uniform stress
states, it is easier to apply and provides perfectly acceptable predictions.

The Hencky eq{4.1 Oa) can also be applied where an elastic shear strain ( ya ~ rfG, in which
% < *)> is held constant under increasing tension. According to the Prandtl-Reuss theory, the
material first yields under a stress state «70, Tm according to

ffo
2

 + 3 r / = F2 (4.13)

With F constant and a> oa, it follows from eq(4.13) that r < ro. The ensuing, total axial
strain again follows from eq(4.12c) but with new integration limits;

,« -_L ff F/2

3G J \Y + c

F/2
Y - a

(4.14a)

Equation(4.14a) integrates to

e' = 6G
In

(F

(F +
31 + 1 A-_!

E 3G (4.14b)

Equation (4.14b) relates normalised stress to total strain in the manner of Figs 4.2a-e.

Figure 4.2 Elastic shear strain constrained under increasing tension

Initial loading to aa is elastic with slope E. Thereafter, with o> oo, ffand rvary with e' in
a similar asymptotic manner to Fig. 4.1c. As the stress state follows the boundary of the yield
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— p

locus, the plastic strain increment vector de aligns with its exterior normal (Fig. 4.2a). The
two components of this vector identify the axial and plastic shear strains. Figure 4.2b shows
that restraining the initial elastic shear strain results in its gradual conversion to plastic strain.

(c) Other theories
The incompressible forms of Prandtl-Reuss and Hencky (or Nadai) are found from putting
v = W. In Hohensemer's experiment, for example, substituting v = ¥i in eqs(4.10a) and
(4.12d) reduces them to simplified forms, originally given by Prager [11] and Neuber [12];

S = tanh(SE/Y) and S = (eE/Y)/ [1 + (Ee/Y) ] (4.15a,b)

These predictions to the § variations would be less satisfactory than those of compressible
theories shown in Fig. 4.1. Betten [13] generalised eqs(4.15a,b) to become

S= [tanh (^ST)*]"" and S = (eE/Y)/ [1 + (Ee/Y)"f" (4.16a,b)

He demonstrated that with an integer value n > 1, eqs(4.16a,b) ensured an improved fit to
this data. However, it is doubtful whether Heneky's incompressible theory could allow a
similar modification with its application to other, reduced stress states.

4.3.2 Combined Tension-Torsion with Constant Axial Strain

Consider a thin tube subjected to constrained deformation in which the tensile yield strain
is held constant under increasing torsion. The following analyses provide predictions to the
growth in shear strain.

(a) Hencky
The axial strain at yield is

s. = I - / M (4.17a)
0 E 2G(1 + v)

Putting e' = ea = constant, in eq(4.9a), defines the scalar multiplier for the ensuing
deformation as

2 a 2E (4.17b)

Substituting eq(4.17b) into eq(4.9b) and eliminating cfrom eq(4.8a), leads to

3 r g
8 _ (1 ~ 2 v ) r (4.18a)y^ s

Employing eq(4.17a), and setting F= V*3A = Eea, gives a normalised form of eq(4.18a)

ll® - 3T (l-2V)T (

2(1 + v)Jl - 3T
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(b) Prandtl-Reuss
Here we put de' = 0 in eq(4.1 la), to give

di = - 3dg
2Ea

where, from eq(4.8a),

- 3rdr 3rdr

Substituting into eq(4.11b) gives

a1 f3r2 - F2)

- 9 r 2 d r + d_r

£(3r2 -F 2 )

Integrating by partial fractions gives

F/2 \ , / d r
d r + I —

+ ^ r J J G

Xln

The corresponding dimensionless form of eq(4.20b) is

Gy» = ^3 tg( 1 + ^ T ] (1 - 2
4(1 + v) I 1 - i/3T I 2(1 + v)

(4.19a)

(4.19b)

(4.20a)

(4.20b)

(4.20c)

The stress variations, predicted from eqs(4.18a) and (4.20b), are shown in Figs 4.3a-c.

Prandtl-Reuss

Heneky

Figure 4,3 Tensile yield strain constrained under increasing tasion
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In this case the axial strain (see Fig. 4.3b) becomes permanent as the corresponding stress
reduces to zero.

When an initially elastic, axial strain sj is held constant under increasing torsion, the
lower limit of the integral in eq(4.20b) is altered to T0. This provides the total shear strain
for the ensuing deformation under r > %, as

- • * / ( -

1 + 172
F -

172 d r + f -
J G

(4.21)

Equation (4.21) will also apply to a stress path in which an initially elastic, axial stress aa,
is allowed to alter under an increasing shear stress. This is because aa can only alter in a
non-hardening material by maintaining the total axial strain constant That is, de' = 0 for the
ensuing deformation, when from eq(4.1 la), the axial plastic strain will alter according to:

dsp=(2dA(3)a=~do-/E (4.22a)

Integration of eq(4.22a) reveals a conversion from initial elastic strain e£ = aJE, to plastic
strain in the form

(4.22b)

where aB> a Clearly, sF = e* when <rin eq(4.22b), falls to zero. The incremental plastic
shear strain component dy^ is associated with the first term in eq(4.11b). Dividing this by
eq(4.22a) gives the ratio between the incremental plastic strains as

= 3 r la (4.23a)

All tension-torsion stress paths conform to the relationship given in eq(4.23a), showing that
the plastic strain increment vector is aligned with the exterior normal to the yield surface.
We can also show this from eq(4.8a), where the gradient of a tangent to this surface is given
by dddt= - ai(31). It follows that the gradient to the normal equals the right-hand side of
eq(4.23a) since the product of these gradients is - 1. If we wish to separate the plastic
component from eq(4.21), then eqs(4.22a) and (4.23a) are combined with eq(4.8a) to give
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Making a trigonometric substitution, S = sin$, leads to

A sin- (4.23b)

The difference y ' - yp, found from eqs(4.21) and (4.23b), is identified with the elastic
component of the total shear strain.

4.3.3 Neutral Loading Under Internal Pressure Combined with Torsion

Cylindrical co-ordinates will be employed for the plane stress state arising in the wall of a
tube under combined torsion and internal pressure. That is, the non-zero stress components
are written as <79, at and TIS. The small magnitude of radial stress can be ignored when the
wall is thin. Gill [14] conducted a neutral loading experiment on a tube of non-hardening,
pre-strained, 70/30 brass. A total shear-prestrain of 0.44% was sufficient to ensure that the
material did not harden further when combined stress components were adjusted to follow
the contour of the yield locus. The latter is derived from eq(3.13a) as

a* - az as + «r/ + 3 xj = Y2 (4.24a)

Note that under the internal pressure, where ae - Rot (R = 2.2), two independent stress
components are required to define the yield criterion. That is, eq(4.24a) appears in terms
of ffj and TZS as

(4.24b)

where Q = 1 - R 4 Rz. It follows from our analysis of Hohensemer's experiment that
neuttal loading arises when the shear yield strain for the ensuing deformation is constrained:

yj = k/G = 2Y(l + v)/V3£) = constant (4.25)

The following classical theoretical solutions apply.

(a) Hencky
The total strains are, from eq(4.2a),

s,' = # a , + [(1 - 2v)IE- 4>](ff, + o-*)/3

= ffj<f>+ 1/3(1 + R)[{1 ~ 2v)/E - 4]} (4.26a)

[(1 - 2v)/E -
+ 1/3(1 + R)[(l - 2(p)tE- tp]} (4.26b)

Yj = 2<PTlS (4.26C)

where R = aja^. Putting fj - yj = constant in eq(4.26c) gives the scalar $ = yJ/(2 ri9).
Substituting $ into eqs(4.26a,b) and eliminating rrf from eq(4.24b) gives the respective
total axial and circumferential strains:
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(2-R) riff. (l+«)(l-2v)ar
*t = + — (4.27a)

(4.27b)

From eq(4.25) and setting S£ = aJY, the dimensionless forms of eqs(4,27a,b) become

elE (2-RHl + v)S, (l+R)(l-2v)S,
{4 .27c )

'e£ ( 2 « - 1) (1 + v) JS (1 + Jl) (1 - 2 v)S (4.27d)

(b) Prandtl-Reuss
The total incremental strains are, from eq(4.3b),

= (2 dJU3)(at - ffe/2) + (UE)(dat - vdag) (4.28a)

' = (2 dJU3){aB - ff,/2) + (VE)(dcre - vdat) (4.28b)

+drcB/G (4.28c)

Putting dfze' = 0 in eq(4,28c)

dl=-&Tl0/(2TiBG) (4.29a)

Differentiating eq(4.24b)

(4.29b)

Substituting eqs(4,29a,b) into eqs(4.28a,b,c) provides the total, axial and circumferential
strain increments;

( 4 3 O a )

6G (F2

n at da (R- v)da
= x — j — £ _ + ^ i — ( 4

6G ( F 2 ^ E

Integrating eqs(4.30a,b) by partial fractions leads to dimensionless total strains;
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1 - v'QS

(4.30c)

(4.30d)

Die predictions from eqs(4.27c,d) and (4.30c,d) are compared with Gill's results in Figs
4.4a~d, for v= Vk.

1 2 3 4 0 0.1 0.2

Figure 4 4 Neutral loading under combined internal pressure and axial torsion

It is seen from Fig. 4.4a that the relation between the stress components is in good
agreement with the yield function (4.24b). Figure 4.4b confirms that the shear strain remains
approximately constrained. Both predictions, given in Figs 4.4c,d, show that T (= r /F)
diminishes to zero as Sc (= aJY) becomes asymptotic to 1A/Q (= 0.524). Correspondingly,
the predicted strains, ee' and £E', become infinite in tension and compression respectively.
Because the experiment was terminated well before large values of these strains were
achieved, it does not reveal which theory is the better. It is seen that the axial strain is
extremely sensitive to the stress ratio. With ere=Raz (R = 2), both eqs(4.27e) and (4.30c)
give an elastic axial strain response according to

et'E/Y=(l-2v)Sl (4.31)

Equation (4.31) defines the line of slope 3 in Fig. 4.4d, which is apparently in closer
agreement with the experimental data. Gill was surprised to find plastic deformation from
his "neutral* path but we should expect this path to result in plasticity for a non-hardening
material. When a neutral path coincides with the initial yield condition in a hardening
material, the stress state will remain at the yield point without producing plasticity.

4,3.4 Internal Pressure Combined with Axial Tension

When a thin walled, closed tube is pressurised the radial stress is negligible compared to
the axial and circumferential stresses (at, ag). This allows a comparison to be made
between the total and incremental theories within a biaxial, principal stress space. In
Schlafer and Sidebottom's experiments [15], the axial and circumferential strain was
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constrained in separate experiments on a thin-walled cylinder of non-hardening, annealed
SAE 1035 steel. In their first experiment, the cylinder was pre-strained to the umaxial yield
sixain ejt under circumferential tension, ten extended under axial tension with the pre-strain
held constant. Here, the von Miscs yield criterion (4.24a) reduces to a common form for the
two theories:

t
2 = Y* (4.32a)

The normalised form of eq(4.32a) is

S/ -S s S 9 +S/= i (4.32b)

where St ~ aJY and Sg = trJY. If we wish to eliminate one stress component, say ag, within
the first quadrant of stress 0g, ot, eq(4.32a) gives

aB = ¥i az ± Vi # t F 2 - 3 of) (4.32c)

in which the positive discriminant applies.

(a) Hencky
Using cylindrical co-ordinates, the total strains are, from eq(4.2a),

Eg' = $ag+ [(I - 2v)/E- $}(at + ag)/3 = ej (4.33a)
SJ = # a, + [(1 - 2 v)tE - # ](at + c%)/3 (4.33b)

Equation (4.33a) supplies the scalar ^ as

3Ee'a - (1 - 2 v){ az + og) (4.34)

Substituting eq(4.34) into eq(4.33b) leads to

t = tfa{2or a9) + •J{l-2v){al-ol) (4.35a)

(2ffe-ffz)
 + 3E(2tr9-az)

We may apply eq(4.35a) to the deformation ensuing from the yield strain ej = Y/E, under
stress components connected through the yield criterion. The following normalised form of
eq(4.35a) is found when a0m eliminated from eq(4.32c):

3S../2 -

(4.35b)
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where v = 0.285 and EIY = 1345.3. The variation in Eel IY with Sg follows from the
simultaneous eqs(4.32b) and (4.35b). Equation (4.35b) gives the origin of nonnalised strain
as fe,7F= - 0.785 (see Fig. 4.5) from substituting Ss = 0.

(b) Prandtl-Reuss
For the circumferential pre-stxaining, the volume of the cylinder material remains constant,
giving

.-. de/ = de/ =-Vk de/ (4.36)

Now, from eqs(4.3a) and (4.36), del bears the following relationship to de/:

det' = de/ + de,' = - W de/ - vdag/E (4.37a)

Integrating eq(4.37a), with limits of «79from 0 to F, defines a normalised axial strain origin:

E s.' Eel
— - = - — - - v (4.37b)

Y 2Y
That is, with * / = F/£and v= 0.285, eq(4.37b) gives ££,'/F= - 0.785, which agrees with
Hencky. Under constrained deformation, the total incremental strains are found from the
Prandtl-Reuss eq(4.3b):

(4.38a)

(4.38b)
d^' = (2 dAT3)(at - ag/2) + (l/£)(doi - vdag)

dej = (2 dM)(ag - aJ2) + (UE)(dag - vdcrj

where a^ is the total axial stress. Stress variations are found from putting deg' = 0 in
eq(4.38b). This gives

d i = - - vder )/[E(2ae ~ oj\

where from eq(4.32a)
dae= - (2at - ag)daz/(2ae -

Substituting eqs(4.39a,b) into eq(4.38a) leads to

(4.39a)

(4.39b)

ds, —
[2F2(2-v)

af
(4.40a)

Substituting eq(4.32c) into eq(4.40a) and integrating provides the total axial strain;

_ y(5 - 4 v) y(2y-
I '"11

ta

4£ ,/2 J
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The corresponding dimensionless form of eq(4.40b) is

= In ;
Y 4 1 - v'SS _/2

- (1 - 2v)[l-SJ2 - 3S//4J (4.40c)

Figure 4.5a-c shows the Hencky and Prandtl-Reuss predictions, from eqs(4.35b) and (4.40c)
respectively. These are consistent with the observation of Schlafer and Sidebottom, in that
Ss increases continuously while Sg increases initially before it decreases.

Figure 4 J Circumferential yield itrain constrained under axial tension

Figure 4.5c shows that the rapid onset of infinite axial strain, observed for asymptotic stress
values of 2A/3 and 1/^/3, is closer to the Hencky prediction. Prandtl-Reuss predictions
approach each asymptote for strain less than was observed. The theories converge for large
axial strains up to five times the yield value. The deviation from the Mises yield locus, in
Fig. 4.5a, could be attributed to possible influences of the third invariant or initial residual
anisotropy following annealing. Also, there may have been experimental difficulty in fully
constraining the circumferential pre-strain, as it should appear from Fig. 4.5b.

Figure 4.6a-c shows that similar conclusions apply to the magnitude of the
circumferential strain in a second test, on the same material, when an axial pre-strain was
held constant. The deformation under increasing circumferential tensile stress may be
deduced from replacing #with z in eqs(4.35b) and (4.40c). This gives respective Hencky
and Prandtl-Reuss predictions:

Ee'g - 3S|/4 -

- 3S|/4| /

Ee's-^m
1 + MSel2

]

1 - i/lSgll,
1 - * - • - ,

2 \

1 _



 

NGN-HARDENING PLASTICITY

Figure 4.6 Axial yield strain constrained under rircumfeeeatlal tension

The corresponding origin in Fig. 4.6c is found from interchanging 6 with z in eq(4.37b):

Eeg'fY=- (Eet
p)t(2Y)~ v=- 0.785

where £z
p = Y/E. The theoretical asymptotes in Figs 4.5c and 4.6c limit the stresses with

greater accuracy than has been found from a Tresca yield criterion [15]. However, in
practice, before the infinite theoretical strains e^ and sB' in Figs 4.5c and 4.6c could be
reached, the respective tube would become unstable from local necking and bulging.

4.4 Application of Classical Theory to Non-Uniform Stress States

Here we shall examine the ability with which the two classical theories of plasticity can
provide solutions to elastic, perfect-plastic deformation under non-uniform stress states. The
solutions to similar problems for hardening materials will be considered later in Chapter 10,
For the purpose of making an experimental appraisal, results will be used for solid circular
bars, subjected to different combinations of axial tension and torsion. It will be seen that,
though constructed differently, the two theories supply comparable solutions to the
deformation response and to the internal stress distributions from loading bars under
relatively simple loading paths. The Hencky theory supplies closed-form equations that may
be solved by trial. The Prandtl-Reuss equations, on the other hand, require numerical
solutions, unless, as we have seen, the stresses are uniformly distributed. A further
assumption of elastic incompressibilily (i.e. v= W), which lead to eqs(4.2b) and (4.3c), will
simplify the application of each theory without incurring unacceptable error. Applying the
'incompressible' theory to a given sttess state provides the loading corresponding to
elastic-plastic and fully-plastic bars. These solutions also employ a criterion of yielding with
the force and torque equilibrium equations.

In the case of a tensile force P, combined with a torque C, the equilibrium equations for
a fully-plastic, solid bar of outer radius ra, are

r » r 2 d r (4.41a,b)P = 2a- f ff.rdr, C = In f
o o

For a thick-walled tube, the inner radius rk becomes the lower limit of integration in
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eqs(4.41a,b). It is convenient to employ the following dimensionless forms of F and C for

r * A C 2 / 3 CM = — = and m = — = (4.42a,b)
P ? C *

where Pv and C ,̂ found from eqs(4.41a,b), apply to when the bar first becomes plastic under
the separate action of tension and torsion. In a similar manner, the combined strains are
normalised with respect to yield strains ey = YIE and yy = y/(v*}G):

e=e'ley=e'EIY (4.43a)

g = fiyy = ̂ GfiY= J3G (zrJiY (4.43b)

where x — Oll\& fhetwist/unit length giving %ra as the outer diameter shear strain. The
following loading paths facilitate comparison between theory with experiment.

4.4.1 Radial Loading

Let P and C increase proportionately (i.e. nlm = constant) from zero in a solid circular bar.
The theoretical analyses each employ the von Mises yield criterion (4.8),

(a) Hencky
The total strain components are again expressed from eqsC4.9a,b) by assuming that any radial
and hoop stress arising from P and C are negligibly small. Eliminating ^between eqs(4.8)
and (4.9), the normalised axial stress 5 = rfF, for the plastic region, is found from the
solution to

(l-2vfS*-6(l-2vWi + [9e1-{l-2vf+4(l+v)2g*p1]S2 + 6(l-2v)eS-9e2 = a (4.44)

Equation (4.44) applies to given values of p = rlrm e, and g from eqs(4.43a,b). The
corresponding normalised shear stress T = rfk, is found from eqs(4.8a) and (4.9b):

T' = UPJl** ( 4 , 4 5 )

Note that in eq(4.8b), T = fA/S. Now, consider the elastic-plastic bar, where the plastic
zone has penetrated from the outside radius to a radius rv in the cross-section. This interface
radius is normalised pv = rmlro so that, for the elastic core 0 s p s pm, the normalised
stresses are simply

S = e, T' = gp (4.46a,b)

The equilibrium equations (4.41a,b) for P and C, involve contributions from the elastic and
plastic zones. The axial force becomes

P = 2n f o r d r + 2 f o r d r (4.47a)

where, from eqs(4.42), (4.43) and (4.46), the dimensionless form becomes
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P,, 1 1

n = 2 J S(p)pdp + 2 J S(p)pdp = epj- + 2 J S(p)pdp (4.47b)
o PW P.,

The torque C is similarly normalised to give m:

C = 2TF J r r 2 d r + 2ff f r r 2 d r (4.48a)
o

ft? I I

m = 4 J 7"(/>)p2d> + 4 jT'(p)iO2dp=fp^+4 ^ T'{p)pzdp (4.48b)

ft,
The second integral in eqs(4.47b) and (4.48b) may be evaluated numerically, e.g. by
Simpson's rule. Here S (p ) and T(p ) are the plastic zone stresses supplied by eqs(4.44) and
(4.45). The condition that S and I* are singular on the elastic-plastic boundary is ensured
from equating either (4.45) and (4.46b) or (4.44) and (4.46a). This gives

e2 + g
2p^=l (4.49)

When pm = 1, the cylinder is fully elastic (f.e.) and eqs(4.47)-(4.49) supply relationships
between the applied loading:

n = e and m = g (4.50a)
nz + m 2 = l (4.50b)

For a given plastic penetration pv, the solution to S (p ) , T'(p ) , n and m is found as follows.
Firstly, assume a value for e and from eq(4.49), find g, At a given normalised radius p,
where pv£ ps 1 in the plastic zone, S and I* are found from eqs(4.44) and (4.45). A value
for n/m follows from the integration of eqs(4.47b) and (4.48b). If this does not equal the
true applied load ratio nlm = (/*/C)[r(,/2v/3)], found from eqs(4,42a,b), then another e value
must be assumed and the procedure repeated until agreement is found. This method will
supply the stress distributions rapidly when programmed for a computer. The original limit
load theory [6] was simplified upon setting v = Vi, from the assumption of elastic
incompressibility. Equations (4.44) and (4.45) then provide the following closed solutions
within the plastic region: pv s, p s 1, for an elastic-plastic cylinder:

S = e r = 8P (4.51a,b)

Since eqs(4.46a,b) remain valid for the elastic core, 0 i p & p^,, their substitutions, together
with those of eqs(4.51a,b), into (4.47b) and (4.48b), lead to

n = epj + (2elg%)(^ + g2) m - (2dgl){t? + g1pj)m (4.52a)

g'pjf2 + [8/(3fW + g2P^)m (4.52b)

With a given n/m value, e and g are found from the simultaneous solution to eqs(4.49) and
(4.52a,b). Take, for example, radial loading of a solid circular bar under «/m = 0.8 to an
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elastic-plastic interface radius p^ = 0.4. We have from eq(4.49): e "l = 1 - 0.1
Substituting mis into eqs(4.52a,b) leads to the following expression in g •

0.0204 g + (

= 0.16(1 - 0.16f 2 ) l

- (2.12Ig3

+0.84f z

- 0.509/g + 2A2lg%

- (2fg2)(1 - 0.16g2)m

A trial solution gives g = 1,19 and hence e = 0.879, m = 0.926 and n = 0.741. Equations
(4.46a,b) supply the elastic-zone stresses as: S = e = 0.879 and T = gp=l.I9p. Equations
(4,51a,b) supply the plastic-zone stresses as:

S = 1 / (1 + 1.835/52)m and T' = 1.355/?/ (1 + 1.835/J2)m

In the fully plastic (f.p.) case, where p^ = 0, eq(4.49) gives e = 1. Equations (4.52a,b)
reduce to

n = (2e/g2)(e2 + g2)m- 2e2%2 (4.53a)

m = (4/g)(e2 + f
2 ) i a - [S/Qg'me**8*)"+ ***/&*) (4-53b)

Equations(4.53a,b) give the following expression in g for the ratio nlm = 0.8.

ga)w - ( 2 . 1 % 3 ) ( 1 +g2)m + 2.l2/g3 = (2/g
i)(l +g%)m - 2/g1

from which g = 1.38, m = 0.93 and « = 0.744. Here, the fully plastic stresses follow from
eqs(4.51a,b):

S = 1 / (1 + lM96pz)m and 7" = 1.377/?/ (1 + lM96pz)m

The strains corresponding to each pv value may be found from eqs(4.43a,b), given F and E
for the material. With increasing strain beyond full plasticity, i.e. e > 1 and g > 1.38,
eqs(4.53a,b) show that n and m remain constant. Zyczkowski [6] has shown that when e and
g are eliminated between eqs(4.53a,b), three relations between m and n apply;

m = (2I3)(l-n)m(2 + n)
m = (2/3)(2 - 3n)/ (1 - n)m

m = (2/3)(l+n)m(2~n)

(4.54a)
(4.54b)
(4.54c)

It is seen from Fig. 4.7 that only eq(4.54a) expresses the ttue interaction between m and «
at the f.p. load-limit carrying capacity.

m

Eq.434a

- 4 / 3

Figure 4.7 Interactions between n and in at Unit loading
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Thus, for the example cited above, eq(4.54a) is satisfied by m = 0.93 and n = 0.744. The
inner curve b must be rejected because it does not give n = 1 under a fully-plastic tensile
load. Figures 4.8a,b give the normalised stress distributions with incompressible elasticity.
These are found from eq{4.51 a,b) for 0.2 intervals in pv from the fully elastic (f.e.) to the fully
plastic (f.p.) condition.

0.2 0.4 0.S 0.8 1.0

0.2 0.4 Q.8 0.8 1.0

Figure 4.8 Stress distributions in a sdHd bar under combined tension and torsion

With full elasticity, the axial stress is uniform and the shear stress varies linearly with the
radius. The penetration of a plastic zone increasingly destroys stress uniformity and linearity
as shown. The compressible (v = 14} and incompressible (v - V4) Hencky solutions are
compared within the enlarged scales of Figs 4.8c and d. These apply to an elastic-plastic
condition {pv = 0.4) and to a fully plastic condition (p^ — 0), The comparison shows
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negligible error in the stress magnitudes for v=¥i. It follows that the incompressible theory
provides realistic distributions of stress as the bar deforms from an initially elastic condition,
through the elastic-plastic region, to attain full plasticity.

The strains increase rapidly to infinity under the Emit loading in the manner of Fig. 4.9.
Experimental data [16] is compared with the plot between « and m, predicted from eqs{4.42)
and with a plot between the outer diameter axial and shear strain, e and y, from eqs(4.43).

1.0

0.2

m vemis % y

o o o o

f.e. - full elasticity (elastic limit)

f.p. - full plasticity (limit load)

O , # experiment [16]

— Heneky (vatf)

o o,j o.4 o.« s o.a ^ i.o

Figure 43 Load-deformation behaviour in a soBd bar under combined tension-torsion

Clearly, limit loads from the incompressible, total-strain theory are accurate. Slight
differences observed between total strain predictions, with and without incompressibility,
are confined only to the region between the f.e. and f.p. conditions.

Strictly, a triaxial stress state will arise from the Heneky theory for a tension-torsion
member of material with v?* i>4[17]. The perturbation method of solution showed uniform
radial and tangential eompressive stresses within the elastic zone of a partially plastic bar.
These stresses will depend upon the penetration depth, but do not amount to more than 10%
of the yield stress within the plastic zone.

(b) Prandtl-Reuss
Gaydon [18] derived a closed-form, non-hardening, Prandtl-Reuss solution to this problem
from assuming that v= ¥i in eq(4.3a). Within the plastic region (p9 s p s pa), the total axial
and shear strain increments, eqs(4.11 a,b), were written as

de' = d I /1 = (2di /3)u + da/ (3G)

Eliminating dA between eqs(4.55a,b) gives

I1L
I d0

_£. I
3 T I 3Gr

1 da
3G d0

(4.55a)

(4.55b)

(4.56a)
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Since the stresses must satisfy the von Mises yield criterion (4.8a), ffin eq(4.56a) may be
eliminated to give

1 x &L = JL , / F 2 - 3 r 2 - J 2 x -*£ (4.56b)
/ d0 Tr ^ dB

With the substitutions 7* = tfk = v /3r/y and g = \/3(G/F )(ro/ /„)#, where lo is the initial
length of the bar, eq(4.56b) becomes

HI = l i (! _ r i) _ £i:^ _ r-2 (4.56c)
dg rB/ v3

In eq(4.56c), ar = (\/3G /K)(dydg) is a variable which integrates to

la dg = (i/3G /F ) In (i / /„) (4.57a)

mB = e7™i'"s (4.57b)
The axial strain is defined as

e> = ln (Ula) (4.58a)

for which the normalised form is

(4.58b)

where E = 3G. Now S = e and T = gp for the elastic core: 0 « p & p^. Then, from eq(4.8),
5 2 + j * ' 2

 = 1 at the elastic-plastic interface. Substituting fromeqs(4.49) and (4.5S) gives

+ ^ g ) 2 = l (4.59)

The integral term ( ) in eq(4,59) must take the constant value e at full elasticity (pv = 1).
This condition is given by e1 + gz - 1, where e = n and g = m. Under radial loading, e is
found from combining eqs(4.42a,b) and (4.50a,b) to give

IP/ (?rFr0
2)]2 + [2^3C/ (s-Fro

3)f = 1 (4.60a)

z)= [I + (12/r*)(CIP)1}-w (4.60b)

As the normalised load and torque are again found from eqs(4.47a) and (4.48a), the ratio w/m
= (Pr^(2sfiQ is a constant, since PIC - constant. The three equations (4.56c), (4.59) and
(4.60b) are then solved by trial from assuming an initial value for a.

In the case of a fully plastic bar, putting d77 df = 0 and II lo~ 1 in eq(4.56c), leads to

T'(p) = p/(p%+ «*/3) m (4.61a)

= (l-T'2)m=ee/(0z + 3p2)m (4.61b)

Also, with pip = 0, we have from eqs(4.47b) and (4.48b)

nlm = (Pro)/ (2^3C) = [S(p)pdp]/ {2[T'(p)p%dp]} (4.62a)
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Substituting eqs(4.61a,b) into eq(4,62a) leads to

F r f1 ap&pHa1 + 3p2)m

J o (4.62b)

f1

Jo

from which a may be solved. In the radial loading test employed by Shammamy and
Sidebottom [16] the test conditions were PIC = 0.374 mm"' (9.5 in" *) and ra = 7.37 mm
(0.29 in). The properties of the non-hardening, SAE 1035 steel used were: F=283.3 MPa
(41.1 x 103 lbf/in1) and E = 207 GPa (30 x 10s lbf/in2). We find by trial that eq(4.62b) is
satisfied by tx = 1.261. The stresses are then found from eqs(4,61a,b). The comparison
between the Hencky and Prandtl-Reuss stress distributions at full plasticity in Fig. 4.8
reveals that these are almost coincident. A further check can be made on the assumption that
I / lg» 1 at full plasticity, from eqs(4.57b). Correspondingly, when p^ = 0, eq(4.59) gives
J flidg = 0.5773. Substituting this, together with Fand E = 3G into eq(4.57b), gives 11 la =
1.0014. The assumption is valid because, when the bar first becomes fully plastic, the strains
are of an elastic order. It may be deduced from Fig. 4.8d that the distributions of stress,
found from the 'incompressible' Prandtl-Reuss theory, are again realistic as the bar deforms
in the elastic-plastic region.

Sved and Brooks [19] have given the governing equations for a Prandtl-Reuss solution
to this problem when accounting for compressible elasticity. When v * ¥i, it becomes
necessary to admit the tangential and radial stresses in addition to the axial and shear
stresses. They showed that this leads to the requirement for a numerical solution to a system
of four, simultaneous, partial differential equations. The additional stresses, so found, were
of similar small magnitude to those found from the compressible Hencky theory [17].
Tangential and radial stresses are absent when v- Vt but, as we have seen, a different v does
not alter the more dominant axial and shear stresses by more than a few percent.

4,4,2 Constrained Deformation

Consider a deformation path where the tensile yield strain e^ is held constant while
increasing the shear strain y, within a thick-walled tube of non-hardening material. The
theories predict the following variations in both P and C with y,

(a) Hencky
According to eqs(4.11), when v = W and e^ = YIE, the stresses during the ensuing
deformation are given by

a=3ey/(2<f>), t=yl{2$) (4.63a,b)

Substituting eqs(4.63a,b) into eq(4.8a), supplies the scalar multiplier #

# = V(9e? + 3 yz) / (2F) (4.64)

Equations (4.63a,b) and (4.64) provide the following dimensionless stress components ;

,tyia a n d T' = pg(l+p2g2)'m (4.65a,b)
where

S* + T*=l (4.65c)
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Note that 7* = r/k, which is not to be confused with T = tfY, is used for a uniform stress
analysis given in Section 4,3, The relationship E = 3G is implied with assumed
incompressibility. Since the tube is fully plastic, it follows from the corresponding forms
of eqs(4.41a,b) and (4.42a,b) that

n = fl pSdp , m = f1 p2T"dp (4.66a,b)
(1 - D3) J o (1 - £>4) / 0

where D = r,(ro < 1, is the tube diameter ratio. Combining eqs(4.65a,b) and (4.66a,b), leads
to the integrated forms for n and m

(4,67a)

4 (I + g1)1 - -^-(1 + g ¥ - DHl + D^g1)1 + - i - ( i + D'g2)1 (4.67b)

l 111 l&l i

With a given value of g for the ensuing deformation, the distribution of stress through the
wall of the cylinder is supplied by eq(4.65a,b). Equations (4,67a,b) express the loading
necessary to achieve that stress state.

(b) Prandtl-Reuss
The total, incremental strains are given by the Prandtl-Reuss eqs(4.1 la,b). Since de' = 0,
it follows from eqs(4.8a) and (4.1 la) that the scalar dA is

dA = -3d0/(2Ed) = 9rdr/(Y1-3rt) (4.68)

Substituting eq(4.68) into eq(4.11b) and integrating between 0 and r leads to the f
prediction, given by Smith and Sidebottom [20]:

f = rz= (2v- 1)T/E+ 0/3I7E) tanh"' (&TIY) (4.69a)

Employing the present dimensionless parameters, eq(4.69a) becomes

(1+ v)gp=(v- W)T + % In [(1 + 1 ) / (1 - T)] (4.69b)

Thus, T can be found from eq(4.69b) for a given g over the range D & p<l. S follows from
eq(4.65c) and n and m from the numerical integration of eqs(4,66a,b). The incompressible
solution is found from putting v= %, giving a relationship between the elastic constants as
HE = 1/(92C) + 1/(3G). Equations (4.65c) and (4.69b) then supply dimensionless stresses
in closed form:

S = $ech(pg), T' = tarih(pg) (4.70a,b)

Equations (4.70a,b) originally appeared in the work of Gaydan [18], Prager and Hodge [21]
and Nadai [22]. Gaydon also solved the case of loading where the axial strain was initially
elastic. Combining eqs(4.66) and (4.70), the corresponding loading parameters become
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l

n =
(1

pseeh(pg)dp , m =
(1— Ip2taah(pg)dp (4.71a,b)

The few published results, which enable comparison with this theory, are again due to
Shammamy and Sidebottom [16]. These apply to the same grade of non-hardening SAE
103S steel in a tube with D = 0.93. Figures 4.10a and b compare the theoretical stress
distributions and, in Fig. 4.10c, a comparison is made between experiment and the
predictions from eqs(4.66a,b), (4.67a,b) and (4.71a,b).
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Figure 4.10 Constimined deformation in a thick-walled tube under combined tension and torsion

It is seen from Fig. 4.10c that deviations between the three predictions increase with
increasing shear deformation. The greatest deviation in the stress distributions, for a given
g value in Figs 4.10a and b, occurs between the incremental and total strain theories when
v s= %. This further applies in respect of the loading parameters n and m in (c), although
experiment is unable to distinguish clearly between the various theoretical predictions.
Again, the v = ¥i assumption leads to acceptable simplified solutions. A similar test,
conducted on a solid bar of non-hardening material, would be more conclusive for making
a comparative study of this nature. Because it is evident from Figs 4.10a,b that the wall
stress gradients for this tube are not severe, a thin-walled theory would approximate its
singular wall stress value to the indicated mid-wall radius.

As the material in Fig. 4.10 is non-hardening, the theory need not account for the
influence of the initial 0.2% plastic loading strain. In fact, a general feature of the Hencky
theory is that it applies only to the current stress state, i.e. it does not refer to how that state
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was achieved. This deficiency is corrected with an incremental strain summation and
explains why the Prandtl-Reuss theory is generally believed to be more representative of
path dependent plasticity under non-proportional loading.

Sved and Brooks [19] applied the compressible Prandtl-Reuss solution to the converse
problem in which the twist was held constant at its yield value, in a solid bar, under
increasing axial strain. They showed that radial and hoop stresses also arose with maximum
values in compression at the bar centre. These were never greater than 5% of the shear yield
stress, even at Ml plasticity and low values v « 0.1. Their work confirmed that the variation
in Poisson's ratio is of sufficiently small influence, justifying Gaydon's [17] application on an
incompressible Prandtl-Reuss theory.

4.4.3 Stepped Loading

Here an elastic torque Ca is held constant under an increasing axial force P (Fig. 4.11a).
This gives m < 1, and with v= V4, it is first necessary to find n from eq(4,5Qa) for the fully-
elastic condition (pv = 1). For an increasing n within the elastic-plastic region (0 i p^ i, I),
eqs(4.46a,b), (4.49), (4.51a,b) and (4.52a,b) are applied to determine e, g and n for a given

0 0,2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Figure 4.11 Normalised stress distributions for a stepped loading of inaeasing P under constant CD

The following procedure applies to the simplified 'incompressible' Hencky theory. Say
we wish to establish the stress distributions for m = 0.83 = constant, where the force P has
produced: (i) a fully elastic bar [pv = 1) and (ii) an elastic-plastic bar with p^ = 0.6. For
(i), it follows from eqs(4.46a,b) that T = mp= 0.83/3 (i.e. linear in p) in which 0 s p s 1 and
S = n = 0.56. For condition (ii), eq(4.49) gives e2 = 1 - 036g1. Substituting into eq(4.52b):

0.83 = 0A3g - [8/(3g3)](l - IMIg + ®(3g3)(4.72 )
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A trial solution to eq(4.72) gives g = 0.934 and e = 0.828. Substituting the appropriate e, g
and Pep values into eq(4,52a), provides n = 0.77 as a dimensionless measure of the increased
force necessary for partial yielding of the section. Within the elastic zone ( O S / J S 0.6), the
stresses are found from eqs(4.46a,b) to be S = e = 0.828 and T = gp= 0.934/>. In the plastic
zone (0.6 s psl), eqs(4.51a,b) give

i a and T'= 1.128p/(l + 1.272pa)ia (4.73a,b)

The normalised stresses, from eq(4.73a,b), are distributed according to Figs 4.11a and b.
Other distributions shown are calculated in a similar manner for interface radii: p^ = 0 (i.e.
fully plastic), 0.2,0.4,0.8 and 1.0 (i.e. fully elastic). For each pm value, a zero shear stress
occurs at the bar centre, corresponding to maximum axial stress. Note that the elastic and
elastic-plastic stresses must agree at the interface radius. Experiments [18] show that even
in mildly hardening materials, n and m continue to increase beyond their fully plastic values.
The rale of isotropic hardening can account for this by allowing the yield surface to expand
(see p. 313). This rule has enabled a corresponding extension to the Hencky theory to
account for the greater load carrying capacity which most metallic materials display [23].

4,4.4 Residual Stress Distributions

Self-equilibrating residual stresses result from unloading an elastic-plastic bar. They are
found from subtracting elastic stresses, Se and Tj, that recover with unloading, from elastic-
plastic stresses that arise when the loading is applied. For example, with radial loading of
incompressible elastic material in Fig. 4.8, the Hencky eqs(4.46a,b), (4.50a,b) and (4.51a,b),
supply the following normalised, residual stress expressions

SR = S-St (4.74a)
(4.74b)

(4.75a)
(4.75b)

where e, g, m and n are found from eqs(4.49) and (4.52a,b) for a given n/m and p^. The
distributions, found from eqs(4.74b) and (4.75b), are shown in the upper two diagrams of
Fig. 4.12a. These correspond to an elastic-plastic cylinder with pep = 0.6 and a fully plastic
cylinder (i.e. pep = 0). The latter condition increases the magnitude of the residual stresses
following radial loading of a non-hardening material.

The residual stress distributions, SR and TR', resulting from the release of a non-radial
loading in Fig. 4.10 need separate consideration. When eqs(4.74a) and (4.75a) are applied
to the constrained test conditions, SR and r s ' are distributed in the manner of Fig. 4.12b.
Clearly, for constrained deformation, the residuals show a greater dependency upon the
particular theory chosen to determine S and T. That is, differences between the Hencky and
Prandtl-Reuss predictions, shown here for g = 2, are a consequence of variations between
the theoretical loading stresses given in Figs. 4,10a,b, In Fig. 4.12c, the residuals are shown
for pe/> = 0 and 0.6, based upon the Hencky applied stress distributions (Fig. 4.11) under
stepped loading. These residuals are similar to those following the release of a radial
loading (Fig. 4.12a) with comparable elastic-plastic interface radii. It has long been known
that residual stresses can have the beneficial effect of enhancing fatigue life. Here, it
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becomes important to establish the residual stresses with reasonable accuracy, particularly
in the case of non-radial loading, where large errors can arise from simplifying the solution
to the resulting stress [24,25].
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Figure 4,12 Residual stress resulting tan various loadings

4.5 Hencky versus Prandtl-Reuss

Choosing between the two classical descriptions of deformation arising from a combined
stress state will depend upon the manner in which stress is distributed. When the latter is
uniform, there is little difference between predictions from the Hencky deformation theory
and the Prandtl-Reuss flow theory. In fact, experiment appears to agree better with the
simpler, closed-form Hencky predictions to deformation under non-radial loading paths. In
the analysis of the deformation behaviour of structures under non-uniform stress states,
experiment shows that the effects of history are insignificant with proportional loadings from
zero stress. The Hencky total-strain deformation theory will represent, within closed
solutions of acceptable accuracy, the distribution of stress and the load-deformation response
with the transition from elastic to fully plastic behaviour. Deviations arise between the total
and incremental theories under non-proportional loadings, including stepped-stress paths or
paths in which one component of strain is constrained. Although the Hencky theory appears
to remain conservative in its prediction of strain, the generally held view, partly substantiated
here, is that the incremental Prandtl-Reuss theory (with elastic compressibility) provides
more realistic predictions whenever history effects are present. However, it is known that
errors can arise from Prandtl-Reuss. We have seen in Chapter 3 that it does not account for
plasticity in anisotropic material. Other deficiencies include the neglect of softening
resulting from stress reversal and cold creep, i.e. low-temperature, time-dependent strain.
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Exercises

Uniform Stress States

4.1 A thin-walled cylinder is stressed to the point of yield under an axial-shear stress ratio rfr= 2.
The shear strain is then held constant while the cylinder is subjected to increasing tension. Derive
expressions for the subsequent variation in axial strain with the axial and shear stresses (a, r)
according to the Hencky and Prandtl-Reuss theories. Compare, graphically showing the normalised
stress asymptotes a/Y and tlY. Take G = 77 GPa, v= 0.3 and F= 230 MPa.

4.2 A thin-walled cylinder is stressed to the point of yield under an axial-shear stress ratio ofr= 2.
The axial strain is then held constant while the cylinder is subjected to increasing torsion. Derive
expressions for the subsequent variation in shear strain with the axial and shear stresses (a, r)
according to the Hencky and Prandtl-Reuss theories. Compare, graphically showing the normalised
stress asymptotes alY and tfY. Take G = 77 GPa, v= 0.3 and Y = 230 MPa.
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4.3 The internal pressure in a closed-end, thin tube is increased to produce yielding of the tube
material under a ratio erg/a, = 2. The circumferential strain is then held constant while the tube is
progressively twisted. Show, according to the Prandtl-Reuss theory, that r varies with total shear
strain y*as

Y = — — In,
2Gfl + v} \ 1 - T

1 - 2v)T"
(I + v)

where T' = ttk. Why is axial plastic strain absent when the radial stress is ignored?

4.4 In a thin tube of non-hardening material the axial strain at yield is held constant. Show, with
progressively increasing circumferential tension, that the Prandtl-Reuss prediction to the ensuing hoop
strain is given by

AE
in Y(2v- 1)

•J3Se/2
1-

35 ,

where Sg= aJE. Hence, show that the normalised stress asymptotes are og/F=2A/3 and aJY=> 1A/3.

4.S A thin-walled tube is twisted undeT torsion to the point of yield. The total shear strain is then held
constant while the tube is subjected to an increasing internal pressure for which ag = 2av Show, for
the ensuing deformation, that the respective total circumferential and axial strains are given by:

ea = (1

(1 -

- 2F)S Z

2v)S,

+ (1 + v)
2^2

- In
i + n$\

I - nst)

where S, = erJY. Plot Sz versus ea'EIY and e^ElY showing the St asymptotes.

4.6 A non-hardening, thin-walled cylinder, with inner and outer radii 7.1 and 7.6 mm respectively, is
strained to the tensile yield point. Thereafter the cylinder is subjected to an increasing torque whilst
the simultaneous tension is adjusted to maintain the tensile yield strain F/E constant. Compare
predictions to the deformation that ensues from the Hencky incompressible theory (v= Vi) and the
Prandtl-Reuss theory with v= %. Take E = 207 GPa and F = 283 MPa.

Non-Uniform Stress States

4.7 A solid cylindrical bar, 14.75 mm diameter, is made from a non-hardening steel with a yield stress
of 283 MPa. Given that the torque C and the axial load J" increase proportionately in the ratio P/C
= 0.375 mm"' , find P and C: (i) at the limit of elastic deformation, (ii) at the elastic-plastic mean
radius and (iii) for a fully plastic condition. Assume elastic ^compressibility with E = 207 GPa.
[Answer: (i) 80.5 Nm, 30.1 fcN, (ii) 94.12 Nm, 35.3 kN, (iii) 95.7 Nm, 35.8 kN]

4M Plot for the cylinder in exercise 4.7, the distribution of tensile and shear stress with radius for each
of the conditions (i), (ii) and (iii). Assuming elastic unloading, plot the distribution of residual stress
corresponding to (ii) and (iii). Take E = 207 GPa and assume elastic incompressibility.
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4.9 A solid cylindrical bar, 12.8 ram diameter, is made from a non-hardening steel with a yield stress
of 305 MPa. The bar is subjected to a constant torque of 60.7 Nm with a steadily increasing axial
force. Calculate the value of the force corresponding to: (i) the limit of elasticity, (ii) an elastic-plastic
interface coincident with the mean radius and (iii) full plasticity. Take E = 207 GPa and v=¥t.
[Answer: 21.9 kN, 31.05 kN» 31.6 fcN]

4.10 Plot the distributions of axial and shear stress with radius for the cylinder of exercise 4.9 in each
of (i), (ii) and (iii). Determine which condition (ii) and (iii) has the greatest extent of the residual
compression following unloading.

4.11 Apply the Prandtl-Reuss solution, with compressible elasticity, to the deformation in a solid bar
subjected to torque and axial load which increase proportionately within the plastic range.

4.12 Derive expressions for the normalised stress components S = c?zfY and T = ttk from the
incompressible Prandtl-Reuss theory when the shear strain in a solid circular bar is increased while
the elastic axial strain is held constant.

4.13 A solid circular bar supports a constant, initially elastic-plastic torque while being subjected to
increasing tension. Determine the Hencky stress distributions for suitable stages of the ensuing
deformation to M l plasticity.

4.14 Derive the Prandtl-Reuss solutions, for v= 'A, to the stress distributions in a solid circular bar
under increasing axial force combined with a constant, initially elastic torque.

4.15 Establish the stress distributions from exercise 4.14 for m = 0.83, when the force has produced
a fully elastic bar (p^ = 1) and an elastic-plastic bar with pep = 0.6. Compare graphically with the
Hencky solution (see Fig. 4.11) for the same conditions.

4.15 Establish the governing equations from the Prandtl-Reuss theory, with compressible elasticity,
for the deformation which ensues when an initially elastic torque Cv is held constant under an
increasing force P in a solid bar.
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C H A P T E R 5

ELASTIC-PERFECT PLASTICITY

5.1 Introduction

With ideal, elastie-perfectly plastic behaviour, elastic strain accompanies plastic strain in the
absence of hardening. This simplification will often provide closed-form solutions to the
stress distribution in loaded structures, revealing a clear distinction between zones of
elasticity and plasticity. We examine, using this model, the non-hardening elastic-plastic
behaviour of beams in bending and solid shafts under torsion. The use of a yield criterion
becomes necessary when the stress state is multi-axial. This is illustrated with the
determinatian of principal stress distributions for axially symmetric structures, including a
thick-walled pressurised cylinder, with different end conditions, an annular disc and a
rotating disc. All solutions to the plastic-zone stresses employ the equilibrium condition and
the yield criterion to ensure stress continuity at the elastic-plastic interface. Both elastic and
plastic zone stress distributions must satisfy the conditions of internal force equilibrium and
strain compatibility. From applying these, the limiting plastic loads may be found for beams,
torsion bars, thick cylinders and discs. Such load limit predictions are, of course, restricted
to where the material within these structures is non-hardening.

5.2 Elastic-Plastic Bending of Beams

Let an applied moment M r lead to yielding within the most highly stressed fibres furthest
from the neutral axis (NA). All other fibres in the cross-section remain elastic. As the
moment is increased beyond MT, the cross-section becomes partially plastic as successive
interior fibres, approaching the NA, reach the yield stress Y of the beam material. This state
constitutes an elastic-plastic beam under an applied moment M^. When the plastic zone has
penetrated through the whole cross-section on the tensile and compressive sides of the NA,
this condition will determine the ultimate moment MBft a given beam can withstand. It is
assumed that a beam of any section collapses under M& and that the beam material behaves
in an elastic-perfect plastic manner, where no increase in stress beyond Y occurs during the
inward plastic penetration.

Consider a beam with a rectangular section, breadth b, depth d under a positive
(hogging) bending moment M (see Fig.5.1a). As M increases, the material of the beam
responds elastically initially but thereafter attains its yield point as plastic penetration begins.
This results in an elastic-plastic cross-section, prior to the beam collapsing as the cross-
section becomes fully plastic under MHjr It is first necessary to derive the bending moment
at each stage of the deformation. This analysis employs the stress distributions involved in
the transition from elastic to fully plastic behaviour, as shown in Figs 5.1b-d.
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5.2.1 Full Elasticity

Under Mr in Fig. 5.1b, the outer fibres are stressed to the yield point but the interior cross-
section remains elastic. Therefore, the engineer's theory of bending applies to the outer fibres
where a = F for y = d/2.

(a)

Figure 5.1 Penetration of a plastic zone in a rectangular section beam

This theory gives the applied momemt expression for initial yielding as

The radius of curvature is

5.2.2 Elasto-Plastkity

YI

y

F(M3 /12)
(d/2)

_ Ey _ Ed
a 2Y

bd2Y
6

(5.1)

(5.2)

Under an intermediate elastic-plastic moment Mv in Fig. 5.1c, the plastic zone has
penetrated by the amount h, from the top and bottom surfaces. The cross-section's moment
of resistance is composed of elastic and plastic components, such that:

where s = d - h is the distance between the net force F = Ybh, in each plastic region.
Dimension y = {d~ %h)fl defines the distance of the elastic-plastic interface from the NA.
The second'moment of area for the inner elastic core is

Then Mv may be expressed in a dimensionless form as follows:

M a

12(d - 2h)

bd2Y\, 2h
6 d

(YbhKd - h)

(5.3a)
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+ 2 * f i - A I (5.3b)

The radius of curvature Rv of the NA, within an elastic-plastic section, is found from
applying the elastic bending theory to the inner elastic core:

and with y = (d- 2h)/2, this gives

• f -

R .EL.EL>.«'-*» (5.4b,
*P Me Yle 2Y

5.2.3 Full Plasticity

Under the fully-plastic moment Mutl in Fig. 5. Id, the plastic zone has fully penetrated both
the tensile and compressive sides of the NA. The resistive moment of the fully-plastic
section is simply

MIi = Mll (55)
2 4 *• '

(a) Shape Factor
The shape factor Q is defined as the ratio between the ultimate and initial yield moments;

Q = ̂  > 1 C5.6a).
My

Substituting eqs(S.l) and (5.5) into eq(5.6a), the shape factor becomes

M ^ = bd^fA m 3
Mr bd2Y/6 2

Equation (5.6b) shows that the constant Q value depends solely upon the team cross-section,
i.e. Q is independent of the applied loading.

(b) Load Factor
This is defined as the ratio between the corresponding collapse load Wall and the safe elastic
working load W:

L = Wull/W (5.7)

Hence L will depend upon the section, the applied loading and the manner of its support.
Consider a simply supported beam that collapses from the formation of a single plastic
hinge, as shown in Fig. 5.2a.
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(a)

(b)

Figure 5 Jb Plastic collapse of a simply-supported beam

The elastic safety factor 5 is
(5.8a)

where aa is the allowable working stress and aw is the safe working stress. Putting cra = Y in
eq(5.Ba) gives:

0w=YtS (5.8b)

Now, from bending theory, the corresponding safe working moment is

(5.9)

The maximum bending moment M = Wl/4 occurs beneath the load. It follows from eq(5J)
that the safe working load is

4M 417 2Ybdz

W =
I ISy 31S

Substituting from eq(5.5) gives the ultimate load for this beam as

4Mult bd*Y
W,ult I I

(5.10)

(5.11)

Employing eqs(5.6), (5.7), (5,10) and (5.11), the load factor L may be combined with the
shape factor Q and the safety factor S in a simple general form

L, -
(bd2Yll) (5.12)

(2Ybd2)l(3lS)

In taking S = 1 in eq(5.10), the safe load becomes the initial yield load. We then have equal
load and shape factors, L = Q = 3/2, for a simply supported beam with rectangular section.

(c) Plastic Hinge
The plastic hinge length lp is determined from the ultimate moment diagram at the point of
collapse (see Fig. 5.2). The moments are: M = Mull, beneath the load and M = MY, at the
extremities of the Mnge. Now, from the geometry of the M - diagram in Fig. 5.2b, we have
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from which
2(Mult~Mr)flp = (5.13a)

(5.13b)

Substituting Q = 3/2 from eqs(5.6b) into eq(5.13a) shows that the hinge length of a
rectangular cross-section is lp = 113. That is, the central hinge extends over one third of the
beam's length. For other axisymmetric beam sections, Q in eq(5.13b) is a numerical value
defining the cross-section. For example, it can be shown that Q = 1.7 for a solid circular
section and Q = 2 for a square section when oriented with one diagonal as the horizontal axis
of symmetry.

The shape of the hinge follows from the similar triangles within Fig. 5.2b. Also,
employing eqs(5.3b) and (5.6b), we find for the rectangular section

2htd -

I I . 2h
x = - 1 - —

(5.13c)

6\ d

which reveals that the hinge has the parabolic profile in x versus h co-ordinates as shown.
Where more than one hinge is necessary for failure, they form elsewhere instantaneously

by stress redistribution. For the encastre-beam in Fig. 5.3a, the collapse mechanism requires
that Mull is reached beneath the load and at each fixed-end simultaneously.

W

A
(a)

(b)

(c) Mr

Mal

Figure S3 Collapse of an encastre beam

Equating the moment at the end to the net moment at the centre in Fig. 5.3b

(5.14a)

Thus, the collapse load is W= 2MutlUab and the plastic hinge lengths la, lh and lc follow from
the geometry of similar triangles within Fig. 5.3c:
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MuU - M y _ 2Malt

. = 1 , - ^ . 1 . = 1 , - 1 (514b)

2Mult

h
b , 1

2{ Muh) 2{ Q) (5.14c)

1
(5.14d)

where Q in eqs(5.14a-c) will again depend upon the beam cross-section.

5.2.4 Residual Bending Stresses

When an elastic-plastic beam is fully unloaded from the moment M^, a state of residual
stress 0R will remain in the cross-section following recovery of elastic bending stresses erE.
It is assumed that purely elastic unloading occurs from the elastic-plastic stress state ffthat
exists under M^,. This gives

ok = o- aE (5.15)

For the elastic-plastic rectangular section in Fig. 5.1c, the elastic stress recovers over the
whole depth - d/2 s y <, d!2, following unloading from Mv. Elastic bending theory gives
the recovered elastic stress as

Ok = Mvy tI=(Mm/ MT)(tfri I) y

where I = bd3/12. Substituting from eqs(S.l) and (5.3b),

Within the plastic zone a = Y, for y lying in the outer regions ± (d/2 - h)*y £± d/2. The
residual stresses follow from eqs(5.15) and (5.16) as

(5.17)

Within the elastic zone, y lies in the inner regions Q <,y &± (df2 - ft). Bending theory
supplies the applied stress as
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_ Yb(d - Ihfy 12 2Yy

b{d - - 2h)
(5.18)

which can readily be checked from similar triangles in Fig, 5. lc. The residual stress for this
zone is found from subtracting eq(5.16) from eq(5.18);

2Yy

(d - 2ft) d
2j, [ ! • *
d { d

(d - 2h) d

(5.19)

Equations (5,17 and 5.19) show that trM varies linearly with y within each zone. Figure 5.4a
illustrates <% corresponding to an elastic-plastic condition. In Fig, 5.4b, ag for the fully
plastic condition is given where* with h = d/2 in eq(5.17), aM= Y{\ - 3ytd). This shows that
the maximum residual stress possible, t?s = F, occurs at the beam centre where y = 0, At the
top and botom edges, where y = ± d/2, oR = ± Y/2.

d/2

-r (a)

-y/2

ZTJ53
-Y

Figure 5 4 Residual stress distributions

Residual stresses have an important influence upon fatigue strength of a structure, where it
is desirable that they serve to prolong life. Here, the sense of the residual stress must oppose
the mean stress within a superimposed fatigue cycle arising from external loading.

5.2.5 Residual Strains and Curvature

The elastic bending theory also provides the relationship between the longitudinal bending
strain e and the radius of curvature R of the neutral axis:

e=alE = (5.20a)

where y is the distance from the NA to any point within the elastic core. When the outer
fibres reach the yield stress, eq(5.20a) gives the radius of the beam curvature as

= Ey/a=(Ed)l(2Y) (5.20b)
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and therefore the longitudinal strain at position y is

(5.20c)

Now, from eqs(5.4a) and (5.20b), the normalised curvature of an elastic-plastic section is
defined from its elastic core:

= E(d - 2h) ^ 2Y _ x 2ft
2Y Ed d

(5.21a)

Equation (5.21a) shows that the ratio between these elastic curvatures diminishes from unity
to zero as h penetrates to the full depth. Inverting the ratio in eq(5.21a) defines the
normalised elastic-plastic strain when, from eq(5.20a),

ep _
ytR

. = 1
R, 1 - 2h/d

(5.21b)

Equation (5.21b) applies to all y within the elastic core 0 sy £ (df2 - h). Figure 5.5 shows
that the strain ratio £9/£? becomes infinite as the ratio MmIMY approaches its asymptote 3/2.

_5i

0.3

0.2

0.1

h
d

10 15

Figure S 3 Relationship between tongtaSnal strain and the elastic-plastic moment

Following the removal of M^, the residual strain is found from

(5.22a)

where the elastic recovered strain is eB = (Mvy)l(IE), Normalising eq(5.22a) with the elastic
core strain % from eq(5.20c) and substituting from eq(5.1), leads to
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eY IEeY sY MY

(5.23a)

where from eq(5.1) MY = 2IY/d. Substituting eqs(5.3b) and (5.21b) into eq(5.23a) gives
residual strain for 0 s y i (d/2 - h):

1
er (1 - 2h/d)

_ 2(h/df(3 - Ihld)

(5.23b)

(1 - 2hld) (5-23c)

Equation (5.23c) shows that sRlsr increases from zero, at hid = 0, to infinity when h/d = 0.5
as MuU is reached (see Fig. 5.5). Comparing eqs(5.23b) and (5.19) shows mat residual stress
and strains in the elastic core obey a simple elastic relation eM = oJE. The same applies to
the outer plastic zones in non-hardening material, i.e. where trM is given by eq(5.17). It
follows that the residual strain distribution is identical to Fig.5.4b but with a scaling factor
1/E. This fact implies that originally plane cross-sections of the rectangular section beam
remain plane. Because eq(5.23b) applies within the elastic core, O s y ^ {dl2 ~ h), which
exists under Mw, it will also provide a residual curvature RM as

Rg = yleM = (y/sr)(eYfsM) (5.24a)

Substituting eqs(5.20b) and (5.23b) into eq(5.24a) gives

5.2,6 Non-Axisymmetric Section

In the T-section of Fig. 5.6a, the unstressed neutral does not lie at the central depth but
originally passes through the eentraid of its area. Yielding under Mr will commence at the
web bottom since this is the more highly stressed surface. As the bending moment is
increased to Mv, the plastic zone penetrates inwards from the bottom surface, as shown in
Fig. 5.6b, During penetration the horizontal tensile and compressive forces, T and C
respectively, remain balanced, i.e. T=C. For this to occur, the stress re-distributes so that
Fig. 5.6b accommodates a shift in the NA to the position ym shown, giving Mv = Cs = Ts.
With increasing Mm, the section stress continues to redistribute, maintaining C=T, until full
plasticity is reached under MMft in Fig. 5.6c. The NA then divides the section area equally.

5.2.7 Influence of Hardening

It is possible to account for the effect of linear hardening upon the moment carrying capacity
of the section. The shaded areas in Fig. 5.6c represent this increased capacity when the
gradient of the stress-strain curve K = datdeF is identified with the gradient of the stress
distribution [1]. This is illustrated in the following example.
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Figure 5.6 Elastic-plastic bending stress in a T-section

Example 5.2 In the T-section of Fig. 5.6a, yielding has occurred 50 mm from the web
bottom. If the yield stress is constant at F = 278 MPa, find the applied moment, the stress
at the flange top and the position of the neutral axis. Estimate the fully plastic moment when
(i) the beam material is non-hardening and (ii) when it hardens according to the linear law
a= Y + KeF, in which K = 1/10.

In Fig. 5.6b, the condition T=C gives

(125 x 18.75){0J + 00/2 + (ylp - 18.75)18.75<%/2 = (18.75 x 50)F + (168.75 - yep)18.7SF/2 (i)

where the stress ordinates appear in terms of yw. From the geometry of Fig. 5.6b:

axIY=yepl (168.75 - ym) and e^/F= (y^ - 18.75) / (168.75 - y^) (ii,iii)

Substituting eqs(ii) and (iii) into eq(i), leads to an equation which locates the position of the
neutral axis at ym = 72.84 mm. Equation (ii) then gives the elastic stress at the flange top as
ff, = 211.1 MPa. The forces T= C = 510.6 fcN follow from the left- and right-hand sides of
eq(i). These act at the respective centroids for the areas above and below the neutral axis.
That is: st = £(A,.y,.)/A = 52.465 mm and % = 72.955 mm. The moment Mv is found from

Mv = Cs = C (s, + st) = 510.6 (52.465 + 72.955)10'3 = 64.04 kNm

When the fully plastic moment is reached (see Fig. 5.6c), the condition T=C becomes

[(125 x 18.75) + (y, - 18.75) x 18.75]F= (218.75 - yf) x 18.75F (iv)

The neutral axis now divides the section into two equal areas to give yp = 56.25 mm. The
centroids of these areas are st = £(A,y()/A = 40.385 mm and st = 81.25 mm. Equation (iv)
gives T = C = 847.04 kN and Mul, is found from

MKtt = Cs = (218.75 - yp)18.75F(j! + s2)
= 162.5 x 18.75 x 278 (40.385 + 81.25)10"6 = 103.03 kNm

To account for hardening, the force within each shaded area in Fig. 5.6c must be added to
eq(iv). This modifies the position of the neutral axis to yp\ Using the condition 7" = C":

[ (125 x 18.75) + (y.1 - 18.75)18.75^+ (y,1 - 18.75)^/2 + (18.75 x 125)(oj + at)/Z
= (218.75 - y.' )18.75F+ (218.75 - y/ (v)
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in which the stress ordinates (see Fig. 5.6c) are:

•' - 18.75) and ff5 = K (218.75 - yj ) (vi-viii)

Substituting eqs(vi - viii) into eq(v), with K=: 1/10, leads to an equation which re-locates the
position of the neutral axis to yp' = 57.38 mm. From this, we find from eq(v), T = C =
865.55 kN. The centroid for the upper area is modified to s^ = E(A,y,)M = 41.23 mm and
for the lower web areajra = 80.69 mm. Hence the collapse moment becomes

MJ = C' (s,1 + .%') = H65.55 (41.23 + 80.68)10"s = 105.52 fcNm

which shows a slight increase over the non-hardening value.

S.3 Elastic-Plastic Torsion

Elastic-plastic torsion of a circular shaft is similar to elastic-plastic bending of beams in that
three conditions apply to the shaft: fully elastic, elastic-plastic and fully plastic. The
corresponding torques are derived for both solid and hollow circular section shafts.

5.3.1 Solid Cylinder

Consider a solid circular shaft of outer radius ro, subjected to an increasing torque C.
Provided the cross-section is elastic, torsion theory will describe the twist, shear stress and
strain. This includes the case where the outer fibres have reached the shear yield stress k.
Here, an initial yield torque CY for the limiting, fully-elastic section is

r - Jk -
r 2r

(5.25)

Increasing the torque beyond Cr results in the penetration of a plastic zone inwards from the
outer radius. This produces an elastic-plastic section, shown in Fig. 5.7a, where an elastic
core is surrounded by a plastic annulus, interfaced at a common elastic-plastic radius rv

Sr

(a)

(b)

Figure 5.7 Elastic-plastic bar in torsion



 

138 BASIC ENGINEERING PLASTICrTY

Since the material does not work-harden (see Fig. 5.7b) k is constant for r^ s r •& r0. It
follows that there is a linear variation in elastic shear stress r within the core, O s r s r ^ :

T=k(r/ref,) (5.26)

The corresponding elastic-plastic torque Cep is found from the following equilibrium
condition;

(5.27a)
C_ = 2K fr- jfcr'dr + 2n f" r r 2 dr

= 2** fr'r3dr + — f " T 3 d r
K r

ep
 J °

4

kr: J 4

2 13

ep

1 - - ^
(5.27b)

Dividing eq(5.27b) by Cr from eq(5.25) gives the normalised torque;

Cy 3
(5.28)

The angle of twist defl is found from applying elastic torsion theory to the core. At the
elastic-plastic interface, where r = k for r = r^ (Fig. 5.7b), we find, for a shaft of length /,

kl C I§ = _ E _ = _ i _ (5.29)
G r

e p
 G / *

in which Je = ?rrv*/2 and Ce is the torque carried by the elastic core, i.e. the second integral
in eq(5.27a), Ce is not to be confused with the fully elastic torque eq(5.25). The section
becomes rally plastic through to the bar centre under its ultimate torque Cai. Putting rv = 0
in eq(5.27b), gives

t) (5.30a)

and substituting from eq(5.25) defines the shape factor for the solid circular section;

CHl,/Cr = 4/3 (5.30b)

(a) Residual Shear Stress
When the elastic-plastic bar is fully unloaded, elastic stresses recover to leave a residual
shear stress distribution tR. This distribution is found from

= r- (5.31)

where ris the shear stress in either zone under the elastic-plastic torque Cm. Torsion theory
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supplies the elastic shear stress tE that recovers upon removal of C^:

where from eq(5.25)
^(C^ICyXCyL ro)

(5.32a)

(5.32b)

It follows from eqs(5.28), (5.31) and (5.32b) and with J = n r*f2, that the residual shear
stress distribution in the plastic zone, r^s r & rg, where r = k (see Fig. 5.8a) is given by

Cr U

(5.33a)

and, from eqs(5.26), (5,28), (5.31) and (5.32b), the residual shear stress distribution within
the elastic zone, 0 s, r s r^, is

TR =

3 r
1 - 1 ^

= 4M-!
4 r.

(5.33b)

The r, ^ and t^ distributions are represented graphically in Fig. 5.8b. The residual stresses
supplied by eqs(5.33a,b), are simply the difference between stress ordinates rand rE within
each zone, their signs determined from eq(5.31). It is seen that rR has its two largest values
at the outer and interface radii, the greater value depending upon the depth of penetration.

(a)

(b)

*• r

Figure 5.8 Residual stress in a partially-plastic solid bar
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(b) Residual Angular Twist
When the bar's outer fibres reach the shear yield stress k, the fully-elastic angular twist Bf
is supplied by torsion theory:

&,=
kl

Gr

Combining eqs(5.29) and (5.34), gives a twist ratio for the elastic-plastic bar

ft- (kl)'(Gr ) r0

(kl)/(Grg)

(534)

(5.35)
ep

The following normalised, torque-twist relationship is found from combining eq(5.28) with
eq(5.35):

J (5.36)

The graph of eq(5.36), given in Fig. 5.9, shows that the twist ratio becomes infinite as the
normalised torque increases beyond unity to its ultimate value of 4/3.

1.5

E

1.0
0.8
0.5
0A r

I I
0 1 2 3 4 5

Figure 5.9 Dependence of twist upon applied torque in an elastic-plastic bar

Since the ordinate CuJCy is the asymptote 4/3, the implication is that Cull could not be
attained in practice if the material was truly elastie-perfectly plastic. However, most metallic
materials do strain-harden to some degree, which increases the torque-carrying capacity
above CHir

Following unloading from any intermediate torque value Cv < Cull, the state of residual
twist 0R is found from

0R=6ep~0E (5.37a)

where 0e is the twist which recovers elastically from the removal of Cv.
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Substituting 0E = (Cepl)/(GJ), together with eq(5.29), into eq(5.37a) gives

0 = -M-, - _££_ (5.37b)
Gr

ep
 GJ

Normalising with 0Y from eq(5.34):

dMtar \ (c. nitnn
(5.38a)

0Y (M)/(GrJ (kl)I(Gr)

Substituting eqs(5.25), (5.35) and (5.36) into eq(5.38a), gives this twist ratio as

ep

0y

i-m
i -

i{ e*
4 0,

ep ,

(5.38b)

(5.38c)

Equations (5.36) and (5.38c) establish a dependence between Cef/Cr, &V/0Y
 a n ( i &fJ

shown in Fig. 5.9. A residual, angular twist exists following unloading from a torque which
exceeds Cr, The ratio 0Jdr increases to infinity under Cuk. When C <. Cy, elastic torsion
theory describes the torque versus twist line of unit slope, since C fCr = Ql 0r = (Cro)/(Jk).

5.3,2 Hollow Cylinder

Figure 5.10a shows a partially yielded hollow cylinder, with inner and outer radii rs and ro
respectively. The plastic zone has penetrated to intermediate radius rep under a torque C^.
The distribution of shear stress is given in Fig. 5.10b. Again, an elastic-perfectly plastic
material is assumed in which the plastic zone spreads under a constant yield stress value k.

(a)

(b)
•* r

Figure 5,10 Elastic-plastic hollow cylinder under torsion
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Torque equilibrium expresses the sum of elastic and plastic torques from each zone:

JEt Ink I 3

(5.39a)

(5.39b)

Putting r^ = rB in eq(5.39b) gives the initial yield torque Cr as

* nk, 4 4v
r= 27 C r ° " r' } (5.40)

Putting r^ — rt in eq(5.39b) gives the ultimate plastic torque CBjt. When Calt is normalised
with Cr, from eq(5.40):

•"ull

- (r./rfl)
4]

(5.41)

Combining eqs(5.39b) and (5.40) gives a dimensionless elastic-plastic torque Cv for
interface radii in the range rs< r^ s r0;

1/4 4. , 4 4v

3(r o - r, ) r (r , - r, )

(5.42)

Equation (5.42) reduces to eq(5.28) with rt = 0 for a solid cylinder. The angular twist $is
found from the inner elastic core, r,s n r v , where the elastic torsion theory applies:

k

The elastic twist is, from eq(5.43),

6 = CJ kl

GJ, Gr

nt 4

where Je applies to the elastic annulus ;

and Ce is supplied from the first term in eq(5.39b):

„ _ nk i 4 4»

~ "2r~ p ~ r'

(5.43)

(5.44a)

(5.44b)

(5.44c)
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A residual angle of twist 8R will remain when C9 is released. Since the recovered twist
0E is assumed to be elastic, eqs(5.37a,b) again apply but with J = n(ro* - r*)/2, for the Ml
cross-section. Substituting eqs{5.39b) into eq(5.37b):

kl
Gr 2JG I 3 - 4 - M ? m (5.45a)

which is constant for a given rv. We may normalise eq(5.45a) with the twist at the yield
point for the outer radius, 0t = MIGrB. This gives

2J 3 • i f (5.45b)

Putting r, = 0 in eq(5.45b), with / = nr*l2, leads to the residual twist for a solid shaft, given
previously in eq(5.38b).

The residual shear stress in the outer, plastic zone, r^ s r s r0, is found from
substituting eqs(5.32a) and (5.39b) into eq(5.31):

cr

= k 1 - "ep r

H l - |
- r ' ) 3(ri - r*)

(5.46a)

The residual stress in the inner, elastic zone rt&r& rv is found from substituting eqs(5.26),
(5.32b) and (5.39b) into eq(5.31):

= k

= k

c.

3 ( r - r , )

4 4v
(5.46b)

Alternatively, we could employ eq(5.42) within the second line of each expression (5.46a,b).
It is seen that when rt = 0 in eqs(5.46a,b) they reduce to the solid bar residual stresses, given
previously in eqs(5.33a,b).
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5.5.5 Sandhill Analogy

A simple analogy can be employed to find the fully plastic (ultimate) torque of solid, non-
circular sections [2]. To show this, compare the expression for the volume V of a cone of
sand that would rest on the end of an upright circular bar (see Table 5.1), with eq(5.30a).
This shows that CM, = 2 V, where k = h}r0 defines the sloping side of the cone. The ultimate
torque Cm for the rectangular and equilateral triangular sections can be derived in a similar
manner, i.e. from knowing the volume of a prism of sand each section would support and
that each side gradient is L

Table 5.1 Fully ptastic torques Crf, for solid sections

Section V Slope Cttl, = 2V

circle (radius r0)

rectangle (b x t)

triangle (side a)

{M6)(3b - t)

k = hJra

k = 2h!t

k = 2^3h/a

kt2(3b - t)/6

kaVU

With I, T and U sections under torsion, we take the sum of C& for each rectanglar web and
flange. The C^, expression for a rectangle will also apply to thin-walled, curved sections,
where b is the perimeter length and t is the constant wall thickness. For example, b = 2jrrm

in a split, thin-walled circular tube, of mean wall radius rm, giving Cutt * n k t2 rm,. For
closed tubes we may use the difference in Cult between the inner and outer 'solid' sections.

5.4 Thick-Walled, Pressurised Cylinder with Closed-Ends

Thick-walled cylinders may be employed safely even when an internal pressure induces a
partially plastic state within its wall. This pressure is intermediate to those pressures
associated with full elasticity and full plasticity. As with the elastic-perfectly plastic beam
and the torsion bar, the non-hardening cylinder is also a statically determinate problem. That
is, the critical pressures may be found from combining an equilibrium equation with a yield
criterion. These are sufficient to ensure that a condition of strain compatibility exists at the
elastic-plastic interface.

5.4.1 Initial Yielding

Let a thick-walled cylinder of non-hardening material, with inner and outer radii r, and ra

respectively, be subjected to a steadily increasing internal (gauge) pressure. The external
pressure remains atmospheric at zero gauge pressure. Under elastic conditions, a principal,
triaxial stress state is distributed through the wall. This state consists of radial, hoop and
axial stresses or, <%and or. respectively, these being expressed from the Lame theory [2] as
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j>,rt
a(l - rpr2) _ p ( ( l - r*/r*) (5.47a)

ptr?(l + rs
2/r2) p f ( l + r*/r J ) (5.47b)

=2 2 .

r r )
Pi (5.47C)

» - l )

where K = ro/rt As the pressure increases, the bore fibres are the first to reach the yield
stress Y. Let us assume, firstly, that the material conforms to the von Mises yield criterion.
Equation (3.7a) appears in its principal, polar co-ordinate form

(o-, - atf + (aB - arf + (ar - azf = 2Y1 (5.48)

Substituting eqs(5.47a-c) into eq(5.48), with r = rt, gives the initial yield pressure

In Tresca's prediction to the yield pressure, eq(3.1b) is written as

cre-trr=Y (5.50)

From eqs(5.47a,b) and (5.50), with r=rt

Pf ; p.3 i)
2K2

Comparing eqs(5.49) and (5.51), the cylinder first yields under Tresca's pressure. Von Mises
requires the internal pressure be increased by a further 15% before yielding commences.

5.4.2 Elastic-Plastic Cylinder

Here we wish to determine the internal pressure which penetrates a plastic zone to a radial
depth rm, where rti r^s, rB. Since the outer annulus r 9 s r s ro is elastic, the radial and
hoop stresses are again supplied by the Lame" eqs(5.47a,b,c). The boundary conditions are:
(i) at the interface radius r^, ar = - pv and (ii) at outer radius r0, «rr = 0. These give

°T = P^pi
2

l ~ I"'" }
 (5.52a)

", = p»r»ii+yr*> C532b)

* 2 (r2 - r2}
(5.52c)
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At the interface radius, the material is at its initial yield point. Substituting eqs(5.52a-c) into
eq(5.48), with r = rm, leads to the interface pressure

(5.53)

Substituting eq(5.53) into eqs(5.52a,b,e) provides the triaxial stresses in the elastic zone;

a = V3 r.

a =
2

(5.54a)

(5.54b)

(5.54c)

A radial equilibrium equation applies to the axial symmetry [2]:

do:
- aT = r (5.55)

When the LHS of eq(5.55) is constant it becomes easily to apply. Within the plastic annulus
rt £ r s rv, axial plastic strain is ignored when applying internal pressure to a closed-end
cylinder. Substituting def = 0 within the first term of eq(4.3c) leads to

••• az = ¥i(ar+ tr^ (5.56)

Equation (5,56) holds consistently with the axial stress in elastic region, given by eq(5.52c).
Substituting eq(5.56) into eq(5.48), the von Mises criterion is, simply

ae-ar = 2W3 (5.57)

Combining eqs(5.55) and (5.57) allows integration,"

ar - — lnr + A (5.58a)

in which A is found from the condition that err - - p v for r=rep. Substituting from eq(5.53):

2Y Y 2F (5.58b)

Combining eqs(5.58a and b) with eqs(5.56) and (5.57), leads to expressions for the triaxial
stress state in the plastic zone;
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2F

7?

,

1 - 'JL

1 + - £

4)

(5.59a)

(5.59b)

(5.59c)

Now as ar = - pt for r = rlt eq(5.59a) gives the corresponding internal pressure;

( )( )
The pressure p^, required to produce a fully plastic cylinder, is found from putting r^ = ro

ineq(5.60a): / r \

Pult - f ta( ̂ j
which depends upon the yield stress of the cylinder material and its radius ratio. Crossland
et al. [3,4] showed that eq(5.60b) was in reasonable agreement with their burst pressures for
pressure vessel steel cylinders, when Fwas identified with the upper yield point. However,
an empirical modification to eq(5.60a) was made for when material within an elastic-plastic
cylinder displayed both upper and lower yield points. They used

(5.60c)

where (Fj/%/3) and (F2/-/3) were identified with the respective upper and lower shear yield
stresses in a torsion test. The elastic and plastic eqs(5.54a-c) and (5.59a-c) respectively, give
radial, hoop and axial stress under pressure pt. They are repesented graphically in Fig. 5.11a
for when the interface radius co-incides with the mean wall radius, i.e. rm = 54 (rt + r0).

(b)

Figure S.ll (a) Elastic-plastic and (b) residual stress distributions within cylinder wall
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Figure 5.1 la shows that the hoop stress is greatest in tension at the interface radius. At the
bore, the magnitude of the maximum, compressive radial stress equals the internally applied
pressure. Also, the axial stress averages the radial and hoop streses across both zones.

5.4.3 Residual Stresses

A triaxial state of residual stress will remain distributed throughout the wall of the cylinder
when an elastic-plastic pressure is released. That is, when the bore pressurept in eq(5.60a)
is released, elastic stresses aE recover to leave a residual stress distribution % The latter
is found from applying ers = a - trB, where a are the elastic-plastic, applied stresses
appearing in eqs(5.54a-c) and (5.59a-c). An elastic recovery occurs over the whole section
r , s r s r t , upon releasing pt. Thus, oE assumes the usual Lamfi forms, given in eq(5.47a-c).
Subtracting ffE from the corresponding stresses ff under pressure in each zone leads to the
requires residuals. For the inner, plastic zone, where rt<,r <ra,

(5.61a)

(5.61b)

(5.61c)

For the outer, elastic zone where rvs r <, ro ̂

°SK = a0 ~ °0E

ep
r.

1 + ^
, 2

p,r , a ( l

, 2
(r0

(5.61d)

r

r
I _ _2.

, 2
(5.61e)

73 (5.61f)

where |)j is given by eq(5.60a). Equations (5.61a-f) are distributed in the manner of Fig.
5.1 lb. Compressive stresses left at the bore are particularly beneficial to improving fatigue
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strength. They oppose and reduce the magnitudes of peak, cyclic tensile stresses due to
fluctuating, internal service pressure. The process of pre-pressurising thick cylinders to
produce compressive residual stresses is known as autofrettage. This process has long been
used for strengthening cylindrical pressure vessels and cannon tubing against fatigue failure.

A simpler, alternative analysis employs the Tresca yield criterion in eq(5.50) instead of
the von Mises eq(5.57). Since no assumption needs to be made about axial strain, eq(5.50)
is readily combined with the equilibrium eq(5.55), to give the radial stress at = Y In r + C.
It follows from eq(5.58a) that we can arrive at the Tresca solutions from multiplying, with
the constant factor 1/3/2, all the forgoing (von Mises} pressures and stresses, including the
residuals in eqs(S.61a-f).

5.5 Open-Ended Cylinder and Thin Disc Under Pressure

In an open-ended, thick-walled cylinder, bore pistons produce and contain an internal fluid
pressure. When the force exerted by each piston upon the fluid is reacted externally, e.g. by
hydraulic jacks, the cylinder wall remains unstressed axially, giving oz = 0. The latter also
applies during the radial, pressurised expansion of a hole in a disc. Here, the z-dimension
is small but the diameter ratio is comparable with that of a thick cylinder, i.e. a plane stress
condition applies. In both the disc and the open-ended cylinder the axial stress CTZ remains
the intermediate (i.e. absent) stress os> oj > ar It follows, therefore, that Tresca's hoop and
radial stresses in a closed-end cylinder will also apply to a cylinder with open-ends. Again,
these are found from multiplying the ae and or expressions (5.54a,b), (5.59a,b) and
(5.61 a,b,d,e) by a factor of VV2, The von Mises yield criterion is more difficult to combine with
the equilibrium condition for an open-ended cylinder. Nadai's parametric approach [1] is
particularly useful for providing a solution to the radial and hoop stresses in an elastic-plastic,
open-ended cylinder and a thin disc of non-hardening material. In contrast to Tresca's common
solution, it will now be shown that a von Mises, open-end solution differs from its closed-ended
solution, given above.

5.5.1 Initial Yield Pressure

When at = 0, the von Mises criterion, eq(5.48), reduces to its biaxial form

cr0* - erear + a? = Y% (5.62a)

With an initial yielding of the bore fibres, we put r = r, and pt = pr in the Lame elastic stress
eqs(5.47a,b), to give the bore stresses ceand ar. Substituting these into eq(5.62a) provides
the condition for yielding within the bore

Pr*[ (Kz + I f + (Kz - DOC1 + 1) + (K3- - I)2] / (K1 - I)2 = F2 (5.62b)

where K= rj rt. Re-arranging eq(5.62b) supplies the yield pressure as

pf = — i — '- (5.63)
/(3JC4 1)

Clearly, eq(5.63) differs from the closed-end yield pressure in eq(5.49).
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5.5.2 Full Plasticity

We &st derive the bore pressure that will produce Ml plasticity in a thin disc or open
cylinder of non-hardening, von Mises material. At any radius in the wall, the yield criterion
(5.62a) and the radial equilibrium eq(5.55) applies. Making the following substitutions

(5.64a,b)

into eq(5.62a), reduces it to
a* a'

— + —
«2 J.5

1 (5.65)

where a = v^Fand fc = ^(2/3)F. Equation (5.65) describes the ellipse, shown in Fig. 5.12.

a'

-b

Figure 5.12 Nadai's parametric representation of von Mises yield criterion

The respective lengths, a and b, of the semi-major and -minor ellipse axes, re-appear within
Nadai's parameters [1]'.

tf* = b cos<9 = ^(2/3) Fcos#
(5.66a)
(5.66b)

Solving eqs(5.64a,b) for ag and ar and combining with eqs(5.66a,b) gives

7f'
1 .

= Y\ sax & + ^ - c o s a| = - r - sin | a + —

= 2Iain[ 0 - -
V { 6

(5.67a)

(5.67b)

Substituting eqs(5.67a,b) into eq(5.55) leads to a differential equationr

= I sinl 0 + - - ml 6 - —\ \ <= coaff
dr

Putting y = cos 6 enables the variables to be separated into the form

Ay &y_ 2 dr

y/l - y2 / 3 / 3 r
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Integrating this leads to:

A'" (5.68a)

where A is an integration constant, found from the condition that aT = 0 for r = r.,
Correspondingly, eq(5.67b) gives 0B =JT/6 and eq(5.68a) becomes

— - — coso e
r2 v/3

(5.68b)

Equation (5.68b) enables #to be found at any radius r, s r s r0, when ffeand oT will follow
from eqs(5.67a,b). For example, with ra = 62.5 and ^ = 25 mm the stress distributions
follow the broken lines in Fig. 5.13a.

(a)

(b)

Figure S.13 Yielding in a thin pressurised disc

The internal pressure to produce full plasticity identifies with the radial stress at the bore:
ar=- pf for r = r, in eq(5.67b). This gives

(5.68c)

where 0, at r; is found from eq(5.68b)
ro 1 2 a ^
— = —— cos & e
r. V3

The radial stress remains compressive for valid values of 0 in the range - s73 < 0< ff/6.
For example, with rBlrt = 2.5, the disc becomes fully plastic (the lower broken line in Fig.
5.13a), when from eq(5.68b),
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6 2 . 5 V 2 a _V3(»/6-9j)

— = — cos ft e
25 J <J3 '

A Irial solution gives 0, = - 30.9° = - 0.539 rad. The corresponding normalised, internal
pressure is, from eq(5.68c),

— = — sin f - + 0.539 I = 1.009
V3

Figure 5.13a shows that the maximum radial compressive stress is ffr/F = - p/Y = - 1.009
within the bore, where the hoop stress is ffJY = - 0.014. Substituting these stresses into the
yield criterion (5.62a) confirms that the bore fibres are at the point of yield. The maximum
hoop stress is tensile for r = ro. Since c7r=0 for r=ra, eq(5.62a) confirms a maximum value
ag- F(i.e. agIY= 1) for a fully plastic disc.

5.5.3 Elastic-Plastic Deformation

We can now determine the internal pressure pt to yield the disc to any intermediate radius
r^, where rf s r^s, rB (see Fig. 5.13b). Lamfi stresses in the outer, elastic zone rv& r s ro,
follow from eqs(5,47a,b);

a° • i 2 \ (5.69a)
0 SB I

~ r«'r I (5.69b)
a =

with az = 0. These are shown as the continuous lines in Fig. 5.13a. The interface yield
pressure p ^ is found from eq(5.63), where K = rBfrep. This gives

YUr / r )2 - 1]
° ep (5.70)

The stresses within the inner, plastic zone rts. r <. rm are again supplied by eqs(5.67a,b).
The radial and hoop stress plastic distributions must each match the corresponding elastic
values at the1 elastic-plastic, interface radius. The condition that ar is common to both zones
at r = rv is used to re-determine the constant A in eq(5.68a) for an elastic-plastic disc. That
is, from eqs(5.67b) and (5.70), ar = - pep for #= 6cfi

—-sm 0._ - —

C5.71)
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where 9^ must be found by trial. It follows from eq(5.68a) that

r^p = eosff ^3(Stp-0) (5.72)
3

Equation (5.72) enables 0 to be found at any plastic radius rti r & rv. In particular, the
solution 0 = 0t for r = rs, when substituted into eq(5.68c), supplies the internal pressure pt

to produce an elastic-plastic disc. For example, with r, = 25 mm and ra = 62.5 mm, we can
find the pressure to yield the disc to its mean radius rv = 14(25 + 62.5) = 43.75 mm, as
follows;

r , / r , = 43.75/25 = 1.75
rj rm = (roi rt) x (rj r<p) = 2.5 / 1.75 = 1.4286

Substituting into eq(5.71) gives
- 0.4908 = 2 sin {dm~ ff/6)

A trial solution gives 6V = 15.8° — 0.2758 rad, which is a constant for a given depth of
penetration. From eq(5.72), with r^^ and 0= 6if

1.752 = 1.0393 cos0( x exp [v^ (0.2758 - 0,) J

A trial solution yields 0, - - 22.9° = - 0.3997 rad. Hence, from eq(5.68c)

M sin (ff/6 + 0.3997) = 0.921

and from eq(5.67a), ag/Y= 0.142. The stress distribution within the plastic zone in Fig. 5.13
is found for further solutions to $from eq(5.72) at given radii r within the range r,i r s r9.
Equations (5.69a,b) and (5.70) supply the elastic zone stress distributions for repz r a ro.

5.5.4 Residual Stresses

When the elastic-plastic pressure pt in eq(5.68c) is released, it is assumed that elastic stress
fffi is recovered for all radii according to the Lame' eqs(5.47a,b). Applying aR = a - aE to
the plastic zone rt s r s rv, we subtract eqs(5.47a,b) from eqs(5.67a,b) to give the hoop and
radial, residual stresses as:

2F . ( - x)
aao = —— sm \ 8 + — \ -

— «u ̂  6 j —JJ1-J- (5.73a)

= 2 I s i n [ & - j \ - PiKl ~ r"/r ^ C5-?3b)

In the elastic zone rm& r & rg, the applied stresses ffare given by eqs(5.69a,b) so that the
residuals within this zone become
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2, 2 2 . 2

rlr

(5.73c)

2, 2 2 , 2 ,

r^lr, - 1

(5.73d)

where pm is given by eq(5.70). The residual stress distributions 0«and am according to
eqs(5.73a-d), are similar to those of <% and er̂  in Fig. 5.1 lb, for a closed-end cylinder. The
maximum residual hoop stress is compressive within the bore fibres. Note that it is not
permissible for am to exceed Y for r = r, in a cylinder of non-hardening material. If
eq(5.73a) predicts am > Y, the implication is that reversed yielding of the bore has occurred,
so invalidating our assumption of an elastic recovery following pressure release. The
experimental determination of residual stresses, by the hole boring technique [5], confirms
that Ms assumption will overestimate the compressive residual hoop stresses in the the bore
fibres whenever reversed yielding occurs.

5,6 Rotating Disc

Here we wish to determine the angular velocities of a spinning disc required to: (i) initiate
yielding, (ii) penetrate a plastic zone into the wall and (iii) produce full plasticity. Consider
a uniformly thin, solid disc of outer radius ra and let the respective velocities be &%, <û , and
ft^ Firstly, a Tresca yield criterion is employed for simplicity. Later, Nadai's parameters
will be employed to define the plane-stress state for a similar disc of von Mises material.

5.6.1 Initial Yielding

The elastic, radial and hoop stresses or, ag, at a radius r £ ra in a solid disc, when rotating
at a speed eamd/s, are [1]

v ) r » - ( l + 3 v ) r a ]

(5.74a)

(5.74b)

where p is the density of the disc material. Equations (5.74a,b) are distribute! in the manner
shown in Fig. 5.14a.

(e)

0 '* r" 0

Figure S.14 Radial and hoop stress distributions
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Since both ag and ffr are tensile, the Tresca criterion (5.50) employs the magnitude of the
greater tensile stress together with the least stress (i,e. zero axial stress 0j). This gives

ae = Y (5.75)

Clearly, yielding will commence at the centre where trg is a maximum. Substituting
eq(5.74b) into (5.75) for r = 0 supplies the speed co? to initiate yielding:

o

SF

+ v^r2 (5-76)

5.6,2 Elastic-Plastic Disc

The equilibrium eq(5.55) for an elastic-plastic disc is modified for the centrifugal force
within the inner plastic core O s r s r r This gives

dff „ „
ar + r—^ - og + pa2r% = 0 (5.77)

dr
Combining eq(5.75) with eq(5.77), provides a solution to ar as follows

dr r -

(5.78a)

where m^ is the speed to produce partial yielding, yet to be determined. From Fig. 5.14b,
since og= cr r=Fforr=0, me integration constantii = 0 in eq(5.78a). Thus, at the elastic-
plastic radius r = rv, from within the plastic zone, eq(5.78a) becomes

ar = Y - Pa"p r<!p (5.78b)

For me outer, elastic annulus rvs nrtt, Larni's equations are modified with a centrifugal
stress term [1]:

2, paJL' r2

°r = a ~ -Z ~ C3 + v)—T2— (5.79a)
rl 8

(5,79b)

Note, eqs(5.79a,b) reduce to eqs(5.74a,b) when, for a solid disc, the constants are b = 0 and
a = (3 + v )paz ra

z /8, apply to the respective conditions: (i) that the stresses cannot be
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infinite at the disc centre and (ii) ar = 0 for r = ro. Applying new boundary conditions to
eqs(5.79a,b) enable the constants a and b to be found. They are (i) ar = 0 for r = ra ,

and (ii) aB=Yat r = rv
2 2

rep

Solving these simultaneously for a and b gives

The angular speed av is found from the condition that ar is common to both zones at the
interface radius rv. Within the elastic annulus, eq(5.79a) gives, for r = rm,

2 2

or, = a - A - (3 + v)P**•'*•* (5.81a)
'ep

Substituting a and fc from eqs(5.8Oa,b) into eq(5.Bla) leads to

= (3 + v)
r! + 4 )

2 2 .

•O'.2-(l+3v)r;p^fi (S-81b)

Equating (5.78b) and (5.81b)

leads to the speed of the elastic-plastic disc

,.,* 16 r
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Equation (5.82) supplies a speed a)^ = (2.671 F)/(/wffl
z), for when the elastic-plastic interface

radius coincides with the mean radius rjra = ¥i, in a steel disc with v= V*. Dividing by 6%
from eq(5.76), gives fi^,/*% = 1.042. This shows that only a 4.2% increase in the initial
yield speed is required to produce this amount of plastic penetration.

5.6.3 Fully Plastic Disc

When the disc becomes fully plastic, eq(5.78a) applies to 0 s r < ro. Again, or = F for r =
0, giving A = 0. Also, because ar = 0 for r = r0, eq(5.78b) gives

The fully plastic speed «„,, is, therefore

fi& = - ^ (5-83)
Pra

Dividing eq(5.83) with %, from eq(5.76), gives the angular speed ratio;

3(3 + v)

8

This gives HJ»/&% = 1.104 for v= W, showing that a 10,4% increase in the initial yield speed
is required to attain full plasticity in a solid disc. Distributions in aT and ae for the fully
plastic disc are shown in Fig. 5.14c. Clearly, the use of the Tresca criterion, where ag = Y
is constant throughout the region of plasticity, greatly simplifies this solution.

5.6.4 Tresca Versus von Mises

A numerical, von Mises solution to the stress distribution within a non-hardening, elastic-
plastic, solid disc is also possible. The elastic zone stresses are again given by eq(5.79a,b)
for the same boundary condition: ar = 0 for r = r0. Moreover, eqs(5.79a,b) must satisfy the
von Mises yield condition at the interface radius, i.e. where a9 and err must equal the
corresponding plastic zone stresses ar rv. Within the inner plastic core, these two stresses
must satisfy the von Mises yield criterion and the equilibrium equation simultaneously:

4 - ffBar + o? = F 2 (5.84a)

^ 2%
 ( 5 § 4 b )

Using Nadai's eqs(5.67a,b) to separate c^and trr in eq(5.84a) and then substituting these into
eq(5.84b) leads to a first order differential equation in r and d [6]:

dr
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We may then solve eq(5.85) using a Runga-Kutta method, taking a single starting value for
Q, depending upon whether the disc is solid or hollow (i.e. 0e = nfl or nl6 respectively).
The von Mises solid disc solution shows that both ar and ff9must remain very nearly equal
to y in this zone, in contrast to the Tresca solution (see Figs 5.15a,b).

-0.25
-0.25 L

(a) (b)

Figure 5.15 (a) von Mises and (b) Tresca stresses far solid disc at similar speeds

The hollow disc solution reveals a similar ar distributions in Figs 5.16a and b but the von
Mises oe is not constant, increasing above F in the plastic zone interior rt<r< rv.

aJY

-0.5 -0.5 -

-1.0L -1.0'-

(a) (b)

Figure S.16 (a) van Mises, (b) Tresea stress distributiais for a tallow rotating disc
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The greater differences arising in cte and <?„ from applying different yield criteria to a solid
disc, are reflected in their residual stress estimates, am and om, as shown. For example, on
applying ax = o ~ oE to each zone in Fig. 5.15b, the Tresca residuals follow from
eqs(5.74a,b), (5.78a) and (5.79a,b) as:

0 < r < rm

(5.86b)

^ . fl - A - (3
r2

where a, b and 0)^ are gi¥en by eqs(5.8Oa,b) and (5.82). Equations (5.86a-d) were applied
to a solid, steel disc with F = 310 MPa, v = 0.28, p = 7750 kg/m* and ra = 250 mm,
following a speed JV = 13000 rev/min. Figures 5.15a,b show these Tresca's residuals are
greater and with different sign in the outer zone, compared to von Mises residuals [6]. This
contrasts with the conservative nature of Tresca, which predicts a greater spread of plasticity
at similar rotational speeds.
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Exercises

Elastic-Perfectly Plastic Beams

5.1 A simply supported beam of length I, with a rectangular section breadth b and depth d, carries a
uniformly distributed load w/unit length. Determine the ultimate moment, the collapse load and the
plastic hinge length, given that the yield stress Y is constant,.
[Answer: MHl, = bcfYM, w = 2W2 J7/2, /„ = /A/3]

5.2 Determine the collapse load and the length of the plastic hinges when an encastre beam of length
/, with rectangular section b x d, carries a single concentrated load W, that divides this length into p
and f, i.e. p + q = l.
[Answer: MMll = (M2/lV(2pf), p/6, q/b, 1/6]
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53 Show that fee collapse moment for a J- section, made from equal rectangles each of length o and
thickness t, is given by Ma(l = Yah(a + h)/2.

5.4 Examine the manner in which a cantilever of length I will collapse when carrying a uniformly
distributed load w/unit length, with a prop to prevent deflection at its free end. Show that the initial
yield loading is wr = 8M/22 and the collapse loading is wF = 11.73M,/{ ? Hence fund the ratio
between these loads for a rectangular section fa x d. Hint: The prop reaction is given by 3*rf/8.

Elastic-Peifectfy Plastic Torsion Bars

5 J A bar of diameter d and length £ is bored to diameter d/2 over half its length. If te outer diameter
of the solid shaft reaches its yield point under an applied torque, show that the diameter of the elastic-
plastic interface dMf, within the hollow shaft section, may be found from the solution to the quartic
equation: <*„* ~d*dv + 3dil6 = 0. Show mat the ratio between the angular twists for the hollow and
solid shafts is given by d/dv.

5.6 Derive and plot the normalised torque-twist relationship for a hollow bar. Show the accumulation
of normalised residual strain on this plot in a similar manner to that given in Fig. 5.9 for a solid bar.

5.7 What value of torque is required for an elastic-plastic interface to lie at the mean radius in a tube
of inner and outer diameters 25 and 100 mm respectively? Determine the residual stress distribution
and the residual twist when this torque is subsequently removed. Take k = 230 MPa and G = 78 GPa.

Elastic-Perfeetly Plastic Cylinders and Discs

5.8 What is the maximum, limiting diameter ratio of an annular disc beyond which it is not possible
to achieve a full spread of plasticity when radial pressure is applied to the inner diameter? At what
pressure does this occur? [Answer: 2.963, 2 FA/3]

5.9 An annular disc, with inner and outer radii 25 mm and 62.5 mm respectively, is machined from
an alloy steel with a yield stress 500 MPa. Determine the internal pressures necessary to: (a) initiate
yielding, (b) produce a fully plastic disc and (c) produce partial plasticity to the mean radius.
[Answer: 2.415 kbar, 5.045 kbar, 4.584 kbar]

5.10 Compare the residual stress distributions in open-end and closed-end thick walled cylinders
resulting from an autofrettage pressure sufficient to penetrate an elastic-plastic interface to coincide
with the mean wall radius. Employ a von Mises yield criterion and normalise the stresses with the
yield stress Y for a cylinder of diameter ratio 3.

5.11 Show that the speeds necessary to irritate yielding within solid and hollow discs are each
independent of the yield criterion and are respectively:

rfd v) + r2
Plrfd - v) + ro

2(3 + v)]

8F

(3 + v)pr,2

5.12 Using the Nadai's parameter approach, determine the von Mises stress distributions in an elastic-
plastic, hollow disc, r, = 50 mm and ro = 250 mm, rotating at a speed of 11000 rev/min. Derive from
these the residual stresses distribution for when the disc is brought to rest. The following conditions
apply to the disc material: Y= 310 MPa, v= 0.28, and p= 7750 kg/m'. Compare and contrast each
distribution with the corresponding Tresca solution. [Answer is given in Figs 5.16a,b]
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CHAPTER 6

SLIP LINE FIELDS

6.1 Introduction

Rigid plasticity theory ignores elastic strain and assumes that plastic deformation occurs
without hardening under a constant yield stress. This material model is often justified for
the description of a forming process involving large plastic strains. When extruding carbon
steel, for example, the maximum elastic and plastic strains are of the typical contrasting
magnitudes: 0.1% and 50% respectively. In general, a plastic-rigid model is an appropriate
choice for the analyses of large scale deformation processes. These processes may be
framed within co-ordinates of plane strain and axial symmetry, depending upon the shape
that they produce. In this chapter it is shown how the slip-line field (SLF) method can
represent the flow behaviour of plane strain processes with a plastic-rigid material model.
Slip-lines can be constructed only where plane strain conditions are upheld. Consequently,
mis method is restricted to processes that include: extrusion of rectangular stock, indentation
under a narrow, parallel die, rolling of thin sheet and orthogonal machining. Where plane
strain conditions do not exist, as with the extrusion of circular bar, alternative analyses are
required. Among these are the limit and slab analyses. A limit analysis provides simple,
upper and lower bound approximations to the forming forces. A slab analysis is based upon
the force equilibrium of a deforming element. In principle, these techniques place no
restriction upon the deformation mode but are most often employed where they lead to
convenient closed solutions. In particular, analyses are made in Chapters 7 and 14 of the
plastic collapse of beams and circular plates under lateral loadings, hot and cold forging,
rolling, wire and strip drawing.

Note, that in the absence of elasticity and hardening, SLF takes no account of the effects
of creep, strain rate, temperature generation and thermal gradients. A more serious effect
is likely to arise when plane cross sections distort out of their original planes. This can occur
under extrusion conditions for the very severe deformations in the die region. Its extent has
been examined from the distortion that occurs to an orthogonal grid [1].

6.2 Slip Line Field Theory

A plane strain condition refers to a process where strain in a direction perpendicular to the
plane of deformation is zero or a constant. This applies to rolling, extrusion and indentation
processes, where lateral flow is negligible. The slip-line field will approximate the forming
loads required for each process. In an extrusion and indentation process, the boundary
conditions for the contacting surfaces may vary from a constant coefficient of friction lying
between zero and a sticking value.

We shall present here a graphical interpretation of equations, due to Hencky [2] and
Geiringer [3], which govern plane strain processes. Three diagrams are: (i) the physical
plane, defining the geometry of the process, (ii) the stress plane, showing the variation in
normal stress on a slip-line and (iii) the hodograph of velocity streamlines.
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6.2.1 Yield and Flow

When/= J2', given by eq(3.10b), is substituted into eq(3,22) it results in the Levy-Mises flow
rule. The differentiation gives the principal plastic strain increments:

j = % di \
e2 = %&A
£3 = % d i

(6.1a)
(6.1b)
(6.1c)

In eqs(6,la,b,c) the strain superscript P is omitted since debecome total strain increments
in the absence of elasticity. Taking 1 and 3 to lie in the plane of deformation, with de% = 0
for plane strain, eq(6.1b) leads to

Thus, a^ is the intermediate stress oj z

a3) (6.2)

t ff3, giving Tresca's yield criterion (3.1a) as

~ a1 = 2k (6.3)

where k is the shear yield stress. Equation (6.3) remains unchanged when eq(6.2) is
substituted into the von Mises criterion (eq 3.7a). However, the relation between k and F
differ between the two criteria. For Tresca k = F/2 and for von Mises k = FA/3. With plane-
strain yielding under the general sfress components ax, ô  and t^, the in-plane principal
stresses are

cry) ± to/[ te - a? + Axf\ (6.4a)

Substituting eq(6.4a) into eq(6.3), the yield condition becomes

(6.4b)

Equation (6.4b) is the Mmiting radius of a Mohr's circle (see Fig, 6.1a) describing a general
stress state at the point of yield.

Figure 6.1 Mohr's circles of stress and strain

The centre of Mohr's stress circle follows from eqs(6.2) and (6.4a):

Vi {ax + &.) = (% (6.4c)



 

SUP LJNE FIELDS 163

This is also the mean, or hydrostatic, stress oM = % % :

= % [ox + W(at + er3) + ff3] = V4 (oj + ff3)

since it equals the intermediate stress <% in eq(6.2). Now, as the volume of material is
conserved dV/V - de m = 0, when it follows from eqs(6. la,c) that dex = - de3. The
relationship between &s1 and dc3 and the component strains d^, de^ and dyv, where also
d^ = - ds,,, is given by

% / [ (deK

The radius of the strain circle (see Fig. 6.1b) becomes

ft (de, - d«3) = % 4 (d*, - d^) 2 + (dj^)2] (6.5a)

with centte co-ordinate
¥2 (de, + de3) = dg2 = Vk (dex + ds,) = 0 (6.5b)

It follows, from eqs(6.4a) and (6.5a), that the stress and strain circles are geometrically
similar (i) for the shear strain ordinate i 4 j ^ , given in Fig. 6.1b and (ii) when the mean
component of normal stress is subtracted from the stress abscissa in Fig. 6.1a. This does not
effect the radius V4[oi - om) - (<% - «rm)] of the stress circle, given in eq(6.4a).

The Mohr's circles describe the stress and strain states at a given point. The top and
bottom of a vertical diameter represent two maximum shear planes, lying at right angles to
each other. Upon these planes of maximum shear, an association is made between; (i) the
maximum shear stoess aligned with the direction of these planes and (ii) a hydrostatic stress
lying normally to the planes, for which there is no direct strain. In the theory the maximum
shear stress ram has attained the shear yield stress k so that maximum shear planes become
known as slip lines or shear lines. The stress state along a slip line will vary from point to
point since the hydrostatic stress a (subscript m omitted) is a variable. This variation can
be observed within a slip-line field construction, shown in Fig. 6.2.

Figure 6.2 A slip line field

The SLF is an orthogonal, curvilinear network of u and fi lines. The convention for
constructing Mohr's circle for an intersecting pair of a, ft lines is that tensile mean stress is
positive and a clockwise shear stress is positive, i.e. to the right of the slip line normal.
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(a)

Figure 6.3 Stess state for a pair of intersecting slip lines

It follows from Fig. 6.3a that a - lines are all associated with a positive shear stress (+ k) and
the fl- lines with a negative shear stress (- k). The corresponding Mohr's circle construction
is given in Fig. 6.3b. Firstly, the co-ordinates: a(a, k), j3(a, - k) are located on the circle
according to our convention. The circle is drawn with points a and ft" at opposite ends of a
vertical diameter. The directions of Grand /fare projected through points a and /?to intersect
the circle in a common pole point, P. Actually, one such projection is sufficient to locate the
pole. It follows that the planes on which principal stresses at sad. a3 act, are parallel to the
broken lines joining P to ax and P to CT3. Transferring principal planes to Fig. 6.3a, we see
that the direction of the major principal stress ffj lies between »and 0.

6.2.2 Hencky's Theorems

A unique relationship will hold between a sad k for each line. This is found from applying
force equilibrium to Cartesian axes x and y, inclined at $ to any pair of slip lines en and p in
Fig. 6.4.

y

Figure 6 4 Equilibrium in Cartesian axes
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The plane equilibrium conditions are referred to x and y:

3er dr
—£ + —2 = 0

dx dy

£5+^H= 0

(6.6a)

(6.6b)

The Cartesian stress components ax, ay and r^ are derived from ffsad k by inverting the
stress transformation law in eq(1.22a). Firstly, note that ar and 0 are the primed axes along
which the stress components (a, k) are known. Pre- and post-multiply 1" by M7 and M
respectively:

' M = M^MTM^M = (MTM)T(MTM)

Since I = MT M = MM1, we have

ay.

COS

sin
*

T = MTT

- sin 0
cos $

'M

a

k

k

a
cos

cos

The components of the rotation matrix M are: ln = cos (®Qx) = cos^, lu = cos (arOy) =
cos(90 - <p) = sin^, 4i = cos (flOx) = cos (90 + # ) = - sin# and 4i = c o s

Matrix multiplication gives
ĉ  = <7 - k sin 2 ^
^ = 4 7 + ^ sin 2 ^
tv = TW - A: cos 2

(6.7b)
(6.7c)

Substituting eqs(6.7a-c) into eqs(6.6a,b), provides two relationships

= 0

= 0

—
dx
—
dy

—
dy

dx

In the limit of these equations sin %<f> ->0 and cos 2 $ -»1 as $-»0. We find, for the m- line

2k—— = 0 (6Ja)

and for the ft - line, _ a ,
+ 2k = 0

3y
(6.8b)

Integrating eqs(6.8a,b), leads to the Hencky equations for any pair of orthogonal slip lines

I = cx and a

where ct and ca are constants. Usually, cis replaced by the acting mean compressive mean
stress - p to give
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p + 2k$=cl and p - 2k$=cz (6.9a,b)

where $is positive ACW. Equations (6.9a,b) lead to Hencky's/iratf theorem, which states
that when two a - slip lines are cut by fl- slip lines (see Fig. 6.5), then the angle subtended
by tangents to the a - line at the intersection points A, B, P and Q is constant along the
length of a. a a

Figure 6.5 Hencky's theorem

That is, (tpQ - (fiP) = ( 4 ~ 4 )• The proof uses eqs(6.9a,b) with a fixed datum for $ as
shown. Along *» eq(6.9a) gives

= c1 and
= c1 and

and along p , eq(6.9b) gives

= ct and
p P ^ P = c1 and

Now
PQ ~ PA = (PQ - PB)« + h

= 2* ( 4 - ^e) + 2k ( 4 - 4 ) (6.10a)
and

PQ~ PA = (PQ- PP)P +(PP~ PA)*

= 2k (4>Q - &} + 2^ ( 4 - 4 ) (6.10b)

Equating (6.10a and b) we find

2k (4 - 4p + 2fe (4 - 4) = 2̂  (#s - 4) + 2* (4 - 4)

••• $Q~ 4 = 4 - 4

so confirming a constant angle of intersection.
In his second theorem, Hencky related the radius of curvature of a slip line to the

distance along it. This has been found useful for numerical solutions to slip line fields as
discussed by Hill [4], Prager and Hodge [5]. These are not employed here. Instead, we
employ Prager's geometrical interpretation [6] of this theorem. This enables a convenient
graphical construction, as outlined in the following section.
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6,2.3 Stress Plane

To follow Prager's geometrical interpretation of Hencky's equations, consider firstly the
variation in stress between points 1 and 2 along an a? - line in Fig. 6.6a.

(a) m fi

Cb)

Figure 6.6 Pra^r*s geometrical interpretation

If there is no variation inp, the constant stress state (- p, k), appears as a point lt on a fixed
circle with centre Ot. The pole point Pj for this circle is the intersection point, found from
projecting the direction of the plane on which - p and k act, through Ij (see Fig. 6.6b). We
could also have arrived at P t from the constant stress state (- p, - k) along the jB- line, for
which Ij would lie at the opposite end of the vertical diameter. Now let the mean pressure
vary along each slip line. Let the stress state at point 2 on the a - line be (- pt, k), where
Pi * Pi- This state locates a point I2 on another circle, with centre O2 and pole P2. If the
positive, anti-clockwise (ACW) difference between the slopes of the tongents at points 1 and
2 is 3$u, then the pressure difference is found from eq(6.9a) to be

Fa - Pi = ~ (6.11a)

confirming that/>2 is less ̂ mapt. As 6<frn = Px It Pz* in Fig. 6.6b, this locates the image, P2

of Pz*. on the original circle such that the angle subtended at the centre is ^ O) P / = 2 6$u.
The image point P2, reveals that a translation from P, to P2 could be obtained from rolling
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the original circle without slip along fee ordinate r = + k. The geometrical interpretation of
eq{6.1 la) is that the pole will trace a cycloid P, P2... in the same direction as the changing
slope of the ee- line (ACW). A similar conclusion may be drawn from stress state (p3 ,- k)
at point 3 on the ft- line (Fig. 6.6a). The circle construction, in Fig. 6.6c, locates I3 and the
pole P3. The pressure difference is found, from eq(6.9b), to be

(6.11b)

showing that p$ is greater than px, A cycloid Pj Pj... is generated by the pole as this circle
rolls without slip along the ordinate r = - k, in the ACW direction of the changing slope of
the ft - line. Thus, slip lines in the physical plane will map into a system of congruent
cycloids in Mohr's stress plane. In each of Figs 6.6b,c, Ij is the instantaneous centre of
rotation of point Pj and Ix Px is parallel to the respective ee - and ft - lines. Therefore, each
element of a slip line is orthogonal to its corresponding element of cycloid.

6.2.4 Stress Discontinuities

Where, in Fig. 6.7a, the normal and shear stresses aN and r, for a point A on an irregular free
surface are known to produce a state of yielding, the a, ft slip lines must pass through A.

fit

(a) (b)

Figure 6.7 Strong and weak circles

However, the stress plane construction in Fig. 6.7b shows that a and ft are not uniquely
defined. Marking the radius k from the stress point {aN, - t), in (b) locates the centres, Ox

and Oj, of two circles with respective poles P t and F t . Joining the pole to points on the
vertical diameter of each circle shows that there are two sets of posible slip lines, one pair
being weak (broken lines), the other pair being strong. The latter contains the larger
hydrostatic stress a. Recall that the a- line is associated with + k and the ft- line with - k.
Thus, in the physical plane, the two ee - lines are drawn parallel to the lines from P, and P2

to the top of each circle. The two ft - lines are parallel to the lines joining Pj and Pz to the
bottom of each circle. It will be seen that it is usually possible to judge which of the two
solutions is the appropriate one for a particular problem.
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Next, consider the curved boundary between two plastic zones in which the adjacent
material experiences different hoop tensions, i.e. ar. * ax' in Fig. 6.8a. Equilibrium is
maintained through a continuity in both radial stress ay and in shear stress {tv— v^} across
the boundary.

(a)

fi.

o.

20

\
J

PA

V\
v 1/ y

a

(b)

Figure 6.8 Tangential stress discontinuity

The boundary is called a stress discontinuity. Joining points Q(«7y, TV), A(ffx, - T^) and
- t^) within the stress plane in Fig. 6.8b locates the centres OA and OB, of circles.

each of radius k. Projecting the tangent to the boundary through the point Q(ar tv), locates
pole points, PA and PB. Pole points establish the fact that the directions of a - and fi - lines
at points A and B in the physical plane are reflected across the discontinuity. That is,
adjacent slip lines aA and aB for maximum positive shear stress lie with an equal inclination
0to the discontinuity. Also, the orthogonal slip lines fiA and fiB for the maximum negative
shear stress will lie with an equal inclination 8+ 90° to the discontinuity (see Fig. 6.8a).
A stress discontinuity can neither coincide with a slip line nor, as it will be shown, with a
velocity discontinuity. The magnitude of the stress discontinuity is, from the circle,

Oj, - ax' = 4k sin 2 0

where #is the inclination of the reflection esA to eeB across the discontinuity. When 0= 0°,
there is no discontinuity and the circles coincide. When 0= 45°, the maximum difference
arises, aj - ax=4k, as the circles become tangential at point Q lying on the a - axis. Here,
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the greatest difference between the mean stress components is a - o' = 2k. Figure 6.8b
refers to material that has yielded on either side of the discontinuity band while the interior
of the band may remain elastic. As the band is penetrated from both sides aj and ax will
continuously change until they equalise. This must be so if circles, with diminishing radii
less than k, pass through the common point Q, to ensure ay and r^ remain unchanged.

Where there is an axis of symmetry (a centre line) in the physical plane then this axis
and another axis perpendicular to it, will coincide with the principal stress planes. Planes
of maximum shear stress, i.e. the slip lines, lie at 45° to the principal planes (see Fig. 6.9).

discontinuity

Figure 6.9 Axis of symmetry

Figure 6.9 also shows that a stress discontinuity must be reflected at an axis of symmetry if
slip lines are to be reflected at their intersections with discontinuities. For the simple
configuration of reflections at C, and Ca, the sum of included angles within OCJCJ give

(ff/4

from which $ = 90°, showing that OC^ is orthogonal to OCj. The full picture displays the
mirror image of these slip lines and discontinuities beneath the symmetry axis. Note that it
is possible for OCj and OCZ to subtend angles of s74 and 3s74 at the symmetry axis and
so co-incide with the slip lines [7].

6.2.5 Geiringer's Equations

Shear strain, which is at its maximum between slip lines, is a radian measure of their angular
distortion. A hydrostatic stress does not permanently strain the slip line. A further pair of
compatibility relationships will ensure this inextensibility of a, ft- slip lines (see Fig. 6.10).

Figure 6.10 Velocity variation
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Let u and v be the respective velocities in the directions of en and 0 at point A. These
velocities increase by 3u and dv at point B along the a - line as shown. Since the velocities
u + fiu and v + Sv at B have rotated by 5$ , they must be resolved in the directions of u and
v at A. The fact that the a - line does not change its length is expressed in

(u + Su) eos«%, - (v + o\>) nmdtfim= u

Similarly at point C, inextensibility in the fl- line is stated as

(v + &>) cos 3$fi+ (M + Su) sin$^j= v

3$. Ignoring the products of infinitesimals leads to theAs 6$ -* 0, costf^ -* 1
Geiringer equations [3]:

du

dv

- v = 0

+ u = 0

(6.12a,b)

Note that if velocities u and v are normalised over a given length they become strain rates.

6.2.6 Hodograph (Velocity Plane)

The hodograph is a graphical construction of those velocities which satisfy eqs(6.12a,b). Let
resultant velocities, vA and Vg, apply to respective points A and B along an a- line (see Fig.
6.11a). It is seen in Fig. 6.11b that their projections onto AB most be equal if the initially
straight length of AB is not to change.

(a)

Figure 6.11 Holograph for a portion AB of a straight slip Une

The line joining vA to vB in Fig, 6.1 lb is the orthogonal image of the slip line between A and
B in the physical plane (Fig. 6.1 la). Because elements in the physical plane and stress plane
are orthogonal, it follows that elements in the hodograph and the stress plane will be parallel.
Where the a- slip line is curved between A and B (see Fig. 6.12a), it may be deduced that
the curve joining vA to vB in Fig. 6,12b becomes the orthogonal image of the slip line.
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B
N

Figure 6.12 Hodograph for a curved slip line

(b)

The construction in which the tangent at point N in Fig. 6.12a is orthogonal to the tangent
at point N' in Fig. 6.12b, ensures that the initially curved length of AB will not change.

6.2.7 Velocity Discontinuities

A velocity discontinuity can arise when, in Fig. 6.13, die tangential velocities on either side
of the discontinuity are unequal, i.e, u * u'.

u

Figure 6.13 Tangential velocity discontinuity

Let the variation 3u = u- «', occur in a distance & that straddles the discontinuity. It can
be seen that as A ^ 0, the shear strain rate Su/& - <*>. We may conclude from this that lines
of velocity discontinuity and slip lines are coincident. Applying Geiringer's eq(6.12a,b) to
regions adjacent to the discontinuity gives

d« = v d $ and d«' = v' (6.13a,b)

Normal velocities must remain equal, i.e. v = V, if the material is to deform without volume
change. Equations (6.13a,b) give

du = d«' or u - u' = constant (6.14)
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indicating that the velocity discontinuity has a constant magnitude. Since u * u' the resultant
velocities, vP and vG in Fig. 6,13a will differ in both magnitude and direction as the slip line
is crossed. Where « and u vary along the slip line, the magnitudes and directions of the
resultant velocities are not constant. Because v = V, eq(6.14) implies that the vector sum of
vP and vfi will be constant at all points along the slip line/velocity discontinuity. This is
readily seen within a hodograph construction (Fig. 6.14b) for a length of cc- slip line. Here
the resultant velocities are vn, vQ1 at point 1 and vn, vm at point 2 as shown in Fig. 6.14a.

(b)

Figure 6.14 Equal ¥docity discontinuities

When constructing the hodograph in Fig. 6.14b, the velocities vP and va, are drawn through
a common origin O", parallel to velocity vectors in the physical plane. The magnitudes of
the velocities are determined from two requirements:

(i) that P/'Qi" and P2"Q2" are equal and parallel to the respective tangents at points 1
and 2. Their magnitudes represent the jump in the tangential u - component of velocity
from crossing the a- line at points 1 and 2 (see eq 6.14),

(ii) that the inextensibility of the m - line requires F/1Y' and Qi"Q2" to be orthogonal
images of the slip line between points 1 and 2.

It is possible for u, as well as v, on one side of a slip line to be uniform when the material
moves as a rigid body. The resultant velocity is then constant, as shown by vP in Fig. 6.15a.

Figure 6.15 Discontinuity with rigid body motion
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Here u' varies between points 1 and 2, on the other side of the slip line. The resultant
velocities vQl and Vĝ  will again differ in magnitude and in direction as shown. The
simplified hodograph (see Fig. 6,15b) shows that Qt'Qi' is the orthogonal image of slip line
12 and F"Q" = P"Qa" is the jump in the tangential velocity at 1 and 2. This hodograph
reveals that when vP is constant then vQ must vary. It is not possible, therefore, for the
material on both sides of the slip line to move as rigid bodies between points 1 and 2,

6.2.8 Construction of Full Slip Line Fields

The general method employed for the determination of a slip line field (SLF) is based upon
what is known about their 45° intersections with axes of symmetry and their reflections at
stress discontinuities. The stress plane and hodograph follow from knowing that their own
elements are parallel but perpendicular to those in the physical plane. If the hodograph
closes then it is a possible solution, but is valid only when a positive rate of working is
confirmed. Finally, it must be checked that the stress state within dead metal zones remains
elastic. In this way, a unique solution can be established. The distortion of material lying
within the slipped region Is found from integrating slip-line velocities and the deforming
forces are found from integrating slip line stress distributions. In constructing a SLF it is
also necessary to satisfy the following three conditions prevailing at a boundary [1].

(a) To determine slip lines Jbr interior yielding given surface stress components.

In the physical plane shown in Fig. 6.16a, the normal and shear stresses are known for points
1 and 2 on a curved boundary. It is possible to construct the stress plane in Fig. 6.16b
where stress co-ordinates locate points 1' and 2' on circles each of radius k. Pole points Pj
and P2l are found from the projections of tangents to the boundary at 1 and 2. The directions
of the cs - and ft -lines lie parallel to lines connecting P, and P2 to ± k. In this case, the a -
line is taken from circle 1 and the ft- line from circle 2. The a - line may be extended from
the cycloid generated by point P t as circle 1 rolls along r = + k in Fig. 6.16b. Similarly Pz

traces a cycloid when circle 2 is rolled along r = - k. Cycloid intersection occurs at point
a'. The corresponding intersection point a in the physical plane is constructed from the
tangents at a' and P u with adjustment for equal lengths aside the change in slip line direction
(Fig. 6.16a). In the complete field, both the a - and ft- lines intersect at the boundary points
1 and 2. The remaining slip lines (broken lines) connect pole points to points of maximum
shear. At their intersections, the a - and ft ~ lines are subjected to the same hydrostatic
stress. The strong solution to this problem would correspond to the reflection of circles of
radii k, through points 1 and 2, This corresponds to an a - line with the greatest possible
hydrostatic stress at point 1. It is possible to select the appropriate solution to a given
problem from the known deformation mode. Note that where surface tractions are given,
these are interpreted as the resultant stresses asl and <7ffi in Fig. 6.16a.

A given absolute velocity v of boundary material implies that points 1, 2 and cA all
move with velocity v. Thus, in the hodograph (Fig. 6.16c) the corresponding points, 1" 2"
and cA", show a velocity v relative to a stationary origin, O". The remainder of the
hodograph construction employs the orthogonal relation between elements of the SLF and
the corresponding elements of the hodograph. The additional points, a, b, cB, d and e,
assume the lower positions shown in Fig. 6.16a. This ensures that, when a slip line is
crossed, the proper identity is made with a velocity discontinuity. For example, in crossing
the lower ft- line edb, equal magnitude discontinuities are found from joining points 2"e",
e / d " and a"b" in the hodograph.
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(a)

(b)

(C)

Figure 6.16 Known boundary stresses

In the crossing of the lower ££ - line ab, the corresponding, equal-magnitude, velocity
discontinuities are: a"^" and b"d". Absolute velocities, vc, vd and ve, are found from joining
the respective points, c", d" and e"» to the origin O".

(b) To determine the slip-line field between two bounding, intersecting a, /?- slip lines.

Firstly, establish the circle for the stress state at the intersection point 1 in Fig. 6.17a, As in
(a) the pole position I1 in Fig. 6.17b follows from projeeting tangents to a? and J3, at 1.
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(a)

fi

(b)

(c)
7"

Figure 6.17 Bounding intersecting sKp lines

Correspondence must apply between the normals at additional points 2 ,3 ,4 ,5 ,6 and 7 in
the physical plane and the tangents to these points in the stress plane. The tangents to the
slip lines rotate clockwise (CW) for the m- line and anti-clockwise (ACW) for the fi- line.
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It follows that the circle must roll ACW along T= - k through /?- points 2', 3' and 4' and
CW along T= + k through a- pointe 5', 6' and 7'. Interior cycloid intersections at a', b', c'»
d', e', f, ff, h' and j ' are found from reversing the direction of rotation at points 2', 3', 4', 5',
6' and 7' about the ordinate r= - k. Tangents to tt e orthogonal network of cycloids are then
used to construct the SLF by extending slip lines, e.g. point a is found from points 2 and 5,
b from a and 6, c from b and 7 etc.

Where rigid body velocities vA and vB, exterior to the boundary, are known and a - and
ft- lines are discontinuities, it is possible to construct the hodograph for material enclosed
by the slip lines. In the physical plane, the SLF network above is positioned within lower
regions where velocities are unknown. The absolute velocities vA and vH, are first drawn in
Fig. 6.17c. Point 1" is determined from the intersection between tangents to a and J3 at 1,
Points 2", 3" and 4" follow from the direction of the tangents to points 2, 3 and 4, their
magnitudes being equal. Points 5", 6" and 7" are similarly established. Point a" is then
derived from 2" and 5" using the tangents at corresponding points in the physical plane. The
construction for the remaining intersection poinls within the hodograph is similar to that used
for extending slip lines. This is because the interior SLF must be an orthogonal image of the
hodograph. The resulting hodograph becomes a composite of the two discontinuities
discussed separately in Figs 6.14 and 6.15. For example, the construction in Fig. 6.14
applies to crossing an interior slip line Safj. Thus, in Fig. 6,17c, constant magnitude velocity
discontinuities are found from joining 1"5", 2"a", 3"f and 4"j". The absolute velocites on
adjacent sides of this slip line are found from joining points 1", 5", 2", a", 3", f, 4" and j "
to the origin 0". Figure 6.15 applies to the absolute velocities in crossing the outer a - line
at points 1,5,6 and 7, i.e. their magnitudes are found from joining 1", 5", 6" and 7" to O"
in the hodograph. Fig. 6,17c shows that equal tangential velocity discontinuities along cs
appear as a fan of vectors originating from the end of vB.

(c) To construct the SLF where a given slip line meets an axis of symmetry.

In Fig. 6.18a, an inclination of 45° exists between the given fl -line and the symmetry axis,
the latter being a principal stress direction. The circle in Fig. 6.18b applies to the stress state
(a, - k) at point 1. The pole 1' is located from the tangent direction to /?at point 1. As the
circle rolls CW along r = - k, the pole traces the portion of cycloid 1', 2', 3' shown. For the
intermediate positions 2' and 3', the circle is rolled ACW along T— k to trace portions of
orthogonal cycloids which meet the axis of symmetry at a' and c'. Lastly, a circle with pole
a' is rolled CW along r = - it to give the image of the /? -line a' b'. Tangents to P at points
2' and a' in the stress plane locate the positions of 2 and a in Fig. 6.18a. The remaining
pointe 3, b and c are found from the tangents at points 3', b' and c' in a similar manner.

(a)

Figure 6,18 fateisectinn with an axil of symmetry
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r

(b)

-k-

Cc)
b"

Figure 6.18 Intersection with an axis of symmetry (eontf)

With a rigid body velocity vA, exterior to the ̂ -line in Fig. 6.18a, a fan of discontinuities
( 1 / 1R"» 2 A " 2B" and 3 / 3H") in Fig. 6.18c originates from the end of vA(l *, 2 £, 3 £).
Subscripts refer to positions above, right and below the given point. The hodograph is
extended to points a", b" and c" employing parallel elements from the stress plane as shown.
The absolute velocity of any arbitary point X is found from joining the corresponding point
X" in the hodograph to its origin O".

6.2.9 Resultant Force and Pressure on a Curved Slip Line

The stress plane supplies stress states for points along a curved slip line. Where horizontal
forming forces are required, the stress distribution is integrated by one of two methods.

(a) (b)

Figure 6.19 Normal and shear stress on a curved slip line
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(a) Resultant Stress

Consider a point P on a f} slip line AB in Fig. 6.19a. In the stress plane, the corresponding
circle (Fig. 6.19b) has its pole at P". The stress state at P {-a, -k) in (a) follows from
projecting the tangent to P through F in Fig. 6.19b. This intersects the circle with these co-
ordinates (- cr, - k ), confirming AB as a ft- line. Let the resultant stress (force on unit area)
at P, i.e. as = \/(ffa + k2), have a horizontal component <%. We may regard aR and aB as
forces/unit length of slip line when the thickness is unity. The construction for aR and %
shown applies to a given cycloidal image of the slip line within the stress plane. Because
the cycloid is the locus of pole points, it is only necessary to connect the pole either to + k,
for an a - line, or to - k, for a @ - line, on the corresponding circle. The length of the
perpendicular, dropped from the stress origin to the extension of these lines (see Fig. 6.19b),
is the required component of horizontal stress aH. Taking other points between A' and B',
we can repeat this consttuction to estoblish the variation of % over AB, shown in Fig. 6.20.

A B

Figure 6,20 Resultant horizontal force on a slip Mne

It follows that the net horizontal force on a slip line is

FH= (6.15)

which is the area beneath Fig. 6.20, when drawn on the true, base length s of AB.

(b) Cartesian Stresses

In Fig. 6.21a, the portion AB of ^ - slip line is approximated with a series of vertical and
horizontal planes to reveal Cartesian stress components ax,r3lf=TXfas shown.

* r (Assumed)

(a) (b)

Figure 6.21 Cartesian stress state cm a carved slip Mne
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The plane stress state P(oi, r^) upon the vertical plane lies at the intersection between a
vertical line through pole V and the circle in Fig. 6.21b. Repeating this construction for a
number of poles between A' and B' will establish the variations in ax and t^ with the
projected lengths of AB, i.e. a and b in directions x and y respectively (see Fig. 6.22).

Figure 6.22 Stress component variations

Now tv, upon the horizontal plane (Fig. 6.21a), is complementary to rfS and acts in
opposition to ax. The net horizontal compressive force is found from

F - •
(6.16a)

Equation(6.16a) expresses the difference between the respective enclosed areas in Fig. 6.22.
When the origin of stress is unknown, but FH is known, we may work from an assumed
origin for r. Let q = ax + z locate be the true datum for r, so modifying eq(6.16a) to

F H = f Rjdj + f zdy - f " t dx (6.16b)

When FH = 0 in eq(6.16b), the separation z between the true and assumed raxes becomes

2 = — I T dx •
b I Jo *y

6.3 Frictionless Extrusion Through Parallel Dies

The following SLF solutions apply to a rectangular die of any width for the given reduction
ratios R = H/h. The force analyses apply to unit width under a plane strain condition.

6.3,1 Extrusion Ratio R — 2

In a lubricated vessel (see Fig. 6.23 a) there are no frictional forces parallel to the container
walls and so interfacial shear stress is absent. Hence, the walls are principal planes and the
slip lines, i.e. maximum shear planes, meet the container walls (points 0 and 5) at 45°.
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%

(a)

(c)
Origin

45'

{Check u = 2U)
1 "

Figure 6J3 Frietkmless extnision R = 2

The slip line, joining points 0 and 5 in the physical plane (see Fig. 6.23a), is assumed to be
straight. Another slip line 01 must be orthogonal to 05 at 0 and meet the centre line at 45°.
The problem is then to construct the slip line connecting points 1 to 5. We begin with the
fact that the major principal stress «?x, normal to the free-end of the extruded billet, is zero.
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This determines that the pole point OT is coincident with the origin of the stress plane in
Fig. 6.23b. In order to construct the initial circle, the complete stress state for a second
plane is required. Because the shear stress along 01 is k, two circles, I and II, apply when
the mean stress for this plane is assumed tensile and compressive respectively. Mean tension
is impossible under the applied compressive force and so the weaker circle II applies to this
problem. The true stress state for 01 is found by projecting a line parallel to 01 through the
pole. This gives p = - k, T= - k, so establishing 01 as a fi- line. It follows that 12345 will
be an a- line. This line is established from the cycloid traced out by the pole as the circle
rolls along the ordinate + k without slip. Tangents drawn to this cycloid at intermediate
points, 2', 3' and 4', are normals to the slip line at points 2, 3 and 5. Thus, the SLF is
composed simply of a single a- line with two orthogonal fi- lines, 01 and 05. Note that 5'
is the pole of the circle for the stress state at 5. It follows from this that the compressive
stress on a vertical plane through 5 is k(tr+ 2). Since this acts perpendicular to the front face
of the container, the die pressure is pd = k{ n + 2). The mean extrusion pressure pt is found
from equating horizontal forces above and below the centre line. With unit width and an
extrusion ratio R = Hlh = 2:

pB = ifc(l + s-/2) (6.17a)

Multiplying pe in eq{6.17a) by the ram area (or multiplying p^ by the die area) gives the
extrusion force Fe/unit area;

Fe = PtH=Pi(H-h)

FJH = k(l + x/2) (6.17b)

We could have found the die pressure from the application of eq(6.9a) to the a - slip line,
15. Because GJ = 0 for 01, the constant stress state along 01 is (~p, -k) where p = k. Thus
an element at point 1 is stressed as shown in Fig. 6.23a. Let the datum for $ (increasing
CW) be the tangent to a at 1. It follows from eq(6.9a) that at point 5, where $ = - nil,

as + Zk(~ ?r/2) = c1 (6.18a)

The constant ct in eq(6.18a) is found from applying eq(6.9a) to point 1 on ar, where $ = 0.
This gives

Ci = ifc (6.18b)

It is seen from eqs{6.18a) that as = k(l+ n), so that an element at point 5 in Fig. 6.23a is
stressed as shown. Resolving forces along 05 within the dead zone, confirms that the
horizontal die pressure is pd = k (x+ 2). Equating the rate of external plastic work to the
energy dissipated within a homogenous deformation zone allows estimates to pe and F e :

(6.19)

where Y=2k is the constant, plane stain yield stress, assumed within a deforming zone under
an incremental strain de= (Mil. Dividing eq(6.19) by the extruded volume/unit time V, gives
the extrusion pressure as

pe = JYde = YJdl/l = Fln(l2/^) = 2k]n{l2/ll) (6.20a)
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In preserving volume, the ratio between final and initial lengths is l2/h = Ax/A2 = Hfh = R.
Then, from eq(6.20a),

pt - FJH = 2k inR (6.20b)

It follows that the limiting reduction occurs when pe — Ik, giving R = 2.72. With R = 2,
eq(6.20b) gives^/2^: = 0.693, which is considerably less than the value 1.286 found from
the SLF (eq 6.17a). As the work formula gives the minimum possible work for a forming
process, the amount by which it underestimates the actual forming force may be attributed
to the effects of frictional work and the redundant shear work.

In the construction of the hodograph in Fig. 6.23c, let the velocity within the container
be U and that of the extruded material be u. An incompressible material obeys: U(Hx 1)
= u (h x 1), so that M = 2U for H = 2h. The origin, 5R", refers to the stationary material
within the dead-metal zone to the right of point 5 in Fig. 6.23a. To the left of point 5, the
material in the body of the container has velocity U which appears as the horizontal vector
joining points 5 / and 5L" in the hodograph. Crossing the slip lines from each of these
regions to a point directly beneath point 5, establishes the vectors, 5 / 5 / and 5L"5/ . Their
directions are parallel to the slip lines at point 5. Leftward velocity points 1L", 2 / , 3L" and
4 / must be coincident with 5L", since all move horizontally with velocity U. A fan of
vectors 41"4R", 3L"3E", 2 / 2 / and 1 / 1 / emanate from the singular point 5L" in directions
parallel to the tangents at points 4, 3, 2 and 1 in the physical plane. In order to ensure
inextensibility of slip-line 12 3 45 , the curve 5B" 4,," 3 / 2 / 1 / becomes the parallel image
of points 5' 4' 3' 2' 1' in the stress plane. Similarly, we can construct the remainder of the
hodograph, 1 / 1 / 1 / , for velocities to the left, right and above point 1 in the physical plane.
Knowing that vector 5 / 1 / is the horizontal billet velocity u, the hodograph must terminate
at the closing point 1R" where u = 3U. Within the hodograph (see Fig. 6.23c), we can
identify velocity discontinuities associated with rigid body motion adjacent to a slip line
(refer to Fig. 6.15). They are:

(i) 5 / 5 / , along 05, with stationary dead-metal to the right,

(ii) 1 / 1 / , along 01, with a rigid-body velocity u to the right and

(iii) the fan of constant magnitude vectors 1 / 1 / , 2 / 2 / , 3L"3R" etc, at points 1,
2,3 etc along the a - line when, to its left, the rigid body motion is U.

It follows that the slip lines are also velocity discontinuities bounding the deformation zone.
Resultant velocities at points 1,2,3,4 and 5 on the right side of a differ. Their magnitudes
and directions are given by the vectors 5 / 1 / , 5 / 2 / , 5E"3R" and 5 / 4 / . T h e i r directions
enable the motion of particles to be traced from container to billet in the physical plane as
shown. The solution applies only to an extrusion ratio of 2. Greater or lesser ratios need
separate consideration.

63.2 Extrusion Jbr 2<R<3

In the SLF construction given in Fig. 6.24a, the weaker starting circle has its pole 0 T at the
origin of the stress plane in Fig. 6.24b. This corresponds to the known 0- slip line, 01 as
before. It is seen, however, that end point 5' for cycloid 1' 2' 3' 4' 5', which establishes an
orthogonal » - line, cannot be fixed at the container wall without an extension to the field.
The requirement is that another a- line, originating at point 6 and the extension to the fi-
line from 5 to 9, must both meet the wall at 45°.
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(a)

,, r

(c)

1"
(Check u = RU)

Figure 6,24 Prictianless extrusion far 2 < R < 3

Thus, in the sttess plane, both 6' and 9' lie on the r = 0 axis. Point 6' is derived from an
orthogonal cycloid originating from the selected point, 2'. Cycloid 2'6' is found from the
rotation of a circle with pole point, 2' and radius k, which rolls along r = - k. Point 6 is
found graphically from extending 02 to meet the centre line with a 45° inclination. This
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employs equal line elements whose directions are the normals to the corresponding cycloid
at points 2' and 6'. A similar constructions is used to establish the position of point 7 from
the extension to the slip lines at points 3 and 6, using normals to points 2', 3', 6' and T in the
stress plane. This construction is equivalent to replacing the extended portion of tfie slip line
with circular arcs. In repeating this construction, point 8 is obtained from the extensions
to slip lines at points 4 and 7 and finally, point 9 from the extensions at points 5 and 8. If
9 does not fall on the inner wall of the container, the position of point 2 must be adjusted and
the construction repeated until this is achieved. Note, that the arc 1345 and radii 01,03 and
04, together with the extensions 37 and 48, are constructions and not part of the final SLF
solution. That is, the final SLF comprises an orthogonal network with a single a - line 6789
and two fi - lines, 026 and 059, containing the deformation zone.

The construction of the hodograph in Fig. 6.24c for the a - line 6789 is similar to that
given previously. Again, there is rigid body motion U to its left. Therefore, the coincident
points, 6L", 7L

S, 8L", 9L", all move with velocity U relative to zero velocity in the dead metal
zone 5m". The fan of velocity discontinuity vectors, emanating from these coincident points,
are equal in magnitude and lie parallel to tangents at points 9, 8,7 and 6 along the slip line.
They terminate at points 9B", Sg", 7R

W and 6A", giving an orthogonal image of this slip line.
Point 6 / ' is found from drawing 6A"6m", parallel to the tangent at 6. The extension to the
hodograph is achieved using a construction similar to that for extending slip lines. It begins
with establishing point 5B" from 5R" and 9B". To achieve this, the velocity directions are
drawn orthogonal to the tangents at points 5 and 9 in the physical plane. Point 4" is then
found from 5B" and 8R", employing construction lines drawn perpendicular to the tangents
at 5 and 8. Note that a single velocity applies at 4 and 3 since no slip lines are crossed.
However, in crossing slip line 026 it is again necessary to distinguish between a point above
(2A") and below (2a") point 2, where a velocity discontinuity arises. With points taken above
(6A") and to the right (6%") of point 6, the hodograph shows that the magnitude of this
discontinuity is constant at all points between 2 and 6 in the manner of Fig. 6.14. Here again
all slip lines in (a) are velocity discontinuities. Having arrived at the destination point 1",
the magnitude must be checked from the fact that the final velocity M = RU. The absolute
velocity vectors, originating from stationary points 5S" and 9R", enable the path of a particle
through the deformation zone to be shown as a streamline.

If we needed to find the net horizontal force FH from eq(6.16b) then the variations in
cr. and rv are required either along 059 or 6789. The circles, with pole points 0', 5' and 9'
in (b), show that a, varies from zero at point 0 to the indicated values at points 5 and 9. The
corresponding shear stress tv varies from zero at point 0, through a maximum of r = + k
between 0 and 5, falling to zero at point 9. Clearly, it would be necessary to select more
intermediate values when applying eq(6.16b) to this problem.

6 1
Figure 6.25 Alternative SLF for 2 < R < 3
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There is an alternative solution [1] for this extrusion ratio. In this, the single slip line 59 in
Fig. 6.24a is replaced with a fan of slip lines, shown in Fig. 6.25. The envelope originates
from 5 permitting a variation in the velocity discontinuity from the dead-metal zone across
the fan. For this to be possible, the discontinuities cannot be coincident with each of the
interior slip lines.

6.3.3 Extrusion For 1 <R'<2

Figure 6.26 Friclionless extrusion, 1 < R < 2

Figure 6.26 shows the SLF for an extrusion ratio R' - Hlh, less than 2 [4]. This appears as
an inversion of the SLF for 2 < i? < 3 about the singular point 0 in Fig. 6.24a. For an exact
inversion to apply, the % increase in the extrusion ratio above 2 must equal the % decrease
below 2. In Fig. 6.24 this gives R' + R = 4, so if R = 2.4, then E = 1.6. Under the latter ratio
the stress plane and the hodograph also become lateral inversions of Figs 6.24b,c about their
origins [1], However, where the indicated J3~ line is partly curved for R' < 2, the circle is
not stationary and the true stress origin is unknown. Here, an origin for stress is assumed for
completing the construction. The true origin is found thereafter from eq(6.16c), where the
total horizontal force is zero to the right of this fl - line. The origin for the inverted
hodograph simply becomes the checkpoint 1" in Fig. 6.24c.

6.3.4 Extrusion For R = 3

Pi 'ft
Figure fi.27 Frietkjnless extrusion for R = 3
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Lee [8] and Green [9] proposed a SLF for R = 3, given in Fig. 6.27. In the absence of a
dead zone, Lee [8] showed that this field provided the minimum possible extrusion force.
Moreover, alternative solutions, discussed in the next section, were found to violate the yield
criterion when applied to R = 3. As with R = 2, eqs(6.9a,b) may be applied to the SLF for
R = 3. Again erx = 0 for 01 and the constant stress state along 01 is (plt k) where pt = k.
Thus an element at point 1 is stressed as shown. To find p%, let the datum for $ be the
tangent to a- line at 1, Applying eq(6.9a) to point 2, where (f>=-nl2;

(6.21a)

x) (6.21b)

so that element 023 is stressed as shown. Resolving forces gives the die pressure as

pd = k(2+x) (6.22a)

from which the extrusion pressure is

in which cx = k for $=0. Equation (6.21a) gives

Combining eqs(6.22a and b) gives pJ2k =1.714.

6.3.5 Extrusion For R>3

The SLF, given in Fig. 6.28a, will apply in the absence of a dead-metal zone. It is an
extension to the SLF for R = 3 discussed previously.

(a)

Dieflice

pressure

distribution

13 10 5 1

Figure 6M Frictionless extrusion R > 3
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(b) -a

12' -k

5,",6L".7t
w,8.ir.91; V Check

Figure 6.28 Motionless extrusion R > 3 (continued)

It has been shown [10] that the extrusion pressure for Fig. 6.28a is less than would be found
from extending either Fig. 6.24 or 6.25 to greater R. Moreover, when these were extended
to give R = 3, they violated the yield criterion. It is seen from Fig. 6.28a that Lee's a - line
1234 and two ̂ 0- lines, 01 and 03, would fit exactly within a vessel for H/h = 3. These lines
are now used in the construction. To extend them to greater R values, we arbitarily select
point A on the a- line and identify A' in the stress plane of Fig. 6.28b. Next, we locate 5'
on the r = 0 axis from the orthogonal cycloid and thus its position 5 on the centre line. For
the correct position of 5, end points 9' and 9 will give zero shear stress at the corner of the
container. Normals, drawn at the intersection points 2'3'4' and 5'6'7'8', within the orthogonal
network of cycloids, extend the slip-line field in the usual way. The hodograph origin 0" in
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(c), refers to any point on the stationary vessel. Thus, vector 0" 9B" is identified with the
vertically downward motion of material beneath point 9 relative to the top corner point.
Coincident points, 5L", 6^', 7L", 8L" and 9L", in the region to the left of the a- line, move
with rigid body velocity U. Yelocity discontinuities arise in crossing this a - line, their
magnitudes being given by velocity vectors: 9L"%", BL'\"(= 7L"7R"), o W a n d 5L" 5 / .
Their terminal points are joined by me orthogonal image of the si - line. The point 5R" is
then located from points 5A" and 5 £'• Tangents drawn at intersection points 2'3'4' and
5'6'7'8', within the orthogonal network of cycloids in the stress plane, are used to extend the
hodograph. This gives points 3"(= 4"), 2", AA" and AB", A fan of constant-magnitude,
velocity discontinuities applies to all points between 5 and A in the manner of Fig. 6.14.
Finally, tangents projected through points, AB" and 5K", locate the checkpoint, 1", for which
K = RU. Absolute velocity vectors, with common origin at 0", may be transferred to their
appropriate slip lines to trace the motion of a particle through the defomiation zone. Three
such streamlines are illustrated in Fig. 6.28a.

The mean extrusion pressure is found from the known normal stresses at points 0,4 and
9 along the die face. The stress plane shows that these are principal stresses (i.e. r= 0 along
049). Their magnitudes are k (ff + 2} = constant along 04, increasing to a maximum value
of k (ft + 5/2) at point 9. Assuming the linear variation in normal stress between 4 and 9
(Fig. 6.28a) enables the mean extrusion pressure pe to be estimated from

(6.23)

p H = k(H - h){x + 2) + - i f f - (R -l)h] I ?r + - 1 - (JT + 2)
2 l J \ 2)

^

where R = H/h. Taking, for example, J? = 4 ineq(6.23) gives pe = 3.92k. The total force/unit
width of die becomes Ft = flpe.

In the test for a complete solution, two conditions must be satisfied. Firstly, there is the
requirement for positive plastic work: Jfftf d^ > 0. This involves a consistency check
between relative directions in the hodograph and the deformation within a constant region
of stress, e.g. the region 2376 bounded by slip lines in Fig. 6.28a. The pole positions in the
stress plane reveal that the shear yield stresses ± k act in the directions shown in Fig. 6.29.

+ k

6 zrp
Figure 639 Positive plastic work check

The compressive hydrostatic stress acting on the a, /? boundaries causes no deformation, the
latter being due entirely to the shear stress k. The shear distortion is that indicated with
broken lines. The element of the hodograph in Fig. 6.28c confirms the inward direction of
point 3 relative to 6 along the line connecting 3 to 6. It follows that the product of a
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compressive stress and strain rate in the 36 direction will produce the required rate of
positive plastic work. Four examples of inadmissible elements of hodograph are given in
Fig. 6.30a-d for the element of SLF in Fig. 6.29.

6"

(a)

(c)

r r
figure &30 Violation of positive plastic work

These could arise when there is more than one hodograph fulfilling the required conditions.
However, sinee these show relative motions between points 2,3,6 and 7 that are inconsistent
with the known deformation from Fig. 6.29, they must be rejected in favour of the unique
solution supplying positive plastic work.

Secondly, a check is made that the yield criterion is nowhere violated within the rigid
material. This means that a rigid-plastic zone should not deform under the stresses imposed
around its boundary. Bishop [11] showed that a slip-line field is complete where it can be
extended into the rigid zone with pseudo slip-lines that become coincident with a stress-free
boundary. The approach has been applied to frictionless extrusion with R = 2 [1] and R =
3 [10]. In applying Bishop's method to R > 3 in Fig. 6.28a, we need to ensure that the
material to the right of 01 is non-deforming. The initial circle shows that the principal
stresses for all points along 01 are oy = 2k and «, = 0, acting in the vertical and horizontal
directions respectively. The material to the right of the slip line suffers less vertical stress
and therefore the application of eq(6.3) shows that this material has not yielded. In the rigid
region to the left of 567S9 an orthogonal network of cycloids are constructed within the
stress plane to enable the extension of pseudo slip lines (broken lines). Their end-points are
located on a principal stress trajectory 9-12-13 which lies at 45° to a? and P and is tangential
to a stress^ree point 9 on the container wall {Fig, 6.28a). The principal stresses, normal to
the trajectory, are found from projecting the tangent to the trajectory in (a) through the
corresponding pole point in (b). In this manner aB and trc act normal to the trajectory at
points B and C as shown. Equilibrium requires that c% and crc act with equal magnitudes in
vertical and horizontal directions. Since absent shear stress is a consequence of frictionless
conditions, fffl and ac are transmitted into the remaining material to align with the container
wall. The greatest principal stress difference, oB - oc, applies to the top left comer. The
stress plane reveals that this difference is less than 2it and hence the yield criterion is
nowhere violated.
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6.4 Frictionless Extrusion Through Inclined Dies

The extrusion pressure can be reduced by spreading the extrusion force over a larger area
but there is a practical limit to increasing the width of the ram. However, the die angle may
be inclined to achieve the same effect.

6.4.1 Extrusion ForR = 2

Taking a die angle of 0= 30°, the simple field in Fig. 631a applies for R = Hlh = 2. This
is constructed from the requirement that slip lines meet the die face and the axis of symmetry
at 45°.

(a)

(b)

(c)

u -

U
1 " '

F%ure 631 Bictionless extrusion through inclined dira with R = 2
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The initial circle in Fig. 6.31b applies to the J3- line 01, with its pole position coincident
with the origin, so giving ox = 0. In rolling this circle along the ordinate r = + k, the
variation in mean stress is established for that portion 13 of the ei - line. The remainder 34
of this slip line must remain straight if it is to meet the die face at 45°, the circle being
stationary with coincident pole points 3' and 4'. Projecting a line parallel to the die face
through pole point 4', gives the stress state at Q in which the normal stress is identified with
a constant die pressure

ff/6) (6.24a)

The extrusion pressure pe follows from equating horizontal forces/unit width. This gives

pd(H - h) sin 6 I jr\

sin # \ 6)

pe = 2k{l + JT/6)(1 - 1/R) = Jfc{l + JT/6) (6.24b)

from which the horizontal extrusion force/unit width is

In general, for the inclined die geometry given in Fig. 6.31a:

(6.25)

Equation (6.25) applies to the limit of the maximum reduction ratio that is possible in an
inclined die [1]. For example, R = 2 for 0 = 30° and R = 2.414 for d= 45°. The
corresponding extrusion pressure is found from applying eq(6.9a) to the m - line 134.
Referring to Fig. 6.31a, p, = k at point 1. At point 3, where $ = - 6, substitution into
eq(6.9a) gives

p3 + 2k(- 0) = c1 (6.26a)

where cx = k for ^ = 0. Equation (6.26a) then gives

p3 = * (1 + 20) (6.26b)

Resolving forces for the element 034 supplies the die face pressure

Ptl = 2k(l + d) (6.27a)

from which the extrusion pressure is found as before in eq(6.24b)

(6.27b,

Equations (6.25) and (6.27b) supply an optimum die angle associated with the lowest
extrusion pressure. A different SLF will apply to a given R value when 0 is greater than
the limiting value from eq(6.25). This is because the redundant work increases as frictional
work decreases with increasing 0.

The hodograph construction in Fig. 6.31c shows rigid body horizontal velocity U to the
left of points 1,3 and 4. Material to the right of points 3 and 4 moves in the direction of the
die face. Points 1A", 3R" and 4R" are located from the projecting tangent directions at 1,3
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and 4 through 1L", 3L" and 4,.". The vectors 3^*3 £ and 1 £'1 £ identify velocity
discontinuities of the type in Fig. 6.15, in which the end points 3R"(= 4g") and 1A" lie on a
curve that is the orthogonal image of 13, Finally, the horizontal velocity u of a point to Ihe
right of 1 (1R") must give u = 2U. The particle flow direction, shown in Fig. 6.3 la, is found
from the directions of the absolute velocities on adjacent sides of the slip lines it crosses.

6.4.2 Extrusion For R>2

(a) £

(b)

\ J

4'

p4

\ 1

»̂—

Pa*

al \

T

• 1r

a

-k

(c)

vel disc along
aI",2l",3I",4B 7 ? y a / vel disc along

Figure 632 ftictinnless extrusion through inclined dies with R > 2
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The limiting solution, discussed in the previous section, may be employed to extend slip-line
fields for extrusion ratios that are either greater or less than the ratio given by eq(6.25).
Take the case of R > 2, with 0= 30°, shown in Fig. 6.32a. A point a, between 1 and 2, must
be found such that when the field is extended by the usual method, the point 4 lies in the
container corner. Note the similarity between this slip-line field and that for square dies with
R s 3 in Fig. 6.28a. The sfress plane in Fig. 6.32b shows that the normal pressure p along
the inclined die is constant &tpm along 03 but increases from 3 to a maximum value p4 at 4.
One method for obtaining the extrusion pressure is to integrate ax and TV along the die face
in the manner of eq(6.16b). Alternatively eq(6.15) eould be used with % typically as
indicated. However, the stress plane can only supply stresses at points Of, 3' and 4' as 034
is not a slip line. To improve accuracy, a mesh refinement would be necessary giving further
intersections between pseudo slip-lines at intermediate points along 03 and 34. For this
reason it is better to determine the horizontal extrusion force FH by either method along the
curved a- slip line al, 21, 31,4. The mean extrusion pressure is thenpe = FHI ram area.

The hodograph construction in Fig. 6.32c reveals two types of discontinuity: (i) that
associated with rigid body motion to the left of 4,31,21, al (refer to Fig. 6.15) and (ii) the
fan of constant magnitude velocity vectors for adjacent points on either side of al,a (refer to
Fig. 6.14). For example, the relative velocity is constant for points above and below point,
a (aA" and aB") and above and to the right of point, al (aIA" and aIH"), Their directions vary
with the normals to the slip line at these points. It is seen that the path of a streamline now
involves two changes of direction through the deformation zone. Finally the checkpoint 1"
may be used to ensure U = Ru in obeyance with incompressible flow.

6.4,3 Extrusion FarR < 2

Figure 6.33 ftietionless extrusion through inclined dies with R < 2

Figure 6.33 gives a SLF for R < 2 in strip drawing [4]. Here, it is necessary to find point 1
on the fi - line by trial. This enables the ^-extension 23 to reach the axis of symmetry.
Intersections at points 2 and 3, with orthogonal a - lines must meet at the top corner point
5 of the inclined die. As the a - lines cannot all meet the container at 45°, the stress state at
point 4 is discontinuous. Because the circle is not stationary along points 1,2 and 3, the
stress plane is constructed for an assumed origin [1]. The true origin is found from applying
eq(6.16c) in which the total horizontal force is zero for material to the right of the /?- line.
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6.5 Extrusion With Friction Through Parallel Dies

These solutions apply where the coefficient of friction is sufficiently high to induce Mctional
shear forces which yield the material in contact with the container walls. It follows that slip
Hnes will meet the wall tangentially and normally within the deformation zone. The slip line
field solution for a reduction ratio of 2 is given in Fig. 6.34. The requirement is that the a -
line BD meets the axis of symmetry at 45° and the container wall at 90°. To achieve this,
the position of 3, i.e. point 3' in the stress plane (Fig. 6.34b) is varied until the pole position
LY lies on the T=- k ordinate. A line drawn perpendicular to the wall through D' confirms
that BD is an es- line associated with r= + k.

(a)

(b)

(c)

i y.s y / i
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f y y /
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i ^ ^ " ^b
-.1 — i • — • — . —
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^>7

/////
/
0

B

Figure fi.34 Extrusion with friction, R = 2
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The tangential fl - line at point D is determined from the orthogonal cycloid at D' which
terminates at point 4'. Intermediate slip lines are constructed from point C lying between 1
and B and from 5 between 3 and 4. Points to the right of D, and above C3 and 4, lie within
the dead metal zone and, therefore, lie at the origin for the hodograph in Fig. 6.34c. Points
beneath D, C3 and 4 are associated with the fan of velocity discontinuities. No discontinuity
arises between points to the left and right of D, E and B, since these all move horizontally
with a common velocity «. The checkpoint 1" is found from extending the hodograph, with
directions parallel to those in the stress plane, to give the final velocity U = 2M.

(a)

(b)

*/ / / / / / / /

(c)

r

Figure 6.35 Extrusion with friction for R = 4
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The solutions for different extrusion ratios and sticking friction are less distinct than those
previously considered without friction. For example, title SLF solution for R = 4 (see Fig.
6.35a) is similar to that for R = 2 and, therefore, we need not detail the corresponding
constructions for Figs 6.35b and c again. The additional construction lines in Fig. 6.35b,
enable the determination of the total extrusion force/unit width by the method outlined in
Fig. 6.19. This applies to the /?- line 0, 5,51, 511 taking intermediate points a, b, c and d,
to bound the dead metal zone. The corresponding poles, located on the orthogonal image
in the stress plane, enable the centre and the ordinate positionr= - k to be located within
each circle. Connecting the pole of each circle to its ordinate reveals the lengths of the
perpendicular projections aH from the stress origin. These are expressed as a ratio of the
circle's semi-circumferential length nk and plotted against the true length s of the p - line
in Fig. 6.36.

1

511 i c b 51 a 5 0

Figure 6.36 Variation in resultant horizontal stress along 0,5, 51, 511

The area beneath the curve in Fig. 6.36 gives the horizontal force/unit width upon the upper
rectangular die face. Applying the trapezoidal rule, this area is 6.165 nk, which gives a net
horizontal force FH = 12.33 s i and a mean die pressure/unit width:

FB 4.11 a-it
(H - h)

The mean extrusion pressure pe is found from

Hp = {H - h)p.

pe =
3.0S3 nk

Finally, a check is made that the rate of plastic work is positive. The shaded region within
the hodograph in Fig. 6.35c shows that the motion of point 41 relative to 3 is consistent with
the directions of k for the corresponding shaded region given in the stress plane (Fig. 6.35a).

6.6 Notched Bar in Tension

Deformation in a notched bar is in pseudo-steady state in which the bar size but not its shape
changes with time. Fig. 6.37a shows one half of a symmetrical, double-notched tension bar.
It will be shown that the semi-circular notch retains its shape when the through-thickness
strain is zero under plane strain conditions.
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(a)

(c)

(b)

Figure 6.37 Notched tension under plane strain

The symmetry of the problem reduces the physical plane to V* of the bar only. Since both
ox and rw are zero at the notch root 311, the circle in Fig. 6.37b must pass through a stress
origin coincident with its pole point 3IT. The circle applies to the strong solution where the
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mean stress p is tensile. This circle will also represent the zero radial and tangential surface
stress states for points 1 and 21 but with the different pole positions 1' and 21' indicated.
They are found from projecting tangents at 1 and 21 through the stress origin. The cycloid
pattern shown originates from these pole positions when the circle rolls along r = ± fc Points
2III' and 1IV' along the circle axis are associated with zero shear stress. Physically, they
lie on the horizontal axis of symmetry, as this is a principal plane. The fi- line: 311,211, III,
and the ee - line: 21,2n, 2III, are derived from the corresponding cycloids in the stress plane.
The problem lies in locating point 1. The requirement is that the ee- line: 1, II, in , 1IH, 1IV,
is to terminate at the bar centre. Point III* in the stress plane is determined by trial until this
is achieved. We see that this is a particular type of boundary problem in which the surface
tractions are zero. The applied force may be estimated from a stress distribution based upon
the major principal (vertical) stresses at points 311,2III and 1IV.

In constructing the hodograph (Fig. 6.37c), the material outside the deformation zone
moves with rigid body velocity M. This fixes coincident points: 1", II", III", 1III", 1IV",
above the bounding a - line. Within the deformation zone, the magnitude of the velocity
discontinuities: 1"1L", I f l ! / , m"m B " , IIIT'IIII/ and iIV"lIVR", are fixed since a point
to the right of 1IV* (i.e. 1IVR") must also move horizontally relative to the origin. Remaining
elements in the hodograph are established from orthogonality with the physical plane. It is
seen that the deformed notch retains a semi-circular shape as points on its surface move
radially inwards with uniform absolute velocity. That is, points 1L", 21" and 311" lie on an
arc with centre at the origin of the hodograph.

6.7 Die Indentation

With flat die indentation of a plate (see Fig. 6.38), the requirement is to develop a SLF for
a given impression beneath the die. This leads to the die pressure and applied force F.
Plasticity is localised for small bit ratios, i.e. shallow impressions in very thick plates, but
spreads through the thickness as bit increases. Solutions are available for full friction,
frictionless indentation and with an intermediate Coulomb friction between the contacting
surfaces.

Figure &J8 Flat die indentation of a plate
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The Coloumb shear stress is the product of the frictional coefficient and the pressure normal
to the die surface. Hexe, sip lines can meet the die surface at varying angles, in contrast to
the respective tangential and 45° directions, with and without friction [7]. The SLF solutions
for a blunt wedge indentor is surrounded by a dead metal zone similar to the SLF for flat die
indentation of a thick plate. We will regard flat die indentation as a limiting case of the
wedge indentor in which a plate of finite thickness t is compressed along a vertical axis
between two flat platens each of breadth b (Fig. 6.38). Symmetry restricts the analysis
necessary to V* of the deformation zone. Plane strain conditions apply when the plate width
w is large compared to the die breadth. This means that plastic strain in the width direction
is absent, this promoting an elastic constraint in each undeformed region adjacent to the
deformation zone. The following geometries are considered from the interactions that arise
between opposing slip line fields. The distinction between dies without friction (smooth)
and with friction (rough) will need to be made for bit ratios greater than unity.

6.7.1 Indentation for b/t < 0.1 IS

(a) (b)

(c)

3/
(Origin)

Figure 639 Flat die indentation for a thick plate

(c)

Two alternative SLF's for this bft range (see Figs 6.39a,b) are due to the pioneering work
of Prandtl [12] and Hill [4] respectively. Experiment has shown that Prandtl's SLF in (a)
is more applicable to rough dies where there is less tendency for the dead zone (shaded) to
slide on its contacting surface. However, should frietional forces along the narrow die face
be zero, then surface roughness is unimportant. Hill's solution in (b) strictly applies to
frictionless conditions in which slip lines intersect the die centre and edges at 45°. The same
stress plane (Fig. 6.39c) applies to both slip-line fields. The initial, weak circle applies to
the zero stress state {ay, T^) at point 0 on the free surface. Projecting the horizontal plane
through the stress origin locates the pole at GT. Thus 01 is a fl- line, which is extended to
points 2 and 3 by rolling the circle along r = - k to trace the cycloid image points 2' and 3'.
Beyond 3, the circle remains stationary with /? adjacent to the dead zone. That is, pole
points 3' and 4' coincide, corresponding to a straight line 34, bounding the dead zone.
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Projecting a horizontal line, parallel to the die surface, through pole 3'4' intersects this circle
to give the stress normal to this surface. This is the die pressure

(6.28)

Prandtl and Hill's hodographs (Figs 6.39d,e respectively) show the downward velocity
u of rigid wedges (points 3A") relative to each origin. The latter are coincident points 1B",
2B". %&' Bnd 4" for stationary material. A fan of velocity discontinuities appears where the
outer 0- line is crossed from stationary to moving material (points: 1A", 2A", 3L"). A further
discontinuity 3A"3L" arises as the wedge is crossed from a point above and to the left of 3.

Both SLF solutions apply to regions beneath each die surface as they do not penetrate
to the horizontal axis of symmetry. In fact, the upper field is not altered by the removal of
the lower die (and vice versa).

6.7.2 Indentation for 0.115 <b/t<l

bl2

I"

Figure 6.40 Flat die indentation, 0,115 < bft < 1
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{Assumed axis)

Die pressure p = 4Mk

(b)

Figure 6.40 Flat die indentation, 0.115 < bit < 1 (continued)

Hill [13] derived a ratio bit = 0.115, for opposing SLF to just meet. Where bit > 0.115, an
interaction between opposing SLF modifies their shape. A typical example for b/t = 0.14
is given in Figs 6.40a-c. As with PrandtTs solution (see Fig. 6.39a), the wedge of dead metal
lying beneath the full width of the die in Fig. 6.40a implies that it is unimportant whether
the die face is rough or smooth. Since the stress origin for Fig. 6.40b is not known, a
stationary circle for the straight slip line 01, is chosen arbitrarily (left position). Assuming
this an a - line, the stress state will lie at the top of the circle, from which the pole 0 T is
located. The fi - line 1234 is derived from the cycloid 1'2'3'4', traced by this pole as the
circle rolls in a clockwise direction along r = - k. Within the network of orthogonal
cycloids point 4' is selected to locate point 4III at the centre of the deformation zone.

The lateral velocity v of rigid material exterior to the deformation zone is found from
an incompressibility condition: bit = vlu, where « is the vertical die velocity. In the
hodograph (Fig.7.40c) the coincidence of leftward points: 4J', 4IL", 411,." and 4IIIL" is set
at v = 1 unit from the origin 0". The elements of the hodograph are orthogonal to those of
the physical plane. These show discontinuities: 4L"4R". 4IL"4IM"» 4IIL"4IIR" and 4niL"4IIIA",
from crossing the outer a - line. Checkpoint 1" reveals that the material within the dead
zone moves with the correct downward velocity: « = tv/b = 7,14v.

The position of the stress origin is found by the second method outlined in Section 6.2.9
(p. 178). The requirement here is that the total horizontal force FH = 0 for the outer, a slip
line in Fig. 6.40a. Cartesian normal ax and shear stress TV distributions are established from
the points 0', 4', 41', 411' and 4HI' in the stress plane. These vary with the vertical and the
horizontal projections of the slip line as shown in Fig. 6.41. Note that r^ is the full
projection of a slip line that curves back on itself. For example, at point 4 the stress state
(o^ tp) is found from projecting a vertical line through 4' in the stress plane. This shows
that the sense of ax and rm ( = v^ oppose and so eq(6.16b) may be applied as in Figs 6.21
and 6.22. Here, q in Fig. 6.41 must be replaced with: (i) <% + z, for ax compressive in the
region c &y <b and (ii) - (ax - z), for ax tensile in the region O s y s e . Using ordinates
in multiples of the circle radius k, the integrals in eq(6.16c) are evaluated by the trapezoidal
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rule. Setting FH = 0 in eq(6.16b) determines z and the position of the true stress origin.
Prom this the left point in the stress plane gives a normalised die pressure: pj(2k) = 2.4.

4in

Figure 641 Variation in Cartesian stress components along a slip line

6.7.3 Indentation for b/t = 1

When b/t=l, the SLF (Fig. 6.42a) consists of a single wedge of dead metal beneath the die
face. As before, this implies the field is equally applicable to both rough and smooth dies.

Origin

(a) (b) (c)

Figure 642 Flat die Mentation, bit = 1
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With the pole P, at the origin of the stress plane in Fig. 6.42b, the constant die pressure is:
pd/(2k) = 1. In the hodograph (Fig. 6.42c), the lateral and vertical velocities are the same,
i.e. u = v and these are connected by the common discontinuity: 1A"1L", V ' V -

6.8 Rough Die Indentation

In the case of partially rough dies, SLF solutions are available for: (i) a constant shear stress
at the boundary, less than k, and (ii) a constant coefficient of friction [I]. Condition (ii)
allows the ratio between the shear force and the normal reaction to be matched more
realistically. The following deals with an ideal case having completely rough dies.

6.8.1 Rough Indentation for 1 <bft< 3.64

A detailed analysis [7] has shown that the slip line field m Fig. 6.43a does not meet the
boundary tangentially when bit < 3.64.

0

(a)

/ / / / y / / /

\»K 4" 6?
Origin

2"

(c) 3 11 c It £ >l
A » J A • "A

Figure 6M Rough die Mentation, 1 < bit < 3.64

The 45° inclination of m- line 01 locates the pole of the weak circle at the origin of the slress
plane in Fig. 6.43b. The cycloid 1'2'3' is traced by the pole as the circle rotates ACW along
x— - k corresponding to fl~ line 123. Point 3 is adjusted until point 6 on a- line 356, which
bounds the rigid zone, lies at the bar centre. This line can only meet the indentor edge
tangentially for the limiting ratio: b/t = 3.64. For lower bft, the edge inclinations of 0356 and
another, intermediate a-line 024, lie between 0 and 45°. Slip lines meet axes of symmetry
at 45° since these are principal stress planes. Elements of the hodograph in Fig. 6.43c are
orthogonal to those in the physical plane (see Fig. 6.43a). The latter shows an array of
discontinuity points, 3B"» 5B" and 6L", below the wedge. Points 3A", 5A" and 6A" move
rigidly downwards with velocity M. Checkpoint 1" confirms the lateral velocity v = (b/t)u.
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6.8.2 Rough Indentation for b/t > 3.64

-k

V = — K = 6M

t

1*

(c)

21" 3ir 4Ef

A
siv" e

s^>4
JfSSL I

X
VB\yeL<iisc

s r en/ 6nR*fimA",6iv/,6vs"

Figure 6.44 Rough die indentation b/t = 6

With b/t > 3.64 under full frictional conditions, the slip lines will meet a rough die surface
tangentially to maintain a constant shear stress k at all points of contact. For example, a SLF
solution far bit = 6 is given in Fig. 6.44a. For the stress plane (Fig. 6.44b) the initial weak
circle, with pole 0 T at the origin, applies to the stress state along m - line 01. The image of
the 0- line 1234 is a cycloid 1#2'3'4', traced by the pole as this circle rolls along r = - k.
The a- lines mat intersect with points 2,3 and 4 are constructed in the usual way. Point 3
must be adjusted so that point 6V lies at the bar centre. This shows that cc- line: 611.... 6V,
contains the rigid wedge over half the die breadth. This SLF solution may be scaled to
match any intermediate bit ratio between 3.64 and 6.
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Within the hodograph (Fig. 6.44c), the coincident points 6IIR", 6 m / , 6IVA", and 6VA",
in the wedge zone, all move downwards with die velocity «. Crossing this a- line to points
6IIB" 6IIIB", 6IVB" and 6VL", shows that this slip line is also a velocity discontinuity. The
constant velocity is fixed by the horizontal motion of point 6VL". The remaining elements
of the hodograph are constructed from the orthogonal SLF elements, given the horizontal
motion of points, 1", 21", 3IT, 4IH", and SIV", along the axis of symmetry. The checkpoint
1" confirms velocity v = 6u for rigid material to the left of 01, by the constant volume
condition. The hodograph also reveals how the horizontal velocity increases across any
vertical section, i.e. by locating the intersections with slip lines within Fig. 6.44c.

The pressure distribution across the die face is not constant. A mean indentor pressure
pm can be found from the magnitudes of ay and xvx at points 0,4,51,611,6III, 6IV and 6V.
These are provided by the stress plane (see Fig. 6.44b), from which the distribution is
derived in Fig. 6.45.

f l l , I
\/ J> s S....S. s / / .S S / S / 4

Figure 645 Cartesian stress distributions on die face

Using a similar derivation to eq(6.16a), the net compressive vertical force, per unit width,
is given by

in which the stress component directions are opposed, as illustrated for point Q in Fig. 6.44a.
Applying eq(6.29), with b = 300 mm and t = 50 mm, leads to: Fv = 1400* per mm of width.
Then, with k and pm in MPa: pm/{2k) = 700/300 = 2.34.

The forgoing solutions to each indentor enable a plot (see Fig. 6.46) of normalised
pressure pi(2k) versus Mt for the rough die indentation (2k is the diameter of Mohr's circle).
It is seen that a minimum appears in Figure 6.46 for the co-ordinates (1,1) and pressure is
constant for bit < 0.115. Hill [4] calculated the pressure across the die face for b/t ratios
between 0 and 1. Experiments by Watts and Ford [14] confirmed Hill's theoretical
prediction. With the exception of some integral ratios bit, mean pressures must be employed
for blt>\. Hill [15] estimated these from a linear relation
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0.14 l 6

Figure 6.46 Pressure variation with bit ratio for rough dies

p/2k = 3/4 + b/At (6.30)

It is seen that eq (6.30) is in approximate agreement with the ratio p/(2k) = 2.34, as derived
above for bit = 6.

6.9 Lubricated Die Indentation

Complex, slip line fields for perfectly lubricated (smooth) dies, with 1 > bit > 2, were
developed by Green [16]. Because slight differences arose for the intermediate critical ratio
bit = T/2, a further subdivision of the bit was necessary.

6.9.1 Smooth Indentation For 1 < M < v%

The SLF, given in Fig. 6.47a, shows a single dead-metal zone lying at the centre of the die
surface. Elsewhere slip lines intersect with the die face and both axes of symmetry at 45°,

(a)

m 2m 3rv
figure 647 Smooth die indentation, l<blt<</2
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3t3ny

3',3nr/
AY 4m

3rv'\y

(b)

ir, in*
v2T,2n'
X^r,4ir
&ir\jr.ini „

4 6 /ST. SIT

~~— Zero load across
n 1 IT ITT

v = (b/t)u -
2m'

AR"

3rvt"

^V

4"

Origin

3IVA

4nr

u

sr.sij*

m
Figure 6.47 Smooth die indentation, l<b/t<</2 (csmtiniwd)

The angle #must be adjusted in Fig. 6.47a, along with the shape of the a- line: 0 ,1 , II, III,
in order to locate point 3IV correctly on the vertical centre line. In Fig. 6.47b, the r - axis
is chosen to remove horizontal loading and, in Fig. 6.47c, the velocity of all leftward points
0/', I", II" and III" must conform to volume deformation.

6.9.2 Smooth Indentation For / 2 < bit < 2

Within this bit range, a lesser die pressure applies to a SLF with two dead-metal zones (see
Fig. 6.48a). This also involves a more complex arrangement of velocity discontinuities as
seen in Fig. 6.48c. Again, #and the shape of the a- line 0 ,1 , II, III in Fig. 6.48a, must be
adjusted to locate points 611 correctly at the centre. The stress origin is fixed from the
condition that the net horizontal force is zero across this slip line. Outside the deformation
zone the incompressible material flows laterally with velocity v = (b/t)u.

b

(a)

Rigid
Figure &4S Smooth die indentation, -fl <blt<2
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= (btt)u

3", 4" 5f 6TL"

3IV", 4IV"

5m"

en."

(c)

Figu re 6.48 Smooth die indentation, i/2 < ft/f < 2 (continued)

6.9.3 Smooth Indentation For Mil

Complete SLF solutions, available for smooth dies with integral ratios b/t = 2,3,4 etc, show
rigid, block slip. For example, a simple SLF applies to b/t=2, as shown in Fig. 6.49a.

Origin

Figure 6.49 Smooth die indentation, bit=2

The weak, compressive circle in Fig. 6.49b will have its pole at the origin because ax = 0 in
all horizontal directions. It follows that the mean stress on slip line is constant. That is, slip-
lines remain straight, with every stress state represented within a single Mohr's circle. The
maximum positive shear stress occurs at points 1' and 2', so identifying the a - line 12.
Similarly, the /?- line 23 is derived from points 2', 3' in the stress plane. The dead zone,
above point 1 and to the right of 2, moves downwards with rigid velocity, u. This fixes
points 1A" and 2%" within the hodograph (Fig. 6.49e). Yelocity discontinuities coincide with
slip lines, showing that the material points 1L", 2B" and 3 R move leftward rigidly.
Consideration of the horizontal and vertical components of velocity at points 2 and 3, reveals
that the shape of elements within slip lines are retained with progressive deformation. With
higher b/t ratios, a similar, extended pattern of slip lines and velocity discontinuities apply.
These extensions introduce further 45° elements of alternating slope to reach the die edge.

Watts and Ford [14] recommended that bit ratios within the range 2 < b/t s 4 be
employed for the plane strain compression test. Here t is the current thickness and the sheet
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width w is taken from the range 5 & w/b < 12 (see Fig. 6.38). Their experiments confirmed
the theoretical variation in pl{2k) with bit for frictionless compression in non-hardening
material. Over a greater range of bit the pressure variation is cyclic, as shown in Fig, 6.50.

1 2 3 4

Figure 650 Cyclic variation in smooth die pressure with bit ratio

Minimum values, pl(2k) = 1, occur for each integral ratio. With bit < 1, the p/(2k) variation
will coincide with that found for rough dies (see Fig. 6.46). Testing within a limited bit
range allows for natural strain up to 200%. This is a fer greater strain than ean be reached
in uniaxial compression upon a cylindrical testpieee where barrelling and buckling the
impede uniform strain required (see Chapter 9).

Finally, the reader may wish to be challenged by noting that SLF's for smooth
indentations with fractional b/t ratios beyond 2 are not known.
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Exercises

fi.l Show that the slip line field and hodograph solutions fox an extrusion ratio R = 3 produces a
consistent positive rate of plastic work.

6.2 Construct extended, pseudo slip lines to show that, within the rigid body regions for R = 2
extrusion, the yield criterion is nowhere violated.

6 3 Determine the horizontal extrusion force FH from the application of eq(6.16a) to the a - slip line
al, 21, 31,14 in Fig. 6.32. Take the extrusion ratio R = 3.3 for a die inclination ff= 30°.

6.4 In Fig. 6.51 the magnitude and direction of respective velocities vA and vB for points 1 and 2 on
an ee - line, together with vc and vD for points 1 and 3 on a fi - line, are known. Construct the
hodograph for the region enclosed within a and 0,

Figure 6.51 Figure 6.52

6.5 The magnitude and direction of absolute velocities vA, vs and vc at points 1,2 and 3 on a ft - line
are known. Construct the hodograph for the region enclosed within this ft - line and an axis of
symmetry (CL) when the intersection is as shown in Fig. 6.52.

6.6 The absolute velocities at two points 1 and 2 on a free boundary in Fig. 6.53 are known. Construct
the hodograph for the lower, interior region.

X Fixed "1

Figure 6.53 Figure 6.54

6.7 Figure 6.54 shows two rigid blocks connected with a layer of solder 2bx2tx w, where the width
w is large compared to b and (. When carrying a tensile force F/unit width, the solder flows plastically
under a shear yield stress L Sketch the slip line field and hodograph and show that when bit — 11.5,
a= A(2.5 n+1) at point A, where the slip line bounding the central dead zone reaches the surface of
the block. Estimate F and the mean normal stress along the interface for this condition.
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6.8 In the side extrasion container in Fig. 6.55, the ram exerts a vertical force P to extrude horizontally
a rectangular strip of thickness h. Assuming frictionless plane-sttain conditions, determine appropriate
upper bounds and associated hodographs for the extrusion pressure/unit width of container. How
would these be modified by base friction?

Figure 6.55 Figure 6.56a

6.9 Figures 6.56a and 6.56b give the general SLF and hodograph solutions respectively for frictionless
extrusion under three rams. The inward speeds K, and az of the lateral rams are equal. Determine (i)
the correct angle of intersection of the slip lines with fee rams, (ii) the a - and 0 - lines for which 8
and $ re-appear within the hodograph as shown, (iii) velocity vectors within the hodograph
corresponding to the absolute velocities at points 1,2,3 and 4 and the pressure exerted by each ram
at A and B. How would you modify the SLF (a) with the presence of friction along each lateral ram
face and the hodograph in Fig. 6.56b, when w, * a, with M3 = 0?

Figure 6.56b
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C H A P T E R 7

LIMIT ANALYSIS

7.1 Introduction

The plastic behaviour of a structure or a process involving plastic-rigid material may often
be represented in lower- and upper-bounds. Two principles are employed to obtain these
bounds: (i) that a statically admissible stress field is in equilibrium, satisfying the forces
applied to the boundary and (ii) that a Mnematieally admissible velocity field is compatible
with internal strains, satisfying imposed displacements at the boundary. Principle (i) provides
a lower-bound solution, in which the admissible stress field will nowhere exceed the yield
stress. Principle (ii) is associated with an upper-bound solution, which normally provides
the loading associated with the admissible displacement field. Since the work dissipated by
the upper bound loading is usually more than mat done by the actual forces, the true solution
will lie between the two bounds. The latter impose limits to the plastic behaviour but in
certain structures, as for the beams that follow, no difference exists between the bounds.

7.2 Collapse of Beams

In consideration of the limit loading for a simply-supported beam in Fig. 7.1a, the lower
bound load WL is supplied from the moment diagram (Fig. 7.1b). In the beam cross-section
beneath W there exists an admissible stress field. The collapse moment is given by [1]

M = abW
ult a + b

from which a lower bound load will be fractionally less than

AT,.(a + b)
*L = - ^ ~ C7.1»)

ab
The beam displacement diagram, in Fig. 7.1c, shows that the work done by an upper-bound
load is greater than the energy dissipated with the rotation #of the hinge. This gives

Wv3=MuU0
Substituting 0=S/a+Slb leads to

M.Aa + b)
Wv = -=5—• (7.1b)

ab
In general, the true loading W lies in the range: WL < W < Wm but eqs(7.1a, b) show no
distinction between the bounds in this case. If the ends of the beam in Fig. 7.1a were both
fixed, collapse would occur from the formation of three plastic hinges: one at each end and
one beneath W. The condition for collapse is that equal ultimate moments Mult are attained
simultaneously within each hinge.
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(a) at b

(b)
*b)

3la

(c)

Figure 7.1 Collapse of a simply supported beam

Their magnitudes are each 100% greater than Mult for a simply supported beam. This gives,
fromeq(7.1a),

2Mttlt(a + b)

ab
(7.2a)

The deflected shape of the encastre beam is similar to Fig. 7.1c. The work of collapse is
given by

t xi
ult b

2Mul,(a + b)

ab
(7.2b)

Again, there is no distinction between the bounds in eqs(7.2a,b). Note that for both beam
fixings, the shape of the cross-section is not specified when deriving the lower-bound
collapse load WL. This is generally true for a beam with a uniform cross-section.

To take an example of a non-uniform section, consider a plane, vee-notched beam
subjected to a uniform moment M/unit width (see Fig. 7.2a). A lower bound moment ML is
found from the fully-plastic admissible stress field in the weakest section. This gives

M, = F.d = Y\ I x - | - = 0.2SYa2

L L { 2} 2
(7.3a)

With an upper bound collapse under a single plastic hinge (Fig. 7.2b), the energy dissipated
is 2MV SO. Now Mu follows from the shear yield stress *: = F/2, acting around the plastic
zone radius r.
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(a)

This gives

Figure 7,2 Plane vee-notched beam

. . , . Ylr
Mr, = klr =

(7.3b)

where I = 2ifrr is the arc length. From eq(7.3b), collapse under a single plastic hinge is
assumed to occur when the hinge product Ir is at its minimum:

Ir = 2fr2 = 2f
4 sin2 ifr) 2 sin2

d #" 2 sin2 f sin3 5̂

tan ̂  = 2$

That is, 5̂ = 1.166 rad and Ir = 0.69az. Substituting into eq(7.3b) gives

Mv = Q345Ya2

The true collapse moment M lies within the range bounded by eqs{7,3a,c):

0.25Fa I<M<0.345Fa2

A slip-line field solution gives 0.315Fa2. It is generally true that SLF solutions will be
closer to upper-bound estimates.

(73c)

7.3 Collapse of Structures

7.3.1 Principal of Virtual Work

A simpler method to obtein collapse loading of beams and plane frames is to treat collapse
as a rigid mechanism under an equilibrium system of co-planar, non-concurrent forces Ft

where i= 1,2... N. The equibrium conditions are

£ F, = 0 and £ M, = 0
» - 1 r = 1

(7.4a,b)
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where the moments M, must sum to zero at any two arbitary points. Since the displacements
and rotations that occur in a collapsing structure do not alter the equilibrium eqs(7.4a,b), we
say that they are virtual, written as Av and 0r, respectively. It follows that the equilibrium
system of real forces and moments forces will do zero virtual work. That is

£) £
i = 1

Combining eqs(7.5a,b) leads to a useful form

E M; = E

(7.5a,b)

(7-6)
i = 1 i = 1

In eq(7.6), ff* refers to the rotation at each hinge under a collapse moment and A /* to the
deflections beneath the corresponding forces. To apply eq(7.6), a collapse geometry must
be assumed. Where a number of collapse mechanisms are possible, the true collapse load
minimises eq(7.6). We now identify Mult with a section-dependent, collapse moment Mp.

7.3.2 Beams

(a) Propped Cantilever
To determine the uniformly distributed collapse load wP for a cantilever with an end prop (see
Fig. 7.3a), the mechanism of collapse, given in Fig. 7.3b, is employed. Firstly, the position
zo of the second hinge is required.

(a)

(b)

Figure 7.3 Collapse mechanism in a propped cantilever

Applying eq(7.6) and omittting the superscript v for simplicity:

MP0 + Mp(0 + #•) = wpf
l vdz (7.7)

where v is the deflection at position z and wdz is the elemental force at this position. The
integral in eq(7.7) is clearly the enclosed area

iA (7.8a)
'o ' 2

The rotation ?Hs found from
A = ( f - O 0 « t * <7-8b)

f
Jo



 

LIMIT ANALYSIS 217

(7-8c)

(7-9)

which gives C» _ , \a
f = o/

Substituting eqs(7.8a,b,c) into eq(7.7):

2Mp(l * zB)

wp - —

To find the z,, value which minimises eq(7.9) we set dwP/d^, = 0. This gives

^ + 2 ^ , 1 - / * = (>

for which za = (^2 - \)l = 0.414H. Then, from eq(7.9), wF = 11.66MP/I2.
(b) Continuous Beam
Figure 7.4a shows a stepped, cantilever beam resting upon two supports at C and E. The
plastic collapse moment for the reduced section within length AC is one half that for the
section within length CE. All the possible modes of failure must be examined (as shown in
Figs 7.4b-d) in the search for the least value of the collapse load W.

(a)

(b)

(c)

(d)

Figure 7 A Collapse modes in a continuous beam

Now apply eq(7.6) to each mode in turn. In Fig. 7.4b, MP is reached at A, B and C:

MP0+ MA^S) + MP0=W(L/2)d =* W=%MP/L (7.10a)

In Fig. 7.4c, MP is reached in a hinge to the left of C and 2MP must be reached for collapse



 

218 BASIC ENGINEERING PLASTICITY

at D. The rotation at E is not accompanied by a moment (free-end). This gives

Mp0+2MP(30f2) = 2W(IJ3)0 =* W=6MPJL (7.10b)

In Fig. 7.4d, collapse moments of MP, MP and 2MP are reached at A, B and D respectively:

MP0+MP(20) + 2MP(30/2) = - W(U2)0+2W(U3)0 =» W=36MPIL (7.10c)

The least load from eqs(7.10a - c) is the collapse condition: W= 6MP/L.

7.3.3 Portal Frames

Application of eq(7.6) to describe collapse in a portal frame requires all the possible
mechanisms to be considered [2]. For example, the frame ABCDE in Fig, 7.5 is subjected
to both vertical and horizontal loadings with 'hinged* supports at A and E, Since hinges can
carry no moment, collapse may occur: by collapse in the horizontal beam BCD (Fig. 7.5b),
by sway in the stanchions AB and DE (Fig. 7.5c) or by a combination of the two (Fig. 7.5d).

^Jik JLL.I&

0 w

(a) (b) (c) (d)

Figure 7.S Collapse modes is a portal frame

Corner collapse will occur in the limb with the lower collapse moment where different
sections exist between the limbs. Assuming that the stanchions have a 50% greater moment
capacity than the beam, all the hinges will form on the beam side of the comers under MP,
as shown. Failure from each mechanism occurs with hinges at: (b) B, C and D, (c) B and
D and (d) C and D. Applying eq(7.6) to each mode in Figs 7.5 b, c and d, respectively:

MP0 + MP{0+
2MP0 = 2W<5

= WA

MP(0 = Wh + 2W3

(7.11a)
(7.11b)
(7.11c)

Substituting ^ = &2, S= L0/2 and A = L0/3 into eqs(7.11a,b,c) leads to the respective
collapse loads: 9MP/L, 2MPIL and 9MP/4L, showing that a sway collapse would occur.
Note, these calculations assume that the collapse moment (1.5MP) for each stanchion is not
reached. Therefore, it would be more economical to select a constant section, with collapse
moment Mp, for the whole structure.

With encastre fixings, further hinges form at A and E under modes (c) and (d) in the
manner of Figs 7.6d and f. Equations (7.1 lb,c) are modified to
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2MP 0+ 2(3MP/2)0 = 2WS

MP(0+ ft + MP{0+ = W& + 2W3

(7.12a)

(7.12b)

The respective collapse loads are W = 5MP/L and 9Mp((2L), indicating that a combined
mode of failure occurs. The structure can be designed more economically when both sway
and combined mode failures occur simultaneously. Let Mj (< MP) be the modified collapse
moment for the stanchions in modes of F i p 7.6e,g. Equations (7.12a,b) are modified to

2MP'0+ 2MJ0 = 2W3

2MP'0+ MP(0+ #•) + 2MP'0 = WA + 2WS

(7.13a)

(7.13b)

Equation (7.13a) gives MP' = WLf4. Substituting this into eq(7.Ob) gives MP= 11WIJ36.
Therefore W = (36MF)/(11L) and MP = 9MP/l 1, which confirms that the given stanchions
are over-designed. A graphical interpretation of this optimum design now follows.

7.3.4 Minimum Weight Solution

We may employ virtual work to design a beam
or a frame to have minimum weight To do this,
even the most unlikely failure mode has to be
accounted for. In the portal frame of Fig.7.6a
there are in fact six modes (b-g) as shown. With
the deflections S, rotations 0 and collapse
moments MP indicated, the application of virtual
work to each mode results in a corresponding
system of dimensionless moment equations:

Figure 7.6 All possible failure modes in a simple portal frame
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= 4M» 0A2PS

6IL

IPS = 2MP 0A +

(Fig. 7.6b):

where 0A= 6IL

(Fig. 7.6c):

where 0A=8B-6IL

(Fig.7.6d): PS = 2M^#A

where 0A=0S=S/(3L)

(Fig. 7.6e); PS

where 0B=SI0L)

(Fig.7.6f): P«5-

where 0A= &B =

(Fig.7.6g): P<5 + 2P^

where 0A= 0B=dfCSL).

PL
0.5 (7.14a)

_£t + -Is. i i.o (7.14b)
PL PL

Mp Mp ,

PL PL 2

PL 4

2 P - = + 2Mpfi PL 2

(7.14c)

(7.14d)

| (7.14c)

PL P L
2—5t s - (7.14f)

Each of eqs(7.14a-f) plot as a straight line within the axes given in Fig. 7.7.

0 1.0 2.0 3,0

Figure 7.7 Design space far portal frame collapse

The inequalities reveal a working design space that is bounded by eqs(7.14a, d, e and f), as
shown. If we now superimpose a weight function X upon Fig. 7.7, one point on the design
space boundary will provide a safe, minimum weight solution. The weight/unit length
depends upon the collapse (ultimate) moment. The latter can be expressed in terms of the
yield stress and the dimensions of the section area, as in eq(5.5). From this we may interpret
a weight function for a whole structure [3]:
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and for the portal frame in Fig. 7.6, eq(7.15a) becomes

X = (Mp x 2L) + 2 (Mp x 3L)
A 3

The corresponding dimensionless form is

PL2 PL PL

(7.15a)

(7.15b)

(7.15c)

The right-hand side of eq(7.15c) describes a straight line of gradient - 3 , as shown. A
minimum value of X/(PLl) has been chosen to lie at the comer where the collapse modes in
Figs 7.7e,g occur simultaneously. This requires a simultaneous solution to the corresponding
eqs(7.14d and f), which gives the minimum weight conditions:

M D Mo i v

PL
= 1 . = - and

4 PL2
= 6.5

Commercial sections will not conform exactly to these conditions but the method allows the
selection to lie within the design space, close to the minimum weight point.

7.4 Die Indentation

7.4.1 Lower Bounds

In order to estimate a maximum, lower-bound, fields of all possible stress discontinuities are
used. Let us apply this approach to flat die indentation of a large plate (see Fig. 6.38). The
simplest posssible configuration of stress discontinuities is that given in Fig. 7.ia.

-A°
(a)

Figure 7.8 Simple stress discontinuity pattern for flat die indentation

Two constant stress regions, A and B, are defined in Fig, 7.8a by the given states: A being
unstressed and B satisfying the plane strain yield criterion: oj - 0$ = 2k. In the stress plane
(see Fig. 7.8b), point A defines the origin and B becomes a circle O B w r m P°^e PB» a t m e

origin. Clearly, the constant die pressure pL = 2k is far less than that found previously from
the SLF solution (6.28): pd = 2k(l + ff/2) = 5.142*.

To raise the lower bound pL, the stress states may be altered to those given in Fig. 7.9a.
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i. r

= - 4 *

(a) (b)

Figure 7.9 Stress discontinuities for flat die indentation

Both regions A and B now satisfy the yield criterion. The stress plane (Fig. 7.9b) consists
of two circles 0 A and O»» e a c n of radius k, with common poles, PA and PB. Projecting the
horizontal plane of the die face through PB intersects O B to give a die pressure pL = 4k,
which is twice that found from Fig. 7.8b,

Let us now examine whether the two alternative patterns of stress discontinuities on either
side of the vertical centre line in Fig. 7.10a are admissible.

(a)

O* (zero radius)

- 3 *
' &tsro radius)

(b) (c)

Figure 7.10 Ctanplex stress discontinuities for flat die indentation
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We first work in an anticlockwise direction, to the left of the centre-line, starting with a
stress-tree condition for region A'. Circles Ck' and Oc' . for yielding within regions B' and
C , are shown in Fig. 7.10b, with their respective pole points PB' and Pc '. The pole PD' for
G D ' is found from projecting plane CT/ through Pc'. CircleQu' gives the principal stresses:
Oj = - k and e^ = - 3k, within region L¥, orientated as shown. However, because there is no
continuity in the stress normal to plane D^A' when we return to A' from region D', this patten
of discontinuities is inadmissible.

Starting again with a stress-free condition for region A in Fig. 7.10a, we now work
clockwise in across regions B, C, D and E, to the right of the vertical centre line. This
shows ekstically stressed material in region B, implying that a1 = + k,ai = -k within the
yielded region C. Circle O c nas its centre at the stress origin in Fig. 7.10c. Projecting plane
CD through pole P c establishes pole PD for QD- Projecting pknes parallel and perpendicular
to DA through PD intersects O n to give a principal stress state: ax= 0, a%= - 2k, within
region D. Since state D maintains continuity with zero stress for region A, we can now
determine the stress state within region E. Projecting direction DE through PD gives a
normal stress c%H within O n * a t m u s t also apply to region E. This establishes the pole PB

for O B a n d a principal stress state within E: a1 = - k, <% = - 3k, as shown. The latter defines
the normal die pressure as pL = 3k. In searching for an even greater lower bound, another
discontinuous stress field is considered in Fig. 7.1 la.

(a)

- a
- 5k

r rt
1 ^ H

JB,f

A * " l
1

VD 7 \ A /

ro radius)

-k

(b)

Kgure 7.11 Further complex stress diieantiirailies for flat die indentation

The solution begins with the stress state: ax = 0 and ai = -2k, within region A. Following
the construction of QA in Fig. 7.1 lb, the pole point PB and O B are determined. This gives
0i = - k and «, = - 3k for region B. Locating the position of pole P c reveals that a, = - k
within region C. It can be seen from route ADC, that poles PA and PD are coincident and
regions C and D are ekstically stressed. That is, the radii of circles O c and O n > being zero
and Ml respectively, are less than k. Pole PE is located from the continuous stress state from
D to E. Similarly PF is found from continuity in C to F. The radii of circles O E ™d O F are
M2 and k respectively. Pole PG follows from PF and O G gives: ff, = - 4Jt, o3 = - 2k. Pole
PH follows from PG when, finally, O a reveals a die pressure of pL = 5k.

Alternative patterns of stress discontinuities, e.g. that given in Fig. 7.12a, have not
served to raise the die pressure above pL = 5k, indicating that this is the true lower-bound
solution. Here, the stress plane (Fig. 7.12b) shows elastic material in regions D and G and
yielded material elsewhere, when we start with the assumed state in region F.
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Figure 7.12 Alternative stress discontinuity pattern for flat die indentation

Other principal stess states shown follow from the corresponding circles after locating their
pole points in the order of Pp, PE, PH Pc» PD and PG. A similar pattern of stress discontinuities
appears later as a lower bound for extrusion.

7.4,2 Upper Bounds

Upper bound solutions employ patterns of velocity discontinuities. Let the element ABCD
in Fig. 7.13 be distorted to A'B'CTy after it has crossed the velocity discontinuity YY. The
latter could also be a slip line.

Figure 7.13 Shearing at a velocity discontinuity

The absolute velocities on either side of YY differ in magnitude by v2 - vt and in direction
by y, as shown. The rate of the shear work of distortion per unit volume is

w =

from which the total work rate for a unit die thickness is

W = wV = k(v%-vl)(ADxABxl)fAB

(7.16)
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where v w = va - vY is the magnitude of the velocity discontinuity and AD = YY is the length
of the discontinuity line.

Consider two possible upper bound mechanisms for die indentation in Figs 7.14a,b.

(b)

Figure 7.14 Upper bounds for flat die indentation

A simplified rigid rotation 60 of the semi-circular zone of material beneath the die is
assumed in Fig. 7.14a. We equate the average external work done by pv to the work
produced by shear yielding on radius b. When rotation 30 occurs in a time dt the tangential
velocity discontinuity is v = bSffdt = b0 and eq(7.16) gives, for a die of unit thickness.

pv(b x $12) = (7.17a)

from whichj% = 2 art = 6.28&, to a first approximation. The true, upper bound will reduce
pv to its minimum value. Consider the rigid motion of five triangular blocks within the SLF
in Fig. 7.14b. When the die velocity is v downwards, the resolved velocity discontinuities
are as shown. The rate of external work by pa is equated to the net shear work rate,
produced by shear forces acting along the slip lines AB, BC, AC and CD. Equation (7.16)
gives, for mirrored slip on both sides of the die, with breadth b and unit thickness:

pv(wx l)v = 2k w

w
V2 [ 72 AC

+ (wv)
AB

w

72
v

72

BC

CD

(7.17b)

from which pu = 6L Any further attempt to reduce the upper bound estimate of pu should
aim for me die pressure given by the SLF solution, Le. pd = 5.14k from eq(6.28).

7.5 Extrusion

7.5.1 Lower Bounds

A simple, lower-bound estimate for extrusion consists of the two stress discontinuities given
in Fig. 7,15a.
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' a

(a)

- 4 * O* (zero radius)

Figure 7.1S PossiMe stress disaatinHity pattern Sar extnraicm

Using the stress plane in Fig. 7.15b, the stress states for the yielded regions B and C are
found from the unstressed material in region A, This shows that the die pressure is pd = 4k,
from which the lower bound ram pressure pL becomes

2k R
(7.18)

l = H/h. Alexander [4] improved upon eq(7.18), by raising pL for ^ > 3. The stress
discontinuity pattern (Fig. 7.16a) is similar to that given in Fig. 7.12a for flat die indentation.
The lettering of uniform regions of stress: A, B, C» D, E, F and G, correspond between these
two figures.

(a)

(b)

Figure 7.16 Complex stress discontinuity for plane extrusion
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However, different stress states apply to each region. Those in Fig,7.16a follow from the
stress plane in Fig. 7.16b. It is seen that if the normal stress is to remain continuous between
adjacent regions, then O n and O G m u s t n a v e radu" of zero and k/2 respectively. Within
region F, circle O F gives pd = 5k, from which:

^ = 2 . 5
2*

1 -I
R

(7.19)

7.5.2 Upper Bounds

Upper bound solutions are more useful to manufacturing process design than lower bounds.
They are not prone to large overestimations because in practice materials will harden to
some degree. A good upper bound solution requires an accurate estimate of the true
deformation zone. When slip-line fields are available they may be employed to guide the
correct zone shape. Upper-bounding for limit loading is always possible even when SLFs
are not available. The procedure men followed is to examine a number of possible velocity
discontinuity patterns and select the one which gives the lowest, upper-bound estimate.

Figure 7.17a gives a simple velocity discontinuity pattern for smooth, R = 2 extrusion.

.Ssss s s / s s s s

Figure 7.17 Simple velocity discontinuity pattern for R = 2 extrusion

The straight line BA replaces the semi-circular arc 1,2 ... 5 of the a- slip line, in Fig. 6.23a.
Applying eq(7.16) to the corresponding hodograph in Fig. 7.17b, gives:

= 2k U— +
2

2k

2^2 2^2
= 3kUH

which compares withpe/ (2fe) = 1.285, from the SLF solution (6.17a).
A further pattern of velocity discontinuities for R = 3 is given in Fig. 7.18t. Here, the

a - slip line's circular arc 12 in Fig. 6.27 has been replaced with a straight line AB.
Correspondingly, there results a different hodograph (Fig. 7.18b), which requires the
application of eq(7.16) across the full container depth to find the upper bound.
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(b)

This gives
Figure 7.18 Velocity discontinuity patten fat R = 3 extrusion

W = * [v« AB + V B O BO + vm AO + vKBC ]

2
2k

which compares with pJ2k = 1,71 from SLF theory in eq{6.22a,b). If there were sticking
friction along the inner die wall, an additional velocity discontinuity would arise along OC.
Adding v ^ OC = U x 2H/3 to W, given above, leads to W = UWHB and j%/{2fc) = 7/3,
which is a 16.7% increase over the frictionless case. With both wall and die friction, we
could obtain an upper bound solution from simplifying the corresponding SLF solutions
given in Figs 6.34 and 6.35.

Johnson [5] proposed an alternative pattern of velocity discontinuities given in Fig.
7.19a. This provides an upper-bound solution for frictionless extrusion ratios R in a medium
range from 3 to 10.

(b)

Figure 7,19 Velocity discontinuity pattern far medium R extrusion
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The geometry of the physical plane and hodograph in Figs 7.19a,b shows an extrusion ratio:

R =
U

(7.20)

The rate of external work is pv(Hx l)U, Working with a unit volume of material extruded
in unit time, the specific external work w is simply the extrusion pressure pv. Let % and vT

be the normal and tangential velocities to AB and AC. Equating w to the distartional energy:

w =

Pa = k

= k

rKC)

1 + II
V*

1 1

cos $ sin 6 cos $ sin ̂

(1 + tan2$) (1 + tan2^)
tan 6 tan $

(7.21a)

The same result would be found from eq(7.16). Substituting eq(7,20) into eq(7.21a) gives

F£ = (1 + R)(l *RUn20) b

k Rtand

which has a minimum for d(pu/k) = 0. This gives R tan2# = 1 or tan^ = WR. Substituting

Pv_ = 1 + R
2k JR

into eq(7.21b), we find
(7.21c)

which is known to overestimate pu at higher R. Johnson [5] reduced p 0 for extrusion ratios
exceeding 10 with the alternative velocity discontinuity pattern shown in Fig. 7.20a.

U

(a)
B u

A

-«__}.
D "BR

(b)

Figure 7 JO Velocity discontinuity pattern for highs R exttuston ratios
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For the geometry given in Fig. 7.20a, it follows that

R = K - t a n ^ = JL n 221
h tan2d V

The hodograph (Fig. 7.20b) shows that the dissipation rate of shear strain energy will be
twice that for Fig. 7.19b. That is

(1 + tan2ff) + (1 + tan2^)
tan 6 tan $

w = p v = 2k

Substituting eq{7.22) into eq(7.23a)

f£ = 0
2k ~ \/Rtm0

Equation (7.23b) is a minimum for vf? tan2#= 1. This gives tan20= l/v'R, so that

(7.23a)

1, 2t J i/H
Table 7.1 lists p/(2ifc) values from the upper and lower-bound estimates given in eqs(7.18),
(7.19), (7.21c) and (7.23c).

Table 7.1 Upper and tower bound pressures for given exttusion ratios

R pLl2k pv/2k

2(1 - 1/1?) 2.5(1 - US) (1 + RyJR [4 (1 +

2
3
9
25
36

1.000
1.333
1.778
1.920
1.944

1.250
1.666
2.222
2.400
2.430

2.12
2.31
3.33
5.20
6.17

4.06
4.16
4.62
5.37
5.70

For a given extrusion ratio, the highest lower-bound and the lowest upper-bound are selected
from Table 7.1. The extrusion pressure is expected to lie between these two bounds, as
exact solutions show. Note that tiiepw's in the final column are only appropriate for R > 30
and thatp£ estimates converge with increasing R.

7.6 Strip Rolling

In the simplest two-high mill in Fig. 7.21a, a plate of original thickness fcj is rolled to a final
strip thickness h^ by two rolls of radius R. Normally, the thickness at entry is not more than
/»! = 5 mm, giving a typical strip width to thickness ratio w/fej - 10, with a roll radius i? ~
100A,. There are a number of approaches that have been used to determine the rolling
torque. The elementary plane-strain, slab analysis technique allows for a constant coefficient
of friction n between the deforming material and the rolls. Because plane sections remain
plane, the directions of the frictional forces tip{RS$) oppose at positions, A and B, on either
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side of a neutral plane (broken vertical line in Fig. 7.21a). This plane is neutral since there
is no relative movement between roll and strip. In addition, a homogenous compression of
the strip thickness is assumed under a constant yield stress. The elastic deformation of the
strip is normally ignored, though more exact theories [1,6] attempt to account for this.
Moreover, the roll itself may elastically deform. This becomes important in cold rolling
sheet where, under a high radial pressure p, an elastic flattening of the roll increases its
radius (see Chapter 14). Here, as with the hot rolling of strip, these effects can be ignored
since the radial pressure is far less.

Figure 7.21 Slab analysis far strip rolling of thin, rectangular section

In Fig. 7.21b, the slab forces acting at position B, within the arc of contact, are shown. For
the slab at position A the friction forces are reversed as shown. Where ax is uniform the
horizontal force i s /= e^Wunit width. Force equilibrium for each slab's jc-direction leads to
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(f + Sf) + 2iipR3$ cos#=/+ 2pRS$ sintfr at A

(f + Sf) = /+ 2fipR8$cos# + 2pR3$ sin$ at B

Putting k=ftp for sticking friction leads to the combined form

§f= 2pR3<fi sin$ ±

d
—(vxh) = 2(pR 3$sin$ ± kR3$ca$$) (7.24a)

Further equations are required to relate the variables ffx, p and h before a solution from this
elementary theory can be found. The simplest possible relation follows from the assumption
that the roll arcs may be replaced with flat plattens. It follows that h = fej is constant, (p=0
and Rdtp= &. Equation (7.24a) becomes

da
* __£ = ± 2k (7.24b)

dx

where the origin for x lies on the roll's vertical centre line. Integrating eq(7.24b) for the exit
side (-) we find

0X = — + C, (7.25a)
fc2

Now, ax = 0 fox x = 0 and therefore C2 = 0, which reduces eq(7.25a) to

for xg a x s 0 (7.25b)
h2

It follows that at the neutral plane, where x - xa, eq(7.25b) becomes

2Jfcjc
ax = — - (7-25c)

2

Integrating eq(7.24b) for the entry side (+) gives

(7.26a)

where Ct is found from knowing Ox on the exit side of the neutral plane. Substituting eq(7.25c)
into eq(7.26a) gives

2kx,

and, hence, eq(7.26a) becomes

°x = I — (2X<, ~ X> for L S X S X
0 ^

Equations (7.25b) and (7.26b) may now be combined with the plane strain yield criterion,
when ax and p are taken to be principal stresses. This gives

P- o-x = 2k
The roll pressures are then
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p = 21(1 + x/h2) for 0 & x s xo (

p = 2 * [ l + (2x0 - x)/fca] for L o s i 9 { 7 2 ? b )

which are disfributed as a 'friction hill*. The area enclosed beneath the hill gives the total roll
force/unit width, as

P = 2kL\ 1 + 3 L | (7.28)

When P is taken to act vertically through the centre of the arc of contact, the torque exerted
about the centre line of each roll is simply PIJ2. The length L of the contact arc is found
from the geometry of Fig. 7.21a:

tan#j = (hv - h2)/l and ^ ( r a d ) - L/R

The two equations may be combined for small $ to give L as

L = jR[hy - h2) (7.29)

Thus, from eqs(7.28) and (7.29), the total roll torque (with 2 rolls) becomes

T = PjR(ht - h2)

= 2k[l + xj(2h2)] x ^ ( f c t
(7.30a)

Equation (7.30a) will provide the drive power Tm, where *uis the roll's angular velocity.
Experiment [7] has shown that xo

 a L/2. A factor of 0.8 replaces unity in eq(7.30a) for a
similar analysis based upon inclined roll plattens. These modifications give

0.8 + -5
Ah2

*2> x JR( *, - h2)T = 2k 0.8 + 1——-i =- x Jfi(fe. - ft ) (7.30b)

Taking, for example, R = 100 mm, hx = 10 mm and h2 = 5 mm in eq(7.30b), gives TTlk- 42.9
for T in Nm and k in MPa.

Using their SLF solution as a guide, Johnson and Mellor [8] derived an upper-bound
solution to strip rolling based upon the velocity discontinuities given in Fig. 7.22a. It was
shown that two discontinuities, composed of the circular arcs AB and BC, were sufficient
to ensure that material in contact with the roll rotated with it. Rigid body motion prevails on
the entry and exit sides. To construct the discontinuities, an arc BC is drawn tangentially to
the roll at exit (where k = fip) whilst intersecting the strip's principal stress axis (CL) at 45°,
Similarly, BC is tangential at A and meets CL at 45°, as shown inset. The chord of arc BC
is inclined at 22.5° to the horizontal at point C and its perpendicular bisector locates the
centre position One- Similarly, bisecting the chord AB locates the centre, O « . of arc AB.
The corresponding hodograph is given in Fig. 7.22b.
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(a)

Origin, O"

Figure 732 Upper bound for strip roffing

Material to the left of A and B (i.e. AL" and BL") has a rigid horizontal velocity ux. The
peripheral velocity &iR of material in contact with the roll at point A fixes point AB" in a
tangential direction from the origin, O". Discontinuities connect AL" to AB" and BL" to BA"
as shown. The horizontal peripheral velocity oM for material at point C fixes point CB".
Finally, discontinuities connect CB" to CR" and BA" to BR" as shown. The arcs AB" BA" and
BA" Ca" are othogonal images of arcs AB and BC and enclose a fan of discontinuities for all
positions along each arc. The chedqroints BR" and CE" give uz = (hjh£ult when the spread
in breadth is neglected. To enable a comparison between this upper bound and the solution
Tl{2k) = 42.9 from eq(7.30b), the hodograph is constructed for R = 100 mm, ht = 10 mm
and /% = 5 mm. Applying eq(7.16) gives the total rate of working as

W= Ta= 2k [(AB x VAB) + (BC x V B C ) ]

where a - vJR. Substituting for ea and the two discontinuities in terms of ut, from the scale
of the hodograph, leads to a comparable upper bound value T/(2k) = 48.7 (same units).

7,7 Transverse Loading of Circular Plates

Up to now, all examples have been plane-strain in nature. We conclude this chapter with a
bounding solution to an axially symmetric problem. It is required to find the loading for
plastic collapse of circular plates under various lateral loadings. An upper bound to the
collapse loading follows from the kinematically admissible velocity field [8].



 

LIMIT ANALYSIS 235

In Fig. 7.23a, an annular plate of thickness t has an encastre support around its outer radius
ro and carries a distributed force//unit circumferential length around its inner radius r(.

U I

V

Velocity discontinuities

Figure 7 J 3 Atnak, onter encastre plate with inner circumferential loading

One mechanism of plastic collapse involves the formation of radial and circumferential
plastic hinges which bound elemental sectors 1,2,3,4... etc, as shown in Fig. 7.23b. Plastic
hinges AJB0 and 8580, are formed between sectors 1 and 2. Simultaneously, the hinges B0CO

and C|C0 are formed between sectors 2 and 3, etc. As the inner radius r, descends vertically
with velocity «, the sectors rotate rigidly about their respective plastic hinges. That is: sector
1 rotates about A^B,,, sector 2 rotates about BOQ, etc, in an anti-elockwise sense at a constant
angular velocity a = «/(r0 - r,). The hodograph in Fig. 7.23c represents these angular
velocities as vectors «»,, 6% etc, by applying the right-hand screw rule to each hinge rotation.
The hodograph displays velocity discontinuities: 1"2", 2"3", 3"4" etc, across the respective
radial hinges; BjB0, C^CO, DjD0, etc. In the limiting case, where SB -* 0, the hodograph
becomes a circle of radius a At the point of collapse, the rate of external work done W is
given by

W = {2nrt)fvx « = (2ffrl)/t,x (ra - rt)a (7.31a)

and the rate of internal energy dissipation is

U = (7.31b)

In the first term of eq(7.31b), My is the upper-bound collapse moment/unit length of the
circumferential hinge. In the second term, Ma is expressed per unit length of the radial
hinge. The collapse mechanism depends upon equal radial and circumferential moments.
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Equating W and U, from eqs(7.31a and b)

( 2 s r ,)/„ x (ro - rt)a=

which gives the collapse force/0/unit of inner circumference, as

~ rt)
The total collapse force becomes

tf = 2xrJv =
(2r - r.)

(7,32a)

(7.32b)

With r, = 0 for a solid plate, the central concentrated collapse force is Fv = 4ff My. If the
outer radius of the annular plate in Fig. 7.23 were to rest upon simple supports, the collapse
mechanism is due solely to the formation of radial hinges under the limiting moment Mv.
From eq(7.31b), the energy dissipation simplifies to

Equating (7.32c) to eq(7.31a) gives

rZfv x (ra - rt)m=

(7.32c)

0 - r,)oMB

from whieh/u = Mvlrt and Fu = 23-r/p = 2a-My. This total collapse load also applies to an
annular plate, simply supported at its inner radius r,, with a limiting line load/tf = Mu/ro<

applied around its outer radius rg.
Consider next a plate where the inner radius r, is clamped and the outer radius ra

supports the line load/y as in Fig. 7.24.

/u

U i'

Figure 7.24 AnnulBr plate clamped at inns radius with outer rim circumferential loading

The plate collapses when circumferential and radial plastic hinges form at r, simultaneously
under the limiting moment Mv. The previous boundary conditions are reversed so that we
may substitute r, for rB in eqs(7.31a,b), to give

(7.33)

2nroMv

2xrafv u =

rBfax (rtt - r,)m=2nwMvr

This leads to the limiting collapse loading:

fu ~
M,

and Fv = 2 x rg fv =

Where the clamping radius r, -> 0, the total collapse load Fu -> 2nMa.
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Now, let an annular plate be clamped around its outer edge and carry, instead of line loading,
a uniform normal pressure p over its top surface area, as shown in Fig. 7.25.

s\ ^ y\..s.../n' £ I I

Figure 7.25 Annular plate with outer, encastre fixing and uniform pressure loading

In formulating the external work rate W, note that the descending velocities ur are required
at all radii: rf& rs rB. Assuming a linear variation in velocity between us for r = ri and zero
for r=r0, gives f r _ r )

At the point of collapse, the external work rate is

W = J
Substituting from eq(7.34) gives

(7.35a)

(7.35b)

Equating W from eq(7,35b) to U fromeq(7.31b),gives

Vixpva{rm - r^2(r. + 2r,) =

which leads to an upper, limiting normal pressure

6Mv(2ro - r,)
Pv = 2r.)

- r,)

(7.36)

For a solid plate rt = 0, and eq(7.36) reduces to p v = Y2MVI r/. If the plate in Fig. 7.25 were
simply supported around its outer radius, the simplified energy dissipation equation (7.32c)
again applies. Equating this to the work rate in eq(7.35b)

+ 2rt) = 2n{ r0 - rs)a>Mv

gives the upper bound pressure
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6 M y

PV~ (ro-r.)(ro+2r.)
For a solid, simply supported plate, we take rt = 0 to give pu = 6Mtf/ro

J.
Finally, for the plate in Fig. 7.26, the inner radius r, is clamped while the remaining

surface area is subjected to its uniform collapse pressure pu, as shown.

u

Figure 7.26 Annular plate with inns encastre fixing tinder uniform pressure loading

This loading configuration reverses the boundary conditions given for Fig. 7.25. Hence, the
descent velocity ur at any radius r,£ r s ro, becomes ur = ujf - rt)/(ro - rt). Substituting
into eq(7.35a), gives the external work rate

(r - r.) rdr

ft r0 - rfir, + 2rJ

The energy dissipation rate is identical to that for the plate in Fig. 7.24. Equation (7.33)
gives

1Awpua(rg - r,)2(r, + 2r0) = 2/rr,a>Mu + 2v(ra - r ;)«My

%a-jjy<u(ro - r , ) 2 ^ + 2r0) = Ina>Mure

This supplies the upper limiting pressure as

6M,,r
PV = r ^ - 2 (7-38)

( ' . - r , ) a ( r < + 2rB)
As the clamping radius r; -+ 0, eq(7.38) shows that the collapse pressure approaches that for
a solid plate, i.e. |>w ->• 3Mvf ro

2.

7.8 Concluding Remarks

This introduction to limit analysis has demonstrated that an assumption of plastic-rigidity
facilitates bounding solutions to the collapse condition in many load-bearing structures. The
simplest, upper-bound solution is particularly useful when it is required to obtain, with ease
and certainty, the maximum forming forces required. There are many further applications
of these techniques, e.g,, to forging and machining. These appear in more specialised texts
[1,6,8,9,10], to which the interested reader may refer.
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Exercises

7.1 Obtain upper and lower bounds for a beam with the triangular cut out, base 2a, height a, shown
in Fig. 7.27, when the beam supports a uniform bending moment M. [Ans: ML— faj2, Mv ="

2b

c
2a

M

Figure 7,27 Figure 7.28

7.2 The T-section in Fig. 7.28 comprises the uniform section of a rigid, perfectly-plastic beam with
equal tensile and compressive yield stresses, F = 2k Determine the upper and lower bound conditions
for collapse when a bending moment M acts in the sense shown.
[Answer: ML = 2.76ibJ6, Mv = 2Jf>k?b + 1.38far* ]

7.3 Derive, from energy considerations, expressions for the collapse load of the fixed-base portal
frame in Fig. 7.29 under: (a) a central vertical load W, (b) a horizontal load P and (c) combined loads
Wand P, when P = WB.

/7 T /777

Figure 7,2» Figure 7.30
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7.4 The stress discontinuity pattern in Fig. 7.30 may be used to obtain a lower bound solution to the
problem of frictionless plane strain extrusion through a square die. Construct the stress plane and
show that the extrusion pressure is given by:

J L = 2
2*

1 2R

- If + 1

where R = Hlh. Compare the value of pllk for R = 3 withthat from the slip line field (see Fig. 6.27).

7.S Fig. 7.31 shows W of a testpiece in which the ratio of the notched to un-notehed breadths is 2/3.
Determine the axial force P required to initiate yield. What is the new position of the notch boundary
after the rigid region moves away from the horizontal centre line by 6.5 mm?

Figure 7.32

7.6 Figure 7.32 shows a velocity discontinuity pattern for Mctionless extrusion through an inclined
die with a reduction ratio of 2, as derived from an SLF solution (see Fig. 6.31a). Modify the
hodograph in Fig. 6.3 lb to correspond with the straight slip line 13 and from this show that the upper-
bound extrusion pressure is Pfflk = 0.76, in agreement with eq{6.24b).

7.7 A square section beam of side a and length L is built in at one end and simply supported at the
other end. A vertical load F is applied at a distance x from the built-in end. When the collapse
momemt is At, show that F and the position in the length for which F is a minimum become:

1 2
+ —

M (L - x)
where v"2L

(1 + y/1)

73 A thin, flat triangular plate is fixed in position around its perimeter whilst carrying a normal force
F at its centroid. Find an upper bound solution to F in terms of the collapse moment Mv,

73 A thin, flat triangular plate is fixed in position along each side whilst carrying a normal pressure
p. Find an upper-bound solution to p in terms of the collapse moment Mu.
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CHAPTER 8

CRYSTAL PLASTICITY

8.1 Introduction

Much work has been done to increase our understanding of the mierostructural mechanisms
responsible for plastic flow. It is not the purpose of this chapter to detail all possible
dislocation mechanisms by which atomic slip can occur as these have been adequately
documented elsewhere [1,2]. Instead, the discussion is limited to a consideration of those
aspects of the micro-mechanics of deformation that lend support to the key elements
employed in continuum theories of plasticity. Important among these, as following chapters
will show, are the physical interpretation of work hardening, the Bauschinger effect, the
shape of the initial and subsequent yield surfaces, the associated flow rule and the manner
in which strain within a grain contributes to the observed strain for a polycrystal. The plastic
response of single crystals and polycrystals to a tensile stress involves slip with hardening.
Anisotropic or directional hardening occurs in a single crystal. A polycrystal with many
randomly oriented grains has an aggregated isotropic structure that hardens anisotopically
under a directionally imposed plastic strain. However, an isotropic hardening behaviour is
often assumed. The two behaviours influence the subsequent yield surface and its manner
of representation with the isotropic and kinematic hardening models.

External parameters that influence plastic flow include the environmental conditions and
the nature of the loading. Internal, micro-structural parameters involve the orientation of the
slip plane, lattice imperfections, alloying and impurity elements as follows:

1. Particular slip systems operating as close-packed planes in close-packed directions, that
enable individual crystals to deform plastically.

2. The behaviour of slip mechanisms operating in the presence of existing defects in real
lattices. Among these defects are: (i) point defects - interstitials and vacancies, (ii) line
defects - dislocations, (iii) plane defects - grain boundaries and (iv) volume defects - cracks
and atomic slacking feults.

3. The movement, multiplication and interaction between dislocations and the extent to
which these are impeded by other defects acting as obstacles.

The important point to note is that such defects present in metallic crystals facilitate the
process of block slip to occur between adjacent planes of atoms at considerably reduced
stress levels. It has been observed [1] that the shear stress required for slip is four orders of
magnitude lower than a theoretical cohesive strength, calculated from G/(2 a), in which G
is the shear modulus. On a micro-scale, slip is the major contributor to low- temperature
plasticity in metals. Other influences such as twinning, void growth and micro-shear
banding can contribute to plasticity under certain conditions. For example, void growth
occurs in dispersion hardened alloys at higher temperatures and twinning arises in a
hexagonal close-packed lattice to enhance the plasticity from slip on its single slip plane.
In the main, the contribution to plasticity from these sources will be less than that arising
from slip, so these will not be developed further here.
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8.2 Resolved Shear Stress and Strain

8.2.1 Simple Tension

In order to understand the natare of hardening in polycrystalline aggregate it is instructive,
firstly, to analyse the stress in a single, cylindrical crystal of metal, loaded in tension along
it axis (see Fig. 8.1a).

(a)

3 cos A

(b)

Figure 8.1 Single crystal under tension

Let a tensile force F act normal to section area A of the crystal, to induce a nominal tensile
stress: ff= FfA. The normal to the inclined slip plane and the slip direction make respective
angles $ and A with the tensile axis as shown. The resolved shear stress r is aligned with
the slip direction lying in the slip plane. The magnitude of ris found from dividing that
component of F, aligned with the slip direction, by the area of the slip plane. The latter is
an ellipse with an area; Alcas$. Thus:

T =
F e o s i

AI cos 4>
co& A (8.1)

It follows from eq(8.1) that ris zero for the $ = 0 ° and 90° principal directions, the former
being associated with a cleavage fracture plane. In contrast, rwill reach its maximum value
of d2 for a $=45° slip plane. The magnitude of this resolved shear stress that initiates slip
upon a 45° plane is called the critical resolved shear stress rct. Planes with different
orientation will slip once r^ is attained. The corresponding resolved shear strain, or glide
strain y, is a more appropriate measure of deformation to use than percentage elongation or
nomimal engineering strain. An often-used approximation to y is applied when the axial
strain £. is small. Thus, in Fig. 8.1b, ABCD is a rectangular element lying between two
parallel slip planes, separated by length LB along the tensile axis. Let 3 equal the amount of
slip BB' and CC, along the lower slip plane. Within the deformed element AB'C'D, the
geometry shows that AC has extended by the amount d cosJ. Hence, the axial strain is:

S cos A (8.2a)
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Let AB = La cos$ be the perpendicular distance between the original slip planes. AB will
also rotate towards the tensile axis during deftjmaation. When the rotation is small the glide
strain may be defined simply in terms of the angular change to the right angle L DAB. That
is, y becomes the tangent of the angle I BAB':

= tan (BAB') 3
^cast,

(rad) (8.2b)

Combining eqs(8.2a,b) provides the glide strain in terms of the measured axial strain:

cos#cosA

Honeycombe [2] employed two alternative methods for calculating Y, f° r larger
deformations. These involve the geometry of a normal to the slip plane that rotates towards
the tensile axis with increasing strain. Given final orientations $f and Aj of a slip plane, the
resolved shear strain becomes

cosJ,
Y = (83d)

sin (90 - {pf) sin (90 - <f>)

where $ and A define the initial orientations of this plane (Fig. 8.1a). Alternatively, if the
final, nominal axial strain elf is measured, y follows from:

1 I I * * TT : 2 t
Y = h / ( l + E,f) - sin A -

sin (90 - #) l ¥ tf

Equations (8.1) and (8.2c-e) define shear stress and shear strain for the slip plane. Their plot
will reveal that three distinct regions of hardening accompany slip within a single crystal.

8.2.2 General Stress State

Now, instead of an applied tension, let a general stress tensor av be defined in arbitrary axes
Xj(i=l,2 and 3). Firstly, av has to be transformed to give the shear stress upon the active
slip plane. We may identify this shear stress with component a^ in eq(l .22b). Let us write
this as £712

S where axes xf and x{ lie parallel and normal to an active slip plane s in Fig. 8.2a.

3< \

x,,

-*- x,

(a) j

t-*- m

(b)

Figure 83, Slip plane stress tranformations
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Equation (1.22a) gives this shear stress component directly when i = 1 and/ = 2:

«b' = W Op, = (h'V) °t = *£°b (8.3a)

where the Schmidt orientation factor a^= 1,*^* employs the symmetries of the stress tensor,
namely ô  = afl. The Schmidt factor employs a set of direction cosines lu* for axis x{ and
another set 4 / for axis x2

s, with respect to the reference (stress) axes x,.
It is often more convenient to align reference axes with the cubic axes x{ (i= 1,2, and

3) of a unit cell, given that the slip plane and slip direction are defined with Miller's indices
(see Section 8.3). Referring to Fig, 8.2a, two stress transformations become necessary to find
an": From eq(1.22a), we transform from stress axes xt to reference (cube) axes x-:

Then, transform from reference axes x's to the slip plane:

These two transformations are combined as follows;

°a = V V < = W QJV on)

= < {Ifljoi, (8.3b)

in which the Schmidt factor a^ = 1̂ * ̂ " again appears. The matrix form of eqs(8.3a)
employs column matrices of direction cosines for each unit vector, i.e. u / = [ln* llt" lu*}1

and Ua' = (4,1 la' ln"f (see Fig. 8.2a). Within eq(8.3b), the transformation matrix L
between axes x, and x,' must also appear. Equations(8.3a,b) become, respectively:

oii* = (%s)TT%s and <71/ = (u,*)T(LTLT)u2* (8.4a,b)

where T = av is the Cauehy stress matrix (1.17). For simplicity, we now replace an
s with

rJ and refer unit vectors n and m, for the normal and slip directions respectively, to cube
reference axes xt, as shown in Fig. 8.2b. Equations (8.3a) and (8,4a) become:

Xs - m, n} av = m^ ol} = m T Tn (8.5a)

where, in the matrix notation, m, and nf are direction cosine components of column vectors
m = {ffij Mj m3}

T and n = {nx % ns}
T in cube axes xf. According to Schmidt's law, it

follows from eq(8.5a) that slip occurs when the resolved shear stress attains a critical value:

In Chapter 1 the identical nature of stress and strain transformations was revealed.
Consequently, the shear strain f1 = tannin Fig. 8.2b may be transformed to the cubic axes
xt by an inverse transformation:

e,f = % (n,mj + m^f f = <%* y" (8.6a)
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where astt' = % (11^ + »%«;)* = % (nmT + on1) ' . The slip plane orientation will be altered
by the rotation component of the shear distortion. Figure 8.3a shows plane shear distortions
en and % from which the shear strain y= % F + % F is derived. These are accompanied by
plastic rotation (spin) 6%F and e^f of the crystal body about the 3-axis {see Fig. 8.3b).

a

-21

(a) (b)

Figure 8.3 Decomposition of shear distortions

The decomposition shown conforms to eq(2.2b). In general, the 3D rotations are found from
dyadic products of the unit Yectors m and n as:

f = % (n,mj - m^jf f = /?/ f (8.6b)

where fig = % (n,mj - mlnjy = W (nmT - mn1)',
Where multiple slip systems, s = 1,2,3 ... N exist within a single crystal they contribute

to the overall observed strain in the cubic reference frame. We must sum incremental plastic
strain components from eq(8.6a), as follows:

S ' \
' = ~ E [n^ (8-7)

For example, with JV = 5 slip systems, eq(8.7) gives:

d£n
p = {«i»ij)1df1 + (rei»ii)2djf2+ • • • +(«1m1)sdf3

+m1n2fdyi+ •
+m1nifdyl+ •

in which plastic incompressibility d^f = 0 and strain symmetry def = de/ apply.
Mathematically, the 5 independent strain components may be taken to arise from 5
independent slip systems. In a real crystal lattice more or less systems may operate
depending upon its atomic arrangement.

Finally, the incremental work done by the stress tensor must equal the work done in
shearing the slip plane. To show this we use eqs(8.5a) and (8.6a) to express the specific
work done by the applied stress tensor:

an x def = x aj dys = Xs x df (8.8)
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in which m^ = ¥i ( w ^ + m ^ ) . It is seen that the final term in eq{8.8) is the specific work
done upon the slip plane, i.e. the product of its resolved shear stress and shear strain.

8.3 Lattice Slip Systems

Schmidt [3] showed experimentally that T^ is almost constant for a pure metal. This means
that for a crystal of high purity, rcr is independent of the orientation of the slip plane.
Equation (8.1) shows that it is possible to vary o; $ and A and so maintain tcr constant. The
active slip plane will depend upon the atomic packing within a unit cell of a metallic lattice.

Three Miller indices are used to identify a slip plane. The indices are derived from the
intercepts between the plane and orthogonal cube axes x, y and z. Reciprocals of the
intercepts are then taken and any resulting fractions cleared. Thus, for the shaded plane
(110), shown in Fig. 8.4a, the intercepts are 1,1 and <*>, for which their reciprocals become
1,1 and 0. Brackets are placed around the Miller indices as follows: {) to denote all planes
parallel to this and { } for all planes of that type.

z Direction [111]

(a) (c)

Figure 8.4 Slip planes and directions

Further examples of planes (112) and (123) are shown in Figs 8.4a,b. Three further Miller
indices are used to denote a slip direction within a plane. Firstly, the direction vector must
be translated to pass through the origin of x, y and z in the sense required. Direction indices
become integer co-ordinates for the vector's tip. For example, Fig. 8.4c shows a [111] slip
direction. Here, brackets [ ] denotes all parallel directions and {) denote all directions of
that type. Metals such as Fe, Mo and W, with body-centred cubic (b.c.c.) cells, have no
obvious close-packed planes. It is found that plastic flow may activate one or more of
twelve slip planes each with slightly different atomic packing density. Of these, three planes
in particular: {110}, {112} and {123} (see Fig. 8.4a,b), most commonly activate slip in
(111) close-packed directions. With four (111) slip directions and twelve slip planes per
b.c.c. cell, there are a maximum of 48 possible slip systems. However, many of these
systems are extremely sensitive to temperature and impurity and may not operate.
Consequently, a b.c.c. structure can be ductile at high temperature and brittle at low
temperature. It follows that the critical resolved shear stress tcr, required to initiate b.c.c.
yielding, is extremely structure sensitive.

Slip in f.e,c.and h.c.p lattices is better defined man in b.c.c. The (111) plane in Fig. 8,5a
has three slip directions: [101], [Ol 1] and [110], where a bar denotes a negative intercept.
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[Oil]
Slip directions

[1210]

(b)
Basal plane (0001)

Figure 8.5 Slip planes for f.c.caai h.c.p. ceUg

The square brackets shown embrace parallel directions to each of the three shown, for which
we could contain them all as<10l), indicating directions of the 101 type. In fact, Fig. 8.5a
applies to a face-centted cubic (f.e.c.) cell, typical of Al, Cu, Ag, Au and Pt. Here, we say
that slip occurs on close-packed octahedral {111} planes, in close-packed (101) directions.
Now, as there are four {111} planes within a single f.c.c. cell and three slip directions, it
follows that there are twelve slip systems by which an f.ce. metal can deform. These many
possibilities for slip account for the ductile nature of an f.c.c. metal.

Planes and directions in a hexagonal close-packed (h.e.p.) structure are specified with
four, Miller-Bravais indices. A given plane is identified from the reciprocals of its
intercepts with four axes originating from the basal plane, shown shaded in Fig. 8.5b. Three
axes lie in this plane at 120° and a fourth axis lies perpendicular to it. Directions are again
specified with their lowest integer co-ordinates. Slip within a h,c.p. cell can only occur on
the close-packed basal plane (0001) in close-packed {2110} directions. The latter includes
the three directions shown: [ 2 l l 0 ] , [1210] and [1120]. Since there is only one basal
plane, containing three slip directions per cell (see Fig. 8.5b), the number of slip systems is
restricted to three. As a consequence, h.c.p. metals: Be, Cd, Mg, Ti, Zn and Zr, are less
ductile. However, h.c.p metals can also deform by twinning, in which a mirror of
homogenous shear occurs across a band of atomic planes, as shown in Fig, 8.6.

Twinning direction

Twinning Plane

Figure 8.6 Mechanism of twinning

For h.c.p: {1012} defines the twinning planes and {l011)defines the twinning directions.
Deformation twinning is less common in a b.cc. lattice, being restricted to respective planes
and directions: {112} and (111). Twinning is rarely seen in a deforming f.c,c. lattice, though
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it has been observed for {111} planes and in ^112) directions with low-temperature
deformation of copper. The twinning mechanism requires that a critical shear stress
displaces adjacent planes by an amount less man the atomic spacing. These sum to yield
large shear displacements on layers furthest from the twin plane. The effect of twinning is
to rotate the basal plane back following its forward rotation to accommodate slip upon this
plane. The reversal produces a geometric softening of a lattice which would otherwise
require an incresed shear stress to produce further slip.

8.4 Hardening

8.4.1 Single Crystals

Figures 8.7a and b shows the extent to which (he critical resolved shear stress for various
cells is dependent upon temperature and purity.
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200
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400 600 100 99.96

Temp, K Purity,

Figure 8.7 Dependence of ttt upon temperature and purity

99.92

(b)

Figure 8.7a shows that the resolved shear strength of a b.c.c. metal is far greater than both
f.c.c. and h.c.p. metals over a wide temperature range. At room temperature, a typical value
for a b.c.c. structure is %r = 50 MPa. For f.cc and h.cp. structures, %r - 1 MPa. Despite
the even lower values of rtr, found for f.cc. and h.c.p. crystals of super purity (Fig. 8.7b),
the initial yield point is still preceded by elastic distortion in these structures. The strength
of an ionic, NaCl crystal structure is intermediate to those of h.c.p and b.cc. These results
apply only to single crystals with these cells. The scatter band in Fig. 8.7a is due to small
variations in purity, the sensitivity of which is revealed for two f.c.c. metals in Fig. 8.7b. It
is important to emphasise that ta applies to a slip system which is the first to activate under
an applied tensile stress. Equation (8.1) identifies this with the slip system that is the first
to reach the critical value of the Schmidt factor: m = Tcr/o = eos$ cosi. With the large
number of slip systems available in b.c.c. and f.cc cells, it is possible for two or more
systems to operate together as rcr is attained simultaneously. This is apparent from
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measurements of the resolved shear stress required to maintain subsequent plastic
deformation. For example, Fig. 8.8a shows that two types of behaviour, A and B, are
possible for a deforming, f.cc single crystal.

Figure 1.8 Hardening in a single cells: (a) f.cc, (b) b.c.c and h.e,p.

Both curves commence at the same rcr value, typically 1-10 MPa, depending upon the metal
purity. Subsequent flow behaviour is controlled by the number of active slip systems. For
curve A in Fig. 8.8a, several slip systems operate simultaneously, leading to a high rate of
work hardening dt/df. For curve B, a single slip system operates during stage I at a very
low, constant rate of work hardening. The rate and duration of this linear stage depend
strongly upon the Schmidt factor m. The occurrence of multiple slip on intersecting slip
planes promotes stage II, where the rate of hardening has increased dramatically to attain a
constant: dtfdy - G/300. This is followed by stage III in which dtfdy falls with increasing
resolved shear strain y. The resolved shear stress c mat initiates stage IE depends upon the
temperature, purity and tihe rate of straining, similar to the critical rcr to commence stage I.
Stage HI is also associated with thermally activated dynamic recovery. The recovery
requires a sufficient density of dislocations to be developed within stage II before it can
occur. Recovery processes, climb and cross slip then become active, so reducing the
dislocation density and softening the material.

A three-stage curve may not result from continued slip within other cells. For a h.c,p.
cell, slip is confined to the basal plane (see Fig. 8.5b) and so it will remain in stage I, as
shown in Fig. 8.8b. However, it is possible for dislocations to interact between the basal
{0001} and other {1211} planes in certain h.c.p. metals. Dislocation interaction presents
sessile barriers to slip and can result in a three-stage curve, similar to that for a f.c.c. cell.
Moreover, with twinning present in an hx.p, cell, there will result a discontinuous (serrated)
stress-strain curve. Twinning can also arise in a b.c.c. cell but subsequent slip normally
remains in stage I under a low rate of work hardening. The latter is maintained by each of
the many slip systems for this cell operating sequentially as they are activated under ver by
an increasing applied stress. The b.c.c. stage I stress levels are higher that those for h.c.p.
(see Fig. 8.8b) and may be high enough to promote a brittle fracture at low temperatures.

8.4.2 Polycrystals

Figure 8.9 shows that the slip directions within individual grains of a polycrystal are
randomly oriented to the axis of tensile stress ff.



 

250 BASIC ENGINEERING PLASTICITY

Figure 8.9 Grains in a polycrystalline material

Slip-induced plasticity within a polycrystal is similar to that for a single crystal but, because
the grain orientations differ, the Schmidt factor will be high for some grains and low for
others. Therefore, before gross yielding by slip can occur, the applied stress must be raised
to produce yield in grains with initially low Schmidt factors. In addition, there are constraints
imposed by surrounding grains upon the slip within an individual grain. Consequently, the
flow stresses in polycrystals are substantially higher than those for single crystals. For
example, in annealed copper the respective yield stresses are 3.5 and 0.65 MPa, It is often
assumed that polyerystalline flow behaviour is an average of stages I - III (Fig. 8.8a) when
they co-exist simultaneously within many differently oriented grains. Increasing the stress
beyond the initial yield value activates further slip planes because the increased slip
produced in one grain must be relieved by slip in its neighbours. Without the relief
necessary to maintain continuity of slip, cracking would occur. The grain boundary presents
a barrier to slip which effectively raises both the initial and subsequent flow stresses. The
initial yield stress F increases with decreasing grain size d according to Fetch's relation [4]

Y = A + Bl{d (8.9)

where A and B are constants. Also, the rate of macro-hardening ddde* is greater for a crystal
with finer grains than one with coarse grains. A varying grain orientation prevents a
homogeneity of slip throughout an aggregate. As the slip differential within neighbouring
grains is transmitted through the grain boundary the stress and strain witMn individual grains
becomes uneven. The strain is greater at the grain boundary than at its centre but can
become more uniform with increasing strain in smaller grains. The linear, stage I hardening
of a single crystal is never observed in a fine-grained polycrystal. Consequently, a parabolic
flow curve follows its initial yield point. Here this curve becomes an average of
simultaneous stage II and stage III hardening as the applied stress can never distinguish
between each stage. The result is that when a polycrystalline material is loaded into the
plastic region it becomes increasingly harder to deform. The mixed stage II and i n
hardening within individual grains and the barriers to slip presented by grain boundaries
resist plastic flow. The terms work-hardening or strain-hardening are used when plasticity
occurs under a continuously increasing flow stress.

3.5 Yield Surface

8.5.1 Isotropic Aggregate

We have seen that twelve slip systems are possible in a face-centred cubic lattice. When slip
is the only source of plastic strain, each slip system identifies a pair of complementary yield
planes/(fftf) = 0 that bound an elastic region (Fig. 8.10a). A rule of flow (see Section 8.6)
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shows that detf lies normal to each yield plane for a slip system in which the resolved shear
stress is critical. When a number of slip systems operate together in cubic lattices, a yield
polyhedron will apply to each grain within a randomly oriented aggregate of grains. Lin [5]
and Kocks [6] derived plane sections of this surface for cubic metals. An exampleof an f.cc.
polyhedral yield surface is given in Fig. 8.10b, in which the stress axes are an, ou and a13.

Elastic region

(a)

r

Figure 8.10 Yield planes far slip in an f.cc. grain

When the stress axes co-incide with the f.cc. cell axes, the direction cosines for the vectors
n and m in eq(8.5a) equate directly to the Miller indices for the slip plane and slip direction
for each of 12 slip systems. The yield planes meet to form edges and corners of the yield
polyhedron. Two slip systems operate together along the edges of the yield surface and four
or more systems opearate simultaneously at its comers. In an ideal polycrystal, Tresca's
maximum shear sixess criterion of yielding applies as the critical shear stress is attained on
the 24 planes in each grain simultaneously. Thus, Tresca's yield criterion applies to an ideal
aggregate of crystals, each with similar elastic moduli and critical resolved shear stesses for
the active slip planes. This gives a lower bound solution. In a real f.cc. crystal, where these
properties may vary between grains, a homogenous yielding does not occur. We have seen
that the constraint exerted upon a grain by its surrounding matrix raises the critical resolved
stress. Raising the applied stress enables slip along the most favourably oriented planes to
spread into neighbouring grains. The yield stress associated with the initial spread of
plasticity will lie on a three-dimensional yield surface framed in the applied stress axes. This
smooth convex surface is bounded by the yield planes for slip within all individual grains
of an aggregate [7], to give an upper bound solution.

Yield loci under plane stress states are again constructed from a generalised Schmidt
law (8.5a). A lower-bound yield locus is found when this law is applied to a minimum
number of active slip systems within a single grain of a polycrystal. The grain must be
taken in isolation under its biaxial stress state. Correspondingly, the sum of the separate
shear strains attains a least value [8]. More realistically, the micro-mechanics of yielding
in cubic metals should involve a restricted crystallographic slip within an aggregate of
grains. The constraints presented to slip in a single grain, from its boundary with differently
oriented neighbouring grains, will raise the yield stress. In their account of restricted slip,
Bishop and Hill [9] showed that an isotropic, upper-bound yield locus may be established
from the maximum work principal. This assumes that inhomogenous, simultaneous slip is
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the only mechanism of spreading plasticity in a polycrystalline solid. To examine the work
done in deforming a unit volume we let o^ be an initially elastic, macroscopic stress
distribution. This corresponds to point A lying within the yield surface/in Fig. S. 1 la. The
elastic energy stored is identified with an enclosed triangular area beneath component stress-
strain plots, typified by Fig. 8.1 lb.

(a) (b)

Figure 8.11 Elastic and plastic work for a cycle of loading

The corresponding microscopic elastic stress is a^ and here all slip systems s are inactive
when aijf er^* s Ta". Now let the macro-stress be increased to the yield point B and then to
point C by a small amount «fffs, before unloading to the initial stress level at A. Figure 8.11b
shows the additional work done SWP in reaching C. The elastic work has increased by SW
but is restored to its former level upon unloading to A'. It is seen that the increments in
macroscopic plastic strain Sef, produced by Saa, are responsible for the permanent change
to the stored energy. The incremental plastic work 3WP for loading cycle ABCA' may be
written as:

+ *% > 0 (8-lOa)

When point A lies on the yield surface, then («%)B = (o^) A and eq(8.10a) simplifies to:

Sav Sef > 0 (8.10b)

Correspondingly, the microscopic stress distribution is altered by 8ov" and an incremental,
plastic micro-strain Se,f arises from the slip dy" in systems where i^f 0$ > rm

s. Here:

dojdef>Q (8.10c)

The maximum external work principal combines eqs(8.10b,c) within volume V, as:

Sai}ds^ = J dffydffy'dV a 0 (8.11a)

No work is done when dav refers to an unloading or a neutral loading around the yield
surface. Within eqs(8.10a,b) the macro-plastic strain increment tensor becomes a volume
average of the micro-plastic strain tensor:

rp* (8.11b)
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Taylor [8] employed eq(8.8) within a minimum shear principle;

Equation (8.12a) is integrated for a plastic aggregate of volume V

(8.12a)

(8.12b)

where stress and strain distributions may vary continuously whilst satisfying both
equilibrium and compatibility. The exact calculation of the yield surface, based upon
eq(8.12b), is complex. Certain simplifications [10] will produce upper and lower-bound
yield surfaces to satisfy either equilibrium or compatibility, but not both. For example,
compatibility is satisfied in Taylor's lower bound with the assumption of uniform strain
within the grains equal to the macroscopic strain (elastic strain is neglected). Employing
eq(8.8) for N slip systems gives the uniform strain increments as

if

dfij, * = dst. = J^ tz.'.&y' (8.13a)

but the condition of equilibrium is violated at grain boundaries. Conversely, when av = afj
is uniform in eq(8.12b), we may write from eq(8.5b):

a&* = aii = (eiip'11* (8.13b)

Here equilibrium is achieved for a uniform distribution of microscopic stress throughout the
grains, but compatibility is violated. Equations (8.13a,b) apply to an isotropic aggregate
which hardens uniformly, i.e. it shows no Bauschinger effect. It may be deduced from this
that the yield surface lies between the upper and lower bounds. For example, Fig. 8.12a
shows these two bounds for an ideal cubic lattice [11]. This restricted the slip under a
principal, biaxial stress state to the (111) plane in a [112] direction.

(a)

4

•s
2

0 i

- 2

- 4

/

-

^upper

" " t o w e r

\/f
/ / •

4
|

<Jk

a3f¥

1.0 .

0,5

0 •

-03

- 1.0 '

• ) )

/ 1
03 11 1.0

Iff

/

experiment

(b)

Figure 8.12 Bounding loci for an (a) isotropic (b) anisotropic texture
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Further bounding yield loci may be derived for different operating slip systems. When
extended from an f.c.c, grain to a polycrystal, the bounding becomes equivalent to taking its
yield locus to lie between von Mises and Tresca. We have seen this previously in the
continuum theory of yielding for a polycrystalline aggregate (Section 3.3, j>. 71), where both
criteria identify with functions of the stress deviate invariants. Again, it is implied here that
an aggregate of small, randomly orientated grains is macroscopically isotropic, where flow
stress is independent of the material direction.

8.5.2 Texture

The plastic flow behaviour of single crystals is anisotropic in that it depends upon the
relative orientations of the slip plane and the stress axis. While the yield stress of an
aggregate of equiaxed grains is usually direction independent, that for non-equiaxed grains
is not. For example, anisotrapic yielding is found where the grains of a polycrystal exhibit
a preferred orientation, as in a heavily rolled sheet metal. The degree of anisotropy may
approach that for a single crystal when the directionality is severe. Anisotropy arising from
cold rolling non-ferrous sheets cannot be entirely removed by a recrystallisation anneal.
Indeed, the slip and any twinning sites from prior-working become thermally activated at the
annealing temperature. The likely influences of erystallographic anisotropy is to distort,
translate and rotate the yield surface. Such features are associated with the anisotropic
hardening that is known to arise from plastic pre-straining (see p. 265). A wrought, fibrous
structure is associated with an alignment of impurities and voids along the forging direction.
A hot forged structure is less likely to have been hardened anisotropically than a cold-rolled
structure but the former can display anisotropic fracture stress and strain.

Upper and lower-bound estimates of yielding in textured f.cc aggregates of copper and
aluminium were made by Althoff and Wincierz [12]. In their analysis of textures, a bound
was taken to be the average of a number of yield loci. Each locus was found from an
individual texture component. Their method is similar to placing bounds upon yieldiing
within individual grains of an isotropic solid. Figure 8.12b illustrates the result of
compounding the residual textures arising from the recrystallisation of a dominant (112),
[1 l l ] texture in an extruded aluminium tube. The experimental data confirms that the yield
locus, defined by 0.1% offset plastic strain, lies between the upper and lower bounds.
Figures 8.12a,b, show that the bounds for equiaxed and textured structures do not display:
(i) the smooth curved boundary of the measured yield loci and (ii) any difference between
yield stresses in tension and compression. These observations imply that strain within a
grain is not distributed uniformly. The strain uniformity is assumed when maximising
external work for an upper bound. Backofen and Piehler [11,13] employed an alternative
technique for bounding yield loci in rolled sheets with cubic lattices. Here a deformation
texture, representative of planar isotropy, was established from rotating an ideal texture
about the sheet normal. Figures 8.13a-e illustrate the construction of lower-bound yield loci
in normalised stress axes, by applying Schmidt slip to each stage of this rotation. Lower
bounds with corners again result from their technique. In Fig. 8,13e, the average lower-
bound locus for the full rotation is compared with an upper bound from applying the
maximum work principle [13]. It is seen that the region between the bounds, within which
the true locus is expected to lie, can accommodate a limited amount of unsymmetrical
distortion and a difference between initial yield stresses. Kocks' [7] computer simulations
of rotating textures provided upper-bound yield loci for rolled and pre-strained polycrystals.
These loci were found to be irregularly shaped with flattenened sides and pointed vertices.
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(d) te)

Figure 8.13 Lower bound yield loci for a cubic texture

Good agreement has been found between theoretical and experimental yield loci for
textures under biaxial stress states [14-17]. Some typical observations on the initial yield
behaviour of rolled sheet metal can be seen in Chapter 11 (p. 365). In the continuum
plasticity theory, initial anisotropy appears within a suitable yield function contoining the
macroscopic stress and plastic strain history. Many yield functions have been employed
(see Table 3.3) to represent irregular shaped yield surfaces in polycrystallme aggregates.
Here, tensor formulations admit all macro-stress and plastic strain states. An associated flow
ride identifies the yield function with a plastic potential for which stress derivatives equate
to an aggregated stress-strain relation. This classical macroscopic approach to yielding is
clearly more convenient than bounding with Schmidt's active micro-slip systems.

8,6 Flow Rule

The decomposition of the total strain into elastic and inelastic components is a common
feature in the classical theory of plasticity. The theory assumes that elasticity is due to lattice
distortion and that slip on crystallographic planes accounts for all inelastic deformation. The
latter is token to be quasi-static for low rates of straining, so ignoring the effect of a discrete
dislocation substructure. Strictly, the dynamics of dislocation motion renders the inelastic
strain component as inherently time-dependent or visco-plastic [18]. To admit visco-plastic
strain, it becomes necessary to consider a similar decomposition in the total rate of
deformation. Verification of the plastic potential, employed in classical theory, follows from
a consideration of crystallographic slip and the motion of discrete dislocation lines [19].
When the strains are small, grain rotation can be ignored so that slip alone is responsible for
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the macroscopic plastic strain ef. The latter is taken as the surplus ^ - s^, where By defines
a homogenous strain field and e£ is the contribution to elastic lattice distortion. When
inelastic strain rates et, result from a general stress state an, the work rate from Vs slip
systems within volume V, is expressed from re-writing eq(8.12a)

1 f
as

Tf dV (8.14)

In eq(8.14), ris the resolved shear stress when each slip system shears at a rate f. Let / be
the force on a dislocation line L and Ld refer to all such lines within volume V. The work
rate may also be expressed in the positive rate of change of slipped area:

auey'-lfvdL (8.15)

where v is the velocity of a dislocation line segment dL. Let the function s.. (cr.) apply to
a given slipped state where, correspondingly, y - f(t) and v — v(f). Following an
infinitesimal stress change dati, eqs(8.14) and (8.15) become

ove> = | J

^*4

(8.16a)

(vd/)dL (8.16b)

As both integrands (8.16a,b) must be identical they may be replaced wim a potential function
f(av ) whose partial derivatives in av supply strain rate components, stj . Introducing a
scalar multiplier X, this leads to a flow rale for strain rates:

or r i
Bo 3T

Equation (8.17a) implies normality of er to a convex yield surface. It follows that the yield
function /(ffs) in eq(8.17a) may be identified with either right-hand side in eqs(8.I6a,b):

f(a ) = —. f f r d r dV = —• f f vdfldL (8.18)

Geometrically, the yield function /(<7e) in eqs(8.17a) and (8.18) follows from slip
considerations alone simply by re-arranging Schmidt's law (8.5b) as

fiOg, tj = a1jair ^ = 0 (8.19)

for when the resolved shear stress va is allowed to vary within each slip system. Normality
is again implied from combining eqs (8.6a) with eq(8.19):

d«fc' = <d r s = dr'-ip- (8-20)

Comparison between eqs(8.17a) and (8.20) identifies A with the rate of slip d y"fdt. In the
continuum theory, the plastic potential function/in eq(8.18) is identified with a yield
function describing a convex yield surface. Convexity is implied within the maximum work
principle through eqs (8.10a,b) (see Drucker's postulate p. 311). Either of the eqs(8.17a,b)
is known as the associated flow rule of which normality between/and e.. is a consequence.
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When quasi-static, eq(8.20) shows there is normality between/ and dej" far 41= |dj^ | . For
compressibile materials this association can be too restrictive. Here/and the constitutive
relation between stress and plastic strain are disconnected to give a non-associated flaw rule.

8.7 Micro- to Macro-Plasticity

The macro-plastic strain follows from the volume average of the microsopic strains. The
latter may be expressed in the microscopic parameters, either from continuum slip or
dislocation motion. They are, respectively:

ej = — I yk(nim} + m.npydV or Ep = - J l4(nmT + mnT ) f dV (8.21a)

ef = i . f W(n,b. + b,n.)dA or EF = — f %(nbT + bnT)dA (8.21b)
IJ A h, ' J ' ' Ah,

Equation (8.21a) follows from eq(8.6a) in which slip systems are refered to the active
volume V,. In eq(8.21b) As is the collective area of active slip planes, n is the outward
normal vector to a slip plane, m defines the slip vector and b is Burger's vector, with
magnitude |b| = yVIA,. The shear strain rate in eq(8.16a) is defined as

where p = LJVis the mobile dislocation density and (v) is the mean dislocation velocity.
A compatibility condition for a polycrystal requires that the deformation in each grain

is transmitted to adjoining grains across their grain boundaries. Consequently, the internal
stress within an individual grain will depend upon the applied macro-stress and the micro-
stress imposed from neighbouring grains. A mathematical averaging technique is used to
simplify the evolution of a stress-strain curve from slip within a single grain to the
polycrystalline aggregate. Taylor [8] was the first to employ this technique in 1928 for an
aluminium polycrystal composed of fine, randomly orientated, equiaxed grains with typical
diameters 10" * m. He assumed that at least 5 of the 12 slip systems would activate to
accommodate plasticity and preserve volume under tension. Slip systems were activated by
the least amount of work when axial strain was uniformly dispersed throughout the grains.

Normally, numerical integration is necessary when evaluating eq(8.21a) to give the
strain in a representative volume element. However, a closed-solution arises from
integrating slip within a hemispherical volume element composed of ideal grains, e.g, in a
single-phase crystalline solid. Grains of similar orientation within the element have parallel
slip planes. Euler angles m, ft and $ determine the orientation of the stress axes xt relative
to the normal n and direction m for an element of slip plane with solid angle &Q, as shown
in Fig. 8.14a. The number of grains with similar orientation is proportional to the product
(dDx d$>) and therefore these grains contribute to slip yby an amount dy= (dGx d$)y.
The plastic strain ef in stress axes xt (i= 1,2,3) then follows from eq(8.7). This gives the
strain arising from all active, parallel slip systems within the unit hemisphere [21]:

eji = - J^dfl J sa (mtnj + ntm.) y&$ (8.22a)

where, in spherical co-ordinates (r, a, 0) and with r = 11

&a = (r sinar dftxrdG>) = sina da dp (8.22b)
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Figure 8.14 Enter angles and loading axes for a hemi-spherical crystal

By setting y = j< r) = £cn ( r / TCF - I)" as an w-term polynomial in eq(8.22a), it is seen how
macroscopic plastic strain accumulates with slip when r 2. Tcr This effect of this simplified
approach is to distribute strain uniformly. Alternatively, it may be more realistic to identify
the macroscopic strain in a polycrystal with an aggregate of its non-uniform granular strains.
To do this, we let yt (i = 1,2,3) be the orientation of a point on the slip plane within a single
spherical grain (see Fig, 8.14b). Transforming slip from all active planes to axes yt gives
a microscopic strain tensor sf* for that grain. Again, using spherical co-ordinates (r, a, fi)
and eq(8.22b), we may refer e^* to stress axes xt. This gives the macroscopic strain tensor
for the grain [19];

= -J-r f f t (8.23a)

where eq(8.7) provides the tensor strain components e^f* in the crystal axes. Integration
applies over the hemisphere H for all grain orientations 0. The macroscopic stress becomes
a simple volume average of the microscopic stesses in all spherical grains:

o» = - f fftdV (8.23b)

This method shows how the maco stress-strain behaviour evolves from micro-slip.
However, many have recognised the need for a micro-macro evolution to account for the
restricted, heterogenous deformation within grains. Here, the models of Eshelby [22] and
Kroner [23] are useful. The underlying principal is that of amassing all grains of identical
orientation into a single spherical or ellipsoidal grain. The 'grain', with orientation as, lies
within an infinite isotropic matrix, as shown in Fig. 8.15a. When the 'composite' structure
is stressed under a remote macroscopic stress av, the deformation differs between the
spherical inclusion and the surrounding matrix. This results in an internal stress 0$ within
the grain. When matrix and grain are analysed separately under <y# (Fip 8.15b,c) an internal
stress difference trv- 0^ must exist to maintain compatibility, i.e. the grain must fit the hole.
Eshelby [22] examined an elastic interaction between the anisotropic deformation produced
from the uniform internal stress ffs* in the grain (* now refers to the grain) and the
homogenous deformation assumed for the surrounding matrix. Kroner [23] extended this
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approach to include a plastic interaction between grain and matrix. Here the integral (8.23a)
supplies the plastic strain in the anisotropie, spherical grain. Equilibrium and compatibility
must hold between the stress a^ and plastic strain e^ within a randomly orientated, isotropic
matrix and stress o$ and strain s/* within the anisotropie grain.

(a)

anisotropie

grain

Figure 8.15 The 'self-consistent" Kroaer-Edielbj? model

The following * self-consistent' relation achieves the two conditions by connecting the
respective stress and plastic strain differences elastically:

(8.24)or T'- T =- 2IIG[EP*-

where JB = (7 - 5 v)/[15(l - v)], G and Fare die usual elastic constants. The plastic strain
difference embodies plastic incompressibility to ensure that the interaction between grain
and matrix is independent of hydrostatic stress. Equation (8.24) may be applied in turn to
all spherical grains of varying orientation and finally averaged to give the matrix stress and
strain; etf = (%*"*)„ and #6 = (o§*)w. However, eq(8.24) is known to over-estimate the
stress difference oj/ - a(i. The coefficient fi was altered by Kroner [23] to account for the
non-uniform plastic strain in the matrix but in retaining an elastic interaction eq(8.24) still
exaggerated the grain's internal stress, O|*. HiU [24] replaced the coefficient p.G in eq(8.24)
with a tensor parameter that minimised structural stiffness as the spread of plasticity
* softened' the interaction. Berveiller and Zaoui [25] showed that an approximate method
for accommodating a plastic interaction with stress relaxation between grain and matrix, was
to replace 2fiG with 2«jttG in eq(8.24) where:

(8.25)

-pThe use of macroscopic equivalent stress at and plastic strain e within eq(8.25) enabled
a to be determined under a uniaxial stress. In order to include an instantaneous response
from the heterogenous plastic volume V, they [26] added a further * Hill-term 'to eq(8.24);

- 4 - 4
where a is defined in eq(8,25) and NliU is a fourth order interaction tensor of tangent moduli.
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It is now possible to devise a method by which either of eqs(8.24) and (8.26) are applied
to many crystalline slip systems, s = 1, 2, 3 ... N, within a single grain. Firstly, eq(H.6a)
expresses the total strain in the grain as:

ei* = L E (»!», + «,«i) ' Vs = E <• 7s (8.27a)
or 2 > a l J = 1

N N

S = 1 jfc - 1

in which there is no summation over s. Equation (8.6b) gives the corresponding plastic
rotation in the grain:

< * = 1 E (»(«j " »;« , )> ' = E fit, Vs (8-28a)
o r s ' 1 s = 1

QP*=I y* [nm T -mn T ] s y i = T* B!ys (8.28b)
2 » - j , - 1

where A1 s ar#* and W = fig are the orientation factors for a given slip system s. Let a
number of grains, q - 1, 2, 3 .... M, each with volume Fs, lie within the polyerystalline
volume V*. The macroscopic plastic strain and rigid rotation of the matrix are found from
the volume averages of eqs(8.27a) and (8.28a):

j M S

*ij d V S y L E V , < YV (g.2 9 a )

(g 2 9 b )

Now, eq(8.5b) shows that for a given slip system s, within a single grain f, the critical
resolved shear stress rj may be expressed in terms of the uniform stress field # / within that
grain as:

rc*r = ff*n/m/ = ff*4 (8.30a)
or

rcr' = tr [T* n* (m1)7] = tr (T 'A 1) (8.30b)

where ^ s = w/w^%or A* = ns(nis)T. The macroscopic stress ^ ; , for M grains in volume V,
derives from the volume average eq(8.23b)

Each resolved shear stress in an f.c.c. lattice will depend upon all possible N= 24 slip systems:

*-«rI=*J(r\r*.rJ ru) (8-32)

in which the hardening function hs depends upon Burger's vector and the dislocation density.
The solution to the macro stress-strain behaviour combines a suitable micro-constitutive
hardening law (8.31) with the volume averages. Assume that a known a^ is applied and e£
is to be calculated. Firstly, oj* is estimated from eq(8.31). Then, TJ is found from
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eq(8.3Oa) for each slip system within a grain. It follows that the amounts of slip ys in
eq(8.32), depend upon the chosen hardening law. Taylor [8] employed a linear isotropic
hardening law

r * = r, + E
k = 1

(8.33)

where To is the shear stress necessary to initiate slip. Equation (8.33) allows the constant
value of tangent modulus hA = dr^'l dyk, to differ between slip systems. Other hardening
laws have been employed. For example. Brown [27] employed a non-linear relation for each
slip system

(8.34)

where c and n are empirical constants. The micro- and macro-plastic strains follow from the
application of eqs(8.27a) and (8.29a) respectively. Finally, eq(8.24) enables o£ to be re-
calculated within an iteration procedure. BerveiEer and Zaoui [25] and Hutehinson [28]
compared uniaxial, stress-strain curves from this method by making various assumptions
(see Fig. 8.16). Firstly, with ideal, elastic-perfect plastic f.c.c. grains, h "k = 0 in eq(833).

1.0

Fij^re §.16 Theoies of polyeiyitaUme hardening (es = Y/E)

Further assumptions were followed in producing the respective curves a-d in Fig. 8.16:

(a) Taylor [8]: Large, uniform strain satisfying compatibility (trivially), elastic strain and
work hardening ignored. Equilibrium condition for grain boundary stress is violated.

(b) Lin [5]: Uniform strain satisfying compatibility (trivially) but not restricted to large
strain. Includes elastic strain component and plastic hardening. Equilibrium is violated.

(c) Eshelby [22]and Kroner [23]: Both equilibrium and compatibility satisfied. Uniform
strain only within grains of identical orientations. Inhomogenous strain distribution
elsewhere with an elastic interaction between grains.

(d) Hill [24]: As for (c) but with a rigorous analysis of the inelastic interaction between
grains given.

(e) Berveiller and Zaoui [25]: As for (d), but with a less rigorous analysis of the inelastic
interaction between grains. Consequently, application of the theory is simplified.
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Method (d) is belie¥ed to be the most exact though it requires the greatest amount of
computation. It was adopted by Weng [29,30] to account for hardening in a two-phase alloy
and distortion in its subsequent yield locus. With a defined from eq(8.25), it is seen that
curve e is a reasonable approximation to curve d and can be found with lesi effort. The
account of heterogenous deformation within the surrounding matrix (curve e) has reproduced
the observed non-linear, uniaxial stress-strain for a polycrystal to ep - 0.1%. Further
modifications to the Eshelby-Kroner self-consistent relation (8.24) were made to account for
texture development and a Bauschinger effect in the grain [31].

Other methods of treating interactions between grains adapt further the ideas of Taylor
et al [8,32], in preference to following a model of self-consistency. Taylor neglected elastic
strains and equated the strain in each grain to an average macroscopic strain. Figure 8.16
shows that Taylor's curve a is realistic only at large strain, where individual grains do not
work-harden further. A more realistic prediction, curve b, applies to grains that behave in
an elastic-plastic manner, with linear hardening from eq(8,33). Both the Taylor and Lin
predictions overestimate the observed response since the condition of equilibrium is violated
at grain boundaries. Nonetheless, the simplifications afforded by this method explains why
it is often used for predicting polycrystalline deformation from single crystal plasticity. To
improve the accuracy a further refinement [34] has incorporated a non-linear hardening law
to account for interaction and rotation between grains.

In practice, alloys are employed more often than metals to bear load. This is
particularly so in hostile, high-temperature, corrosive environments. Understanding the
microstructural processes that constitute the observed strain is far more complex. Alloying
raises the yield stress and the rate of hardening. The reason for this is that the stress
necessary for a stage IE dynamic recovery is increased as alloying atoms resist and impede
the motion of dislocations. Additionally, as the Petch eq(8.9) shows, the yield stress is
raised if the grain size is reduced by alloying. Theories of solid solution hardening are
generally more successful than those of precipitation hardening [1, 2] in explaining these
effects. This is largely because the dislocation interactions in solid solutions are more
clearly defined. Raising temperature and/or reducing the rate of deformation assists with the
processes of climb and cross slip of pinned dislocations by thermal activation. These reduce
the yield stress and the hardening rate. Furthermore, when precipitation hardened alloys
operate at higher temperatures, it becomes necessary to account for other diffusional
processes: grain coarsening, phase changes, micro-voids and crack formation [35].

8.8 Subsequent Yield Surface

Qualitatively, most of the theories discussed in the previous section predict a parabolic
stress-strain curve for a polycrystal. A further validation test would lie in their ability to
describe the subsequent yield surface for a work-hardened material. For example, the
assumption of plastic rigidity, employed by Taylor [8], implies that the initial yield surface
applies to all subsequent work-hardened states. This simplification suggests that the initial
distribution of grain orientations is not altered by plasticity. Clearly, this model ignores
those influences of deformation texture upon the yield surface, as shown in Fig. 8.13,

8.8,1 Isotropic Hardening

Consider Taylor's linear hardening eq(8.33). This gives equal increases in the resolved
shear stress for both active and non-active (latent) slip planes. Thus, where the hardening
behaviour neither depends upon the sense nor the direction of slip, a polycrystal will display
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isotropic hardening. Such behaviour is most likely to be found in tension and compression
of a fully annealed material, i.e. one whose structure is free from the history of previous
deformation. With isotropic hardening under other stress states, the initial yield surface is
understood to expand uniformly, retaining its shape and orientation. Figure 8.17a illustrates
this behaviour from within a principal biaxial stress space of ox versus a^.

Figure 8.17 The rate of isotropic hardening

Figure 8.17b has projected the expanded yield locus into a stress-strain response to simple
tension. The rule shows that when the direction of deformation is reversed upon reaching
the work-hardened state A, yielding re-commences when the stress at B equals that at A.
The major criticism of isotropic hardening is that it does not show a Bauschinger effect. The
latter states aB < aA, which is always observed in stress reversal experiments. Thus, we
should only expect the subsequent yield surface be an inflation of the initial yield surface for
the baekward-extrapoation definition of yield, employed by Taylor and Quinney [32]. Then-
yield point is detected from the low hardening rate pertaining to large plastic strain. In
contrast, alternative definitions of yield employ little or no plastic strain. The identification
of the forward and reversed yield stresses «rA and aB with proportional limits (as shown) or,
with small offset strains, involves a Bauschinger effect. However, we may employ the
isotropic hardening rule for radial outward loading paths, i.e. no stress reversal. Figure
8.17a shows how combining a uniform expansion with the normality rule connects <rA to an
incremental plastic strain vector deA

p at the load point. Chapter 10 shows how the rule of
isotropie hardening can be combined with the flow rule to match certain experimental data.

8.8.2 The Minimum Surface

We have seen that the slip theory of Batdorf et al [20,21,36] employs active slip systems
within individual crystals comprising the polycrystalline aggregate. With only one
independent slip system per crystal, this theory predicts a subsequent yield surface to be the
minimum surface enclosing the prestress point and the initial yield surface. When the latter
is defined by von Mises, it projects as a circle on the deviatoric plane (see Fig. 9.1, p. 270).
The circle is the cross-section of a cylinder with an axis of hydrostatic stress equally inclined
to the axes of principal, deviatoric stress «r/, a[ and e%'.
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(a)

Figure 8.18 Minimum surface showing Bauschinger effect

Once the stress path pierces the initial surface at P, a subsequent surface is formed from
projecting tangents from the initial surface to pass through the current stress point Q, This
construction leaves the rear portion of the original surface unchanged. The minimum surface
reveals that an isotropic material becomes anisotropic. It is seen from the associated stress-
plastic stain response (Fig, 8.18b) how a minimum surface displays a Bauschinger effect:
erR < OQ. Figure 8.18c shows a stronger Bauschinger effect, where reversed yielding occurs
at R'. Here, the rear of the minimum surface has been correspondingly modified [37, 38],
as illustrated with broken lines in Fig. 8.18a.

Much experimental work was conducted in the 1950s and 1960s to confirm whether the
subsequent yield surface displayed the corner or pointed vertex at the load point, predicted
by slip theory. When the findings from this work were reviewed objectively [39], they
appeared to be inconclusive. The majority of investigations confirmed a local distortion of
the subsequent yield surface. A blunt nose, not a corner, appears in the region where the
surface was originally pierced by the stress vector. It can then be said that a unique normal
exists for stress points on all subsequent surfaces, e.g. at point 1 on the subsequent surface
/ i , in Fig. 8.19a.

Figure 8.19 Surface with smooth contour and vertex point

The slip theory was validated indirectly from experiments [40,41] that demonstrated a fan
of normals at stress point 1 in Fig. 8.19b. The fan implies an undefined direction of the
plastic strain increment vector at the load point, which would be expected in the presence
of a comer in the yield surface. Comers may be indeed be present for yielding in Tresca-type
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single crystals [7]. In contrast, when the many slip systems are activated within the grains of
a polycrystal, the aggregate yielding behaviour does provide the unique normal at the load point,
as given by macro-plasticity theory.

8.8.3 Kinematic Hardening

When the applied stress is removed from a plastically deformed polycrystal an instantaneous
elastic recovery occurs but there remains a self-equilibrating, residual stress distribution.
Microscopically, an internal stress builds as the increasing dislocation density of forward
deformation becomes less mobile. Dislocations entangle and are impeded by obstacles lying
in active slip planes. A pile-up of dislocations promotes a back-stress which resists further
slip under the resolved stress in these slip planes. Many of the crystals remain permanently
slipped following unloading of the aggregate from the plastic region. The remaining
heterogenous distribution of residual stress carries a sense in opposition to the applied stress.

Consider a reversal in the direction of uniaxial deformation, say at point A in Fig. 8.20a.
The stress required to initiate reversed yielding at B is lowered because of the additive
contribution from an internal stress of the same sense. Thus, the Bauschinger effect, aB < crA,
can be explained from the existence of a residual micro-stress [42,43].

de

— ^ — ffA i > — — s s ^ * A

(a)

figure 8.20 The rule of combined hardening

Next, consider uniaxial loading OA, unloading AC and re-loading CA in Fig. 8.20b.
The sense of the internal stress, arising from a plastic loading-unloading cycle, opposes the
applied stress in re-loading. This explains, qualitatively, why a forward yielding will not
occur until the stress level again reaches that at point A. The increase in the forward yield
stress (i.e. aA > Y } is associated with the plastic prestrain, ep. Clearly, if new yield points
A and B are to lie on the subsequent yield surface/, then the initial yield surface^ must
combine an expansion with a translation from its origin, as shown in Fig. 8.20a.

The true kinematic hardening rule refers to a simplified, rigid translation of the yield
surface in the absence of an expansion (see Fig. 8.21a). Figure 8.21b shows that linear
hardening is implied in which the initial elastic range 2Y remains unaltered by plastic strain,
e.g. aA - aB = 2Y, where Y is the initial yield stress. The amount of hardening is measured
by an increase in the flow stress: oh - Y. The amount of softening is measured by a decrease
in flow stress: Y - aB . Each change to F will have the same magnitude for a given sp.
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(a)

Figure 8.21 The rule of Mnemafic hardening

These observations reveal an equivalence between the internal stress and the centre of a
translated yield surface. Centre co-ordinates av define a strain history dependent translation
In the Kroner-Eshelby model a# becomes the difference between the micro and macro stress
tensors. Re-arranging eq(8.24) gives an incremental translation corresponding to respective
stress changes:

or
dA = d T - dT = 2jttG (dEp -

The theoretical predictions c - e in Fig, §.16 employ this model. By reversing the direction
of deformation they also predict softening and can therefore be expected to give a realistic
Bauschinger effect. Here a dislocation pile-up is the major contributor to the development
of back (or internal) stress.

Often, it is more appropriate to model the behaviour in Fig. 8.20 by combining the rales
of isotropic and kinematic hardening. For example, Brown [44] described the translation
for prestrained aluminium with the non-linear hardening eq(8.34). However, subsequent
flow potentials for increasing times under sfress (i.e. creep), were concentric Mises ellipsoids
with a common centre a r Experimental investigations have shown that both initial and
subsequent yield surface for a polyerystal are sensitive to the chosen definition of yield (see
p. 71). Where a linear region of elasticity exists in pre-strained material this is evidence [45]
for a translation in the subsequent yield surface (see Fig. 8.21). This behaviour suggests that
kinematic hardening is the preferred model of plasticity with load reversal.

8,9 Summary

This chapter has presented a micro-mechanical description of yield, flow and hardening
behaviour. These are the key elements employed in the development of continuum theories
of plasticity. Much of micro-mechanics involves the study of slip in single crystals and
polycrystals for metals. It appears from the literature that additional sources of plasticity
arise in metal alloys. This is not surprising since the essential purpose of alloying is to
inhibit slip. Consequently, in order to accommodate a loading strain internally, the
identification of those slip planes which remain active would have to be considered along
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with crack and void formation. Despite these additional processes, the elements of
continuum plasticity theory remains largely unaltered. In its use of macro-stress and strain
across a poycrystalline aggregate, the continuum theory does not differentiate between
metals and alloys specifically. By employing an appropriate yield function and a universal
flow rule it supplies the macroscopic plastic strain within the bulk volume of any polyerystal.
It will be seen that mis is achieved with the empirical representation of hardening behaviour,
derived from uniaxial stress-strain curves. The latter depend upon the service conditions,
among which the strain rate, test temperature and heat treatment are important
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Exercises

8.1 Apply eq(8.1) to show when a tensile stress am applied to a single crystal, the critical resolved
shear stress ta is at a maximum for 4> = A = 45°. Plot the variation in tja when the slip plane is
indned at various angles to the stress axis

8.2 Sketch isometric views of: (a) a cube with the portion above the (111) plane removed and (b) a
hexagonal prism with the portion above plane (0112) removed, indicating the [1120] direction.

8.3 Show that eqs(8.1 la,b) appears in matrix notation as

tr(eJT<5Ep)= J tr (dT"dEp")dF

where

in which T is Cauchy stress matrix (1-46) and e5E? is the incremental plastic strain matrix (2.5b)

8.4 Show that observed values rw = 6,4 and 20 (x 10 s dynes/cm2) for silver, aluminium and iron
respectively, are approximately four orders of magnitude less than their theoretical values given from
rcr = G/(2jr). Respective elastic constants (Young's modulus and Poisson's ratio) for these metals are:
E = 70 GPa, v= 0.37; E = 71 GPa, v= 0.34 and E = 206 GPa, v= 0.29.

8J list the particular point, line, plane and volume defects most responsile for the large discrepancy
referred to in Exercise, i.4

8.6 Examine the application of eq(8.23a) to a spherical f.c.c. grain when the distribution of plastic
strain e,f* is according to eq(8.8).

8.7 Examine what modifications to eq(8.23a) would be required to accommodate an ellipsoidal grain.
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CHAPTER 9

THE FLOW CURVE

9,1 Introduction

In the earlier chapters ideal materials were assumed to flow under a constant yield stress.
Some metals do approximate to this behaviour but most will require an increase in stress to
progress plastic flow. The hardening rate Aatdep refers to this increase in stress with plastic
strain. This rate is at its greatest immediately beyond the yield point, where there is a rapid
increase in dislocation density. Thus, it is in the lower strain region of plasticity where an
account of hardening is made, usually under a monotonic loading. If slip processes are to
continue, the stress must be raised further to overcome the barriers presented by a dislocated
structure. The rate of hardening will, however, diminish to zero at large strain, where the
energy of the structure can activate additional climb and cross slip recovery mechanisms.

Theories of plasticity account for hardening by employing various empirical
descriptions of uniaxial or torsional flow behaviour. These are found from standard
laboratory tests, the choice depending upon the range of plastic strain required. Testing is
normally performed under an increasing loading so that a derived description applies to
forward deformation. Tension and compression tests are most reliable when limited to the
smaller strain region, say, for a theory of an elastic-plastic structure. The appearance of
necking in the tension test and barrelling and buckling under compression, prevents each test
from attaining large uniaxial strain values. To overcome these experimental difficulties, a
modified uniaxial compression test, plain strain and bulge testing have been employed.
These allow flow behaviour to be represented at much larger strains, typical of those reached
in metal forming processes.

In this chapter, these standard tests are described and their date is employed to
demonstrate empirical representations to flow curves. The latter appear in axes of equivalent
stress versus equivalent plastic strain. A definition of equivalence is required to correlate
flow curves under different stress states in s material with a known initial condition.
Particular attention is paid to annealed, isotropic materials obeying the von Mises and
Drucker yield conditions. The distinction between the hypotheses of strain and work
hardening in these materials is also examined.

9.2 Equivalence in Plasticity

Consider an initially isotropic material whose yield surface is described by a function of the
stress deviator invariants:/(/2', Jj"). The von Mises function [1]:/= J j , is by far the most
common form since it relies on the second invariant alone. However, the determination of
one constant, say in the Drucker function [2]:/= / ' / - cJ *3

2, accommodates a wider range
of isotropic behaviour. Here it will be shown that equivalence expressions for stress and
plastic strain rest with the choice between a work and strain hardening hypothesis.
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9.2.1 Equivalent Stress

(a) von Mixes
When the isotropic yield function/is equated to the second invariant of deviatoric stress this
implies that hydrostatic stress does not contribute to plastic deformation:

/=/*'= !%'< (9.1a)

Yielding begins under a given stress state when Jt' attains a critical value. The latter is
determined from uniaxial yield stress F as J2' = F2/3. We then have

from which the yield sttess is

Y = A -

(9.1b)

(9.2a)

Thus, Fmay be regarded as an effective, or equivalent, yield stress for a general stress state.
When this yield stress is exceeded, an equivalent flow stress O (ff > Y) for the plasticity that
ensues is correspondingly defined as

(9.2b)

Written in its fully expanded form, eq(9.2b) becomes:

6(4+ 4 + 4)
For a principal stress system, the shear stress components an, al3 and £r23, are absent so that
eq(9.2c) reduces to

cr = (9.2d)

Equations (9.2c,d) axe the most commonly used equivalent stresses. Equation (9,2b)
provides an alternative O expression for principal deviatoric stress space (see Fig. 9.1).

Mises circle Tresca hexagon

figure 9.1 The sleviataric plane
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Geometrically, eq(9.2b) shows that & describes the radius of the circle that projects from
the yield surface upon the deviatoric plane, as shown in Fig. 9.1. That is

& = A — (9.2e)

where a{ = Oj - % ((% + <% + <%) ete and o{ + <%'+<%' = 0. This circle is the cross-section
of the uniform, von Mises cylinder whose axis is equally inclined to orthogonal axes of
deviatorie stress. Tresca's cylinder, found from eq(3.14c), appears as a hexagonal section
inscribed within the Mises circle upon the deviatoric plane. Since the axes of bom cylinders
are coincident with the axis of hydrostatic stress, the latter does not affect the radius of the
cylinder cross-section, i.e. the equivalent flow stress. However, as O increases with plastic
hardening, the initial yield surface is taken to expand concentrically by the isotropic
hardening rule to contain the current equivalent stress point.

Q))Drucker[3]
Here the yield function is of the form:

f(J2\ (9.3a)

where for a uniaxial equivalent stress, the second and third stress deviator invariants become

Combining eqs(°.3a-e), Drucker's function gives

= /*2
3 -

3
- C

27

from which the equivalent stress is

r i 3 j .

3 j ^27

27

(9.4a)

^ 1

27

(9.4b)

The general, expanded forms of eq(9.4a,b) are cumbersome though they can be reduced to
give O for any stress subspace without difficulty. For yielding under torsion, the numerator
in eq(9.4b) is simply the shear yield stress (h6)1*6 = k. This enables the constant c to be found
from the initial tensile yield stress O = Y, as

F = (9.4c)
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It will be shown later in this chapter that by including J3' in the yield function/can account
for a greater range of experimental observations.

9.2.2 Equivalent Plastic Strain

Equivalent plastic strain expressions may be deduced from the corresponding equivalent
stresses. A non-rigorous approach [3] exploits the fact that the symmetrical, second order
tensors of deviatoric stress and plastic strain increment have identical properties:

rpi _
°22 d E P =

den

Correspondence within the matrix notation is: «?„' = 0 (tr T ' = 0) and de/ = 0 (tr dEF = 0).
Provided the tensor shear strains are used: den

p = den
p = V4 dyn

p, d%p = dEn
p = % dy,3

F

and de2/ = d%F = Yt dft/, then the three invariants of deviatoric stress (/,', /2'» Jj') are
identical to those of plastic strain (Ilf It, I3), These are:

u' = 0, / , = de/ = d^/* + d%p + dem
p = 0

(9.5a,b)

By employing the similarity between eqs(9.5a,b) the equivalent strain can be deduced from
the equivalent stress for a given yield function.

(a) von Mixes
Let deu

p, de-®*", de3i
p, deu

p, den
p and d£B

p, be the incremental plastic strains arising from
a change in a general deviatoric stress state from 05/ to a,j + dai}'. The equivalent plastic
sixain increment expression is identified with the corresponding change to lv Let this change
be equivalent to the change in l% for uniaxial tension within its three, principal strain
increments de', - !4dfijP and - \Mep, for an isotropic solid. Substituting the three strain
components into eq(9.5b), leads to I% = %(de,')z = %(d£ )2 , from which

(9.6a)

Equation (9.6a) expands into its general component form:

(9.6b)
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where den
p = ?4d yn

F etc. The most widely used d e expression employs principal plastic
strain increments. Putting dyn

p = dyn
F - &Yxf = 0 in eq(9.6b) gives this as

deP = — {[dep - depf + [dep - depf + (de' - d

An alternative, principal strain form follows directly from eq{9,6a):

(9.6c)

(9.6d)

Note that the incompressibility condition de/= 0 connects eq(9.6c) to eq(9.6d).
A difference in the numerical factor arises between the 0" and d i expressions because

a uniaxial stress does not produce uniaxial plastic strain. Lateral strains, dfijp and d^p

accompany the axial strain dep, where def=de/ = - ¥i de^p. Substituting this relationship
into eq(9.6c or d) it may be cheeked mat these lead correctly to d e = def, i.e. they ensure
that the axial strain is the equivalent strain under a uniaxial stress.

The octahedral shear stress and strain increment have also been used as equivalent
measures for multi-axial plasticity [4]. These are (see eq(l .34b)) defined as:

(def -

If we now reduce these to a uniaxial deformation with the respective substitutions (ff,, 0,0)
and (def, - % def, - % defy we find rD = \/2oi /3 and dyf = v/2de1*

>, which leads to a
more general connection between the equivalent and octahedral stress and strain measures:

and

— p
s

(b) Drucker
— p

To correspond with the use J3' in defining O so /3 is used to define d s . Thus, a strain
equivalence is sought between changes to the invariant expression: I2

3 - c/3
2, arising from

the general and uniaxial systems. For the latter, we have the two invariants l% = % (def)2

and I3 = V* (def)3, giving

I2
3 - e/,1 = Pi (def)1]J - c PA (de^)3}2

Since the axial strain is the equivalent strain:

(def)6 = (d e P)6 = (/2
3 - c/,V t 04)3 f

Substituting for lz and I3 from eq(9.5b)» in the general case

27
- c

C9.7a)
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The principal strain form follows from the expansion to eq(9.7a);

or

[»k<«')"

3

27
4

4

16c
0

Cd,f)3
+(d^)3

 + (d,3")3]2

- c

9

-c

I
e

I

i
(9.7b)

(9.7c)

Equivalent stress expressions corresponding to alternative isotropic yield functions/{J2', //)»
may be found in a similar manner. Literature reviews [5,6] show an almost exclusive use
of the von Mises de expressions (9.6a-d).

It has been observed [3] that the constant c appearing in eqs(9.4a-c), may be sufficient
to correlate flow stress data without it re-appearing in the d i expressions (9,7a-c).
However, equivalence is required in plastic strain as well as in stress. For example, the
determination of c from eq(9.4c) will only ensure that the initial yield points in tension and
torsion assume the same value of equivalent stress. As the material subsequently hardens
there is no guarantee that their equivalent stresses would agree for similar amounts of Mises
equivalent plastic strain, where in torsion e = y F / - / 3 , from eq(9.6b). Logically, we might
seek better agreement in the flow behaviour between the two tests with e defined from
eq(9.7b). That is, by putting def = ¥idfF, def = - ydyF and dsF = 0 in eq(9.7b) and
integrating, we get e = y1"/ (27 - 4c)1*. Experiment will readily show which approach is
to be preferred but, firstly, it is necessary to examine in more detail the experimental errors
that can arise between equivalent flow data. These normally apply to tension, torsion and
compression tests. However, alternative tests may be used to extend the range of plastic
strain, e.g. plane strain compression and balanced biaxial tension (bulge test).

9.3 Uniaxial Tests

When metallic materials harden with increasing plastic strain the flow stress increases. A
suitable empirical account of this behaviour is normally derived from stress-strain curves
under uniaxial tension or compression.

9.3.1 Simple Tension

The engineering stress and strain expressions employ the original testpieee area and length.
Errors will arise in stress and strain calculations when large changes to testpieee dimensions
occur within the plastic range. For example, the ultimate tensile strength of a metal will not
be a true fracture stress if no account is made of the reduction in testpieee area that occurs
during necking. Moreover, the stress in a material will actually continue to rise, even though
the load falls, as the neck develops before final fracture. It is possible to correct the
nominal tensile stress-strain curve to reflect this behaviour. The true stress ffand natural
strain increment Se are defined as
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(9.8a,b)
A I

where A and I are the current section area and gauge length respectively.

(a) True Stress and Strain
Unlike elasticity, the plastic deformation that is produced by stressing beyond the elastic
limit occurs without volume change. Thus, if As and la are the original area and length
respectively, the nominal (engineering) stress and strain are

ff, = — and £„ = —^ (9.9a,b)a0 L
The incorapressibility (constant volume) condition gives

(9.10a)

(9.10b)

Substituting eq(9.10b) into eqs(9.8a) leads to the true stress:

=E(i +£g) = (9.11)

Integrating eq(9.8b) provides a measure of the true, or logarithmic, total strain between the
original and current limits of length as

(9.12a)

Removing the elastic strain component eE= OlE from eq(9.12a) leaves the plastic component
of strain sr:

« f = e - eB = ln ( l + sg) - — (9.12b)
E

Equation (9.11) modifies stress in a nominal curve a0 = aa(ej, in the manner of Fig. 9.2a.
In Figs 9.2b,c, eqs(9.12a,b) have also modified the strain axes to natural (true) strain and
natural plastic strain respectively.

0,

(a)

- 1-

Figure 9.2 Hardening in nominal and true stress-strain axes
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(b)

Figure 9.2 Hardening in true stress-strain axes (continued)

It has been shown previously that the axial plastic strain # in tension (Fig. 9.2c) is the
equivalent plastic strain.

(b) Necking
One limitation of a tension test is that the range of uniform strain is limited by the formation
of a neck. In Considere's construction [7] the true stress at the point of instability
corresponds to the maximum ordinate for a0 in Fig. 9.2a. This condition is expressed in

de
= 0

Substituting from eq(9.11) and differentiating the quotient leads to
da An

d "}d
da

(9.13a)

(9.13b)

Equation (9.13b) shows that the tangent to a curve with an ordinate of true stress intersects
the engineering strain axis at eB = - 1 (see Fig. 9.2a). Now, from eq(9.12a),

dg 1

We may convert the instability condition (9.13b) to true strain using

da _ &s
o da

de ds deo

Substituting eqs(9.13b,c) into eq(9.14a) gives

dff
de = a

(9.13c)

(9.14a)

(9.14b)

Equation (9.14b) shows that a subtangent value of unity appears on a true, total strain axis
in Fig. 9.2b, Note that if eq(9.12b) had been used for this derivation instead of eq(9.12a),
the instability condition in axes of true stress versus true plastic strain becomes

(9.14c)
(I -
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Here, the flow curve: <r= a(ep) commences at the yield stress Y, not at the origin (see Fig.
9,2c). Since there is no appreciable difference between eqs(9.14b,c), a unit subtangent is
again used to locate the point of instability in these axes.

Trae stress and true strain are adequate for describing the uniform state of plastic
deformation in a tensile testpiece up to the start of necking. However, the critical, uniaxial
strain is often less than 20%, even in ductile materials. Continued straining is complicated
by the non-uniform, triaxial stress state within the neck. Bridgeman [8] was the first to
analyse the triaxial state of stress in the neck. He examined the dependence of radial trT and
tangential ae stresses upon the applied axial stress &c Taking ar = % enables an equivalent
stress to be derived for the triaxial stress state shown in Fig. 9.3.

CL

Figure 9.3 Stress state for a tensile neck

According to the von Mises criterion (9.2a), yielding commences in proportion to the root-
mean-square of these stresses. From this, Bridgeman found the radial and axial stresses at
the narrowest section, of neck diameter 2a and radius of curvature is R (see Fig. 9.3):

ar =

a = O

= & In

1 + In

2aR -
2aR

a2 + 2aR - r2

2aR

(9.15a)

(9.15b)

where 0 s r s a is an intermediate radiius within this section and O is the true equivalent
stress in the neck. The distribution of aT and at is shown in Fig. 9.3 . The mean axial stress
or, in the neck must equilibrate the axial load W:

W = 'a = 2n
m

r
Jo

dr
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Substituting from eq(9.15b) gives

7ta2a_ = 2s& \

1 +

a2 + 2aR - r'
2ar

a1 + 2al?)ln 1 +

2R

dr

— |[ln(a2 + 2aR) - In(2a

lnf

1

~\ to(l +X)

(9.16)

where X = af(2R). Bridgeman derived correction curves from eq(9.16) in which atro was
plottel against & lam for a given material (e.g. see Fig, 9.22, p. 307). Hence, if the smallest
neck diameter d=2a is measured during an incremental loading to W, beyond the point of
instability, the true equivalent stress for each load increment may be calculated.

The true strain can also be estimated from the neck diameter d using eq(9.12a) and the
constant volume condition zd^lg(4 = )td2l/4:

(9.17)

The broken lines in Figs 9.2b,c show how Bridgeman's necking-phase corrections extend
the true stress-strain curves.

9.3,2 Simple Compression

Larger strains can be achieved from compression tests on short cylinders (see Fig. 9.4a) but
unless the ends are well lubricated, a non-uniform deformation arises. Barrelling at the
testpiece centre (Fig. 9.4b) is caused by cones of undeformed material penetrating inwards
from each end, as shown.

/ / / / / S y //./S///S.SSS s /

s s s s ssssssss/f/s^r r / / /^
(a) (b) (c)

Figure 9.4 Uniform deformation, barrelling and bollarding under compression
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The end diameter, in contact with the platens, forms the base of each cone. It follows that
any transverse cross-section, cutting the cone, has an inner, elastic-core surrounded by an
elastic-plastic annulus. When the apex of each cone has not penetrated to half the depth,
there exists a fully-plastic central region at the barreFs maximum diameter. Within the
central region, the stress state is triaxial, being composed of equal radial and circumferential
stresses, in addition to the axial compession. It has been shown [9] that an effective stress O
may be related to the mean axial pressure p in the following form:

' • j 1 ^)' (918)j
where do and ho are the cylinder's original diameter and height respectively. Equation (9.1§)
shows that a uniaxial stress state p = ae is achieved from compression only when the friction
coefficient fi = 0.

(a) Lubrication
Two methods ensure good lubrication of a short cylinder during compression: (i) to entrap
molybdenum disulphide (MoSJ paste within concentric grooves machined into its ends and
(ii) to insert thin sheets of polytetraflouroethylene (ptfe) over the contact areas. The latter
is particularly suitable for eliminating barrelling. In fact, with a ptfe thickness of a 0.15 mm,
the reverse behaviour of central waisting or "bollarding' (see Fig, 9.4c) can occur [10]. This
behaviour may be minimised with the use of an optimum ptfe thickness, between 0.05 and
0.15 mm, depending upon testpiece size. To attain large strains in the central region, the
method is best employed with fresh sheets applied to the ends in a repeated loading-
unloading test.

(b) True stress and strain
For a homogoneous compression (Fig. 9.4a), the true strain may be calculated from either
expression in eq(9.17), depending upon whether the current height h or diameter d of the
cylinder is measured. A minus sign is normally avoided by inverting the height ratio to give
the natural compressive strain e, as

(9.19a)

where hB > h. Similarly, the engineering strain is defined positive:

Percentage deformation is another measure of compressive strain. It is derived from
eq(9.19b) ax %D = 100«D. Combining eqs(9.19a and b) leads to

(9.20)

Correspondingly, the true compressive stress is positive when eq(9.11) is written as

a = iM(i - ej (9.21)

where \W\ is the magnitude of an increasing compressive force. From eqs(9.20) and (9,21),
the plastic component of strain is positive when:
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= S -

= In

a
~E

(9.22a)

A £

Equations (9.21) and (9.22a) allow a trae stress versus natural plastic strain curve to be
derived from a monotonic loading in compression, when h and W are the measured
quantities. Given Ao and ho are constants, Young's modulus E is derived from the elastic
region as: E = aJeB = \W\hJ [AB ( hB - ft}]. An alternative to eq(9.22a) applies when the
elastic strain is allowed to recover with an unloading from compression. The natural plastic
strain is simply ( h \

*'-b[f} ( 9-2 2 b>
where hp is the permanently deformed height.

9.4 Torsion Teste

9.4,1 Thin-Walled Tubes

Torsion teste are conducted on thin-walled cylindrical tubes when it is required to minimise
the wall shear stress gradient. The theory of torsion [11] gives the mean shear stress as

Trm
T = — - (9.23a)

where rm = W(rf, + / Q is the mean wall radius, shown in Fig. 9.5, and / is the polar second
moment of area;

Figure 9.5 Thin-walled tube under torsion
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Alternatively, where the wall thickness t = V!(<2S - d,)- >s small compared to the mean
diameter dm = 2rm, the Bredt-Batho theory of torsion [11] gives the mean shear stress as

r = 2 At
(9.23b)

where A = wrj is the area enclosed by the mean wall circle. The engineering shear strain
is also referred to the mean radius as

y =s
i

(9.24a)

where 8 is the angular twist (in radians) over a fixed length I. The plastic component of
shear strain is

(9.24b)Y
p = y- yE = y- ~

i

Unlike a tension, the torsion of isotropic tube does not alter its length or cross-section and
so a conversion to true stress and strain does not arise. However, large angular twist requires
that shear strain be calculated from eq(1.4): y= tan#, where $= rm0fl, since the small-strain
approximation: y ~ $> becomes invalid. If this simple shearing occurs in the 12 plane we
may identify non-zero components, t = % and y* = s^ + s2l

p = 2su
F, within eqs(9.2c) and

(9.6c). This leads to an equivalent stress and equivalent plastic strain for torsion

O = </3r and s = -*—
^3

(9.25a,b)

9.4.2 Solid Bar

Thin-walled tubes are prone to torsional budding well before fracture, so limiting the range
of shear strain. It is possible to achieve far greater strain from a torsion test on a solid
cylindrical bar of hardening material. Nadai's account [12] of the shear stress gradient
enables the stress-strain curve for the outer diameter (i,e. ro versus ya) to be derived from
the torque-unit twist curve (T versus Oil) in Fig. 9.6.

c a-en
Fijpire 9.6 Nadai's construction

A solid bar, with outer radius rB, is in equilibrium with the applied torque T, when

T = 2x\ r° r r 2 d r (9.26a)
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Substituting y = rce for a = 0/1 = constant, into (9.26a) gives,

2dy (9.26b)

where the function r = r (y) applies at radius r. Differentiating eq(9.26b) with respect to yo,

Since f0 = rBm, it follows that

giving
T =

d/ I
a —

dm)
(9.27a)

The geometrical interpretation of eq(9.27a), is given by the Nadai construction in Fig. 9.6,
in which

r = — — {3 AC + AB) (9.27b)
2?rro

3

Nadai's method will establish hardening behaviour at the outer diameter. This takes the
form of an equivalent stress versus equivalent plastic strain plot when we convert % and y0

to & and e from eqs(9.25a,b). For example, assume that the torque-unit twist diagram for
a solid bar can be expressed in the form T= Ba+A«". The linear term represents the elastic
line. With n < 1, the parabolic term dominates in the plastic range.

The slope to the T versus m curve is: dT/dee = B + nAte""'. Substituting into eq(9.27a)
gives

— [3(5*
l

m{B
litrl

— [A«"(3 + n) + ABm]
2xrl

The corresponding shear stress-strain relationship for the outer radius r0 is found from
setting a = yjr0:

2B
Yo + (3 + n)\

4B I r

4B

where J = 7O-*/2, Finally, the equivalent stress versus equivalent plastic strain relationship
~pis found from setting & = J3 ro and e = y0 - rj (v'3G).
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9.5 Uniaxial and Torsional Equivalence

The equivalent stress and plastic strain, defined in Sections 9.3 and 9.4, are employed for
correlating the hardening behaviour of an isotropic material under various stress states. For
example, with perfect lubrication of an isotropic material, the equivalent stress-strain curve
(& versus J de ) for compression would expect to coincide with those for tension and
torsion. Later, we shall examine explicit forms of the strain and work hardening functions:

-*(/*•') =

9.5.1 Tension and Compression of Carbon Steel

Consider, firstly, second invariant (von Mises) correlations between tension and compression
test data. Figure 9.7 applies to solid circular cylinders of 0.17% carbon steel with a common
diameter of 9.75 mm.

400

200

• Solid tension
A Solid compression (MoSJ
A Solid compression (ptfe)

u 0.1 0.2 0 J OA 0.5 0.6 0.7

Figure 9.7 Steel flow curves from tension and compression tests on solid bars

Following the application of eqs(9.11), (9.12b), (9.21) and (9.22b) to convert nominal to
true stress-strain data, two obvious points arise from Fig. 9.7. Firstly, the tension test upon
a solid testpiece is limited to a maximum logarithmic strain, £F - 5%, by the formation of
a neck. Secondly, large compressive strains appear to show an irregular dependence upon
stress. Normally a smooth, convex curve is observed for a hardening material. MoS2 was
used for a lubricant in producing the upper curve. For the lower curve, the testpiece was
compressed between ptfe sheets to improve lubrication. Both compression tests were
repeatedly interrupted by unloading to allow permanent heights to be measured and re-
lubrication of the platens. Despite the precations taken, the compressive data for solid
cylinders is unlikely to be purely uniaxial.

9.5.2 Tension and Torsion

(a.) Mild steel
Figure 9.8 shows that an equivalence correlation can be found between torsion and tension
up to the point of necking. The data applies to identical, tubular mild steel (En3B)
testpieces: 16.5 mm outer diameter and 12.5 mm inner diameter.
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600

400

300

o Hollow tension

D Hollow torsion

0.01 0,02 0.03 0.04

Figure 9 Jt Equivalence between tension and tension for En3B iteel

0.0S

The mean wall fonnulae (9.23a) and (9,24a,b) were applied to the torsion testpiece for rm

= 7.25 mm, where the angular twist £?was measured on a I = 50 mm gauge length. A similar
gauge length was employed for the attatchment of the tensile extensometer. The elastic
moduli in tension and torsion were E = 207 GPa and G = 81.6 GPa respectively. The curves
are geometrically similar, showing a diminishing rate of hardening d 07 d e with increasing
strain. The equivalent strain of 23% was achieved from torsion before the testpiece
succumbed to buckling, as shown in Fig. 9.9a.

(a)

(b)

Figure 9.9 Eractme of En3B u n t o torsion and tension

The critical buckling strain greately exceeds the scale of Fig. 9.8, this being chosen to
accommodate the 5% tensile instability strain. Tensile necking is apparent in Fig. 9.9b,
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though this would be more pronounced in a solid testpiece. Triaxiality of stress exists in the
tube wall but not at its two free surfaces. Consequently, the stress gradients are far less
severe than in a solid section.

(b) Black Mild Steel
A further equivalence correlation between tension and torsion of black mild steel is given
in Fig. 9.10. The range of strain has been extended by the respective Bridgeman and Nadai
methods.

8oo r

200

Solid tension

• Solid torsion

a Hollow torsion

sp

0.2 0.4 0.6

Figure 9.10 Equivalence between tension and torsion for black mild steel

Equations (9.16) and (9.27a) were applied to solid testpiece dimensions: do = 12.7 mm for
tension and ra = 12 mm, I = 76.2 mm for torsion. It is seen that BridgemanV method results
in a considerable extension to the tensile strain. In fact, Bridgeman's equivalent strain
accommodates tensile instability and is comparable with that found from Nadai's torsion, i.e.
lying in a range of e from 60 to 70%. An additional torsion test was conducted on a thin-
walled cylinder with rm = 10.8 mm and t = 2.56 mm. Having applied eqs(9.25a,b), the plot
of & versus d e reveals that the maximum e is curtailed to 25% by the onset of torsional
instability. This is consistent with the maximum strain found for the En3B tube in Fig. 9.9.
There is reasonable correlation between the three curves though the tensile curve lies
consistently above those of torsion over the full range of e .

(c) Pure Aluminium
For a von Mises material, it is expected that second invariant equivalence definitions will
correlate hardening behaviour under all stress states, i.e they result in a single curve of ff
versus J d e . I n practice, data points from different tests may lie within a narrow scatter
band in & versus s axes. This suggests that the equivalence may also depend upon the
third invariants of stress and plastic strain. For example, Fig. 9.1 la shows that eqs(9.25a,b)
do not provide an equivalence between tension and torsion for annealed, El A aluminium
cylinders of 99.8% commercial purity. Figure 9.1 lb shows an improved correlation where
stress equivalence is based upon eq(9.4c). Here c = TA. lies at the lower limit of convexity
(214 s c s 3%), for a Drucker yield surface. Since this material does not show a well-
defined yield point c is calculated from applying eq(9.4c) to tensile and torsional yield
stresses (Y and it) at equivalent von Mises offset strains.
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0.02 O.(M 0.06 0,08 0 (MB 0.04

Figure 9.11 Equivalence between tension and torsion for B1A aluminium

0.08

In Fig, 9.11c the strain equivalence is altered corresponding to eq{9.7c). The chain line
shows no better affinity wititi tension and demonstrates that it may not be necessary to change
both definitions if and e . It is possible that the curves can be made to coincide for another
c value, found by trial. In the absence of a sharp yield point, it is far more convenient to
employ a Mises equivalent offset strain to give the & required.

9.6 Modified Compression Tests

9.6.1 Cook and Larke

Longer cylinders under uniaxial compression are more likely to buckle than to barrel. In
order to avoid bucking, Cooke and Larke [13] proposed a method of extrapolating to the true
stress in a cylinder of infinite length. Their method required the compression of cylinders
with equal initial diameters d0 but with initial heights hg varying within the chosen ratios

0.2 0.3 04

Figure 9.12 Extrapolation to infinite length in compression
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The stress ff was extrapolated to djho = 0 for equal percentage reductions to each cylinder.
Watte and Ford [14] modified this test with an extrapolation that gave s for dJhB - 0 from
applying a series of equal loads to cylinders with these ratios (see Fig. 9.12). This requires
the determination of plastic strain in permanent height reductions, following unloading from
increasing load levels to each cylinder. The true stress and strain are calculated from
eqs(9.21) and (9.22b). The plastic strain that would arise from applying these loads to an
infinitely long cylinder, i.e. djha = 0, follows from the extrapolation.

Figure 9.12 applies this method to 99.9% pure, annealed copper (B.S. 2870, C101).
Testpieces were compressed in a sub-press between the platens of a 500 kN test machine.
Watts and Ford's convenient experimental modification enables height reductions to be
measured precisely and allows re-lubrication between loads. The results from this test also
reveal the effect of dlh on the flow curve, as shown in Fig. 9.13.

300

&, MPa

400

300

200

too

Symbol

« 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 9.13 Effect of length on eompressive flow

The true, lower limiting, flow curve applies to a cylinder of infinite height. As the cylinder
height is reduced, so the flow behaviour diverges from the true eompressive behaviour. For
this reason, eompressive curves in Fig. 9.8 would be expected to lie above those from
tension. In Fig. 9.13, points ( O, e ) under constant load, lie on the straight lines shown.
It follows from eq(9.21) that the equation of each line is given by

where Aa is the section's original area. Since W is constant, each line connects a common
point of unity on the plastic strain axis to the ordinate 0= WfAa. In the following section the
extrapolated curve for djho = 0 (see Fig. 9.13) will be compared to the flow curve obtained
from a plane-strain compression test on this material.

9.6.2 Plane-Strain Compression

In the plane-strain compresion test (see Fig. 6.38), strain in the direction of the width w is
prevented by the unstressed material to either side of the die. When the die faces are
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polished and lubricated, Fig. 6.50 shows that the following conditions avoid a widely
fluctuating die pressure to give a repeatable flow behaviour [15]:

2 s - s 4 and 5 & — s 12 (9.28a,b)
t b

The force F may be applied in increments to produce thickness reductions between 1 and
2% though they may be as large as 10 -15%. A die change to smaller breadth b will avoid
violating eqs(9.28a,b), following large amounts of deformation. The variables to be
measured are simply the current thickness t, corresponding to an unloading from a given F.

(a) Theory
Equivalent stress and strain expressions follow from the Levy-Mises flow rule, i.e. by setting
/ = / j ' in eq(3.22). For a point beneath the die, this rule gives the principal, plastic strain
increments for the thickness, length and width directions respectively;

dex
r = % d i [0i - Mok + e%)] (9.29a)

d e / = % d i [<% - ^{oi + <%)] (9.29b)

de3
 F = % d i [ oj - W. 0X + 00] (9.29c)

The co-ordinates are shown in Fig. 6.38. Now, d e / = 0 for plane strain and, with no
longitudinal constraint, al = Q. Equation (9.29c) then gives <̂  = ¥tc{, where the compressive
stress is 0i = - F/(bw). Substituting into eq(9.2d) gives the equivalent stress:

2 l

Similar substitutions into eqs(9.29a,b) result in principal, plastic strain increments:

d£ , ' = ¥i &Aat and def = - Vi dAat (9.31a,b)

Substituting eqs(9.31a,b) into eq(9.6e) gives the equivalent plastic strain increment:

and integrating for the total plastic strain gives
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The minus signs in eqs(9.30b) and (9.32b) are often ignored in the plot of 9 versus s .
This is consistent with taking a negative square root in the & and s expressions.

(b) Test Results
A plane-strain compression test was conducted on annealed, pure copper plate of initial
dimensions w = 50 mm and tB = 3.65 mm. Die breadths b = 6.37,4.12 and 3.19 mm were
selected to ensure bh < 4, throughout deformation to a final, 84% reduction in thickness.
Loads were applied wim MoS2 lubricant applied to each die face. To prevent misalignment,
the dies were guided vertically in a jig. The deformed thickness t was measured following
unloading from each of 26 rising loads betwen 10 fcN and 99.75 kN. The equivalent flow
curve, as derived from eqs(9.30b) and (9.32b), is shown in Fig. 9.14.

600

400

200
• , A Cooke and Larke
x Plane strain compression

I

0.5 1.0 1.5 2.0

Figure 9.14 Qsnpressive flow under plane strain and from extrapolation

9.6.3 Equivalence in Compression Tests

It is seen that very large equivalent plastic strains, approaching 200%, can be achieved from
the plane-strain compression test. Figure 9.14 shows that this magnitude of strain is far more
than can be achieved from the maximum extrapolated strain ™ 60%, obtained from the Cooke
and Larke method. It is seen that within a comparable range of strain, the flow behaviour
for annealed copper, derived by these two methods, is almost coincident.

Results from the two Cooke and Larke experiments in Fig. 9.14 were obtained from
different test machines and, expeetedly, this has not altered the material's flow behaviour.
The flow behaviour of copper is, however, very sensitive to its initial condition. In the
absence of annealing an as-received copper, Fig. 9.15 shows that the flow stresses are higher
while the rate of hardening is initially lower. Beyond 30% strain, all flow curves begin to
converge as each structure attains a comparable amount of slip and twinning. Figure 9.15
further shows that there is reasonable consistency in plane strain and direct compression
when the as-received copper is lubricated with MoSj and ptfe. Plane strain provides a
smooth curve over a wider strain range.
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200

100

Annealed:
• , x CookeandLarke

As-received:
• Plane strain compression
o MoS2 lubricant
• , A ptfe lubricant

i"

0.2 0.4 0.6 0.8

Figure 9.15 Superimposed compresslve flow curves for copper

9.1 Bulge Test

Large plastic strains can be achieved from a balanced biaxial tension. In practice, this
condition prevails in a bulge test, where pressure is applied to the underside of a thin circular
plate that is clamped around its periphery. The flow behaviour is calculated from the current
pole thickness t and deflection h at the centre of the bulge, where the pole radius R, is as
shown in Fig. 9.16.

Figure 9,lfi Geometry of Use bulge test
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9,7.1 Theory

Provided the plate is thin, compared to its diameter D, giving Dft > 100, the stresses due to
bending and shear force may be ignored. Neglecting also the radial stress 0r, this leaves
only the membrane pressure stresses ae and o$. At the pole P, the meridional stress o$ is
found from a consideration of force equilibrium vertical to the y-plane. This gives

2nRta^=pmR% =#• a^=pR/2t (9.33a)

Similarly, for a second section, perpendicular to this ag=pRfM, showing that an equi-biaxial
stress state cre = 0$ exists everywhere. Substituting eq(9,33a) into eq(9.2d), with 0r = 0,
leads to an equivalent stress

Or2 =

- E l (933b)

It

where R and t are current pole values. The Levy-Mises flow rule d^* = dAffy, gives the
three plastic strain increments as

dsf = % AA [ffe - ^(cr# + 0r)] = % d i og (9.34a)

de/ = % d i [0+ - ¥i(o9+ aT)\ - % d i ae (9.34b)

dsf = % d i [0T - to(0g+ ff#)] = - ¥a d i crs (9.34c)

and from eqs(9.34a-c):

d « / = d e / and d s r
p = - 2 d g / (9.35a»b)

which is readily confirmed from the constant volume condition d%p = 0. Substituting
eqs(9.35a,b) into eq(9.6e) gives the equivalent plastic strain increment

' (9.36a)

By definition, the radial strain is

« ' = f 4£ = h f i-1 a _ to \!l\ (9,36b)

where ta is the initial sheet thickness. From eqs(9.36a,b),

sp = - in -2- (9.36e)

1 t I
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The negative sign may be omitted when the negative root of eq(9.36a) is taken. It follows
from eqs(9.33b) and (9.36c) that to construct the plot between & and d e , the instantaneous
values of the variables p, R and t are required. The radius R is calculated from the geometry
in Fig. 9.16: , 2

R2 = r2 + (R - df =* R = K ' (9.37a)
2d

In early bulge tests [16,17], r and d in eq(9.37a) were determined from dimensional changes
to concentric circles scribed on the undeformed plate. The pole radius R was found by
graphical extrapolation to r m 0. Equation (9.35b) shows that dt/t = - 2dr/r so that thickness
could also be calculated from this extrapolation:

tr dr _ I f* d*
Jr, r 2 i*. t

JL\ = i m Mil (9.37b)

The left-hand side of eq(9.37b) becomes the hoop strain when extrapolated to r = 0.

9.7.2 Instrumented Test

In an instrumented bulge test [18], tranducers are incorporated within a spherometer to
measure t at the pole and h above a horizontal plane of diameter D (Fig. 9.16). In addition
to a pressure transducer, a flowmeter, placed within the pressure line, provides the volume
of pressurising fluid beneath the dome. This volume can be expressed in terms of the
spherical dome radius R. Revolving the elemental strip in Fig. 9.16 about the x - axis gives
SV= my%dx. Substituting y1 = R1 ~ x2 and integrating between limits of x gives

V = xf" (R2 - x2)dx = x
$~k . j fra _ ^

^ _ £_
3 |«

„ A\ . V ft O-38a)

3J ffft2 3

Equating (9.38a) to (9.37a), with r = Z3/2 and d = h, leads to

V +h _ [(DI2f + h2]
nh2 3 2h

Equation (9.38b) gives h as one root to the cubic equation:

A3 + -Dh - — = 0 (9.38c)
4 n

Equation (9.38c) shows that it is possible theoretically to dispense with h measurement but
this is not advisable when deviations from a spherical dome occur, particularly in the region
of the clamped rim. Such deviation leads to greater error in the calculation of h than of R.
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This is particularly true for bulging orthotropic sheet metals when eqs(9.33b) and (9.36a)
appear with a multiplicaiian factor:

& = K0f and deF=der
pIK

where K depends upon the anisotropy coefficients r, and ra for the sheet (refer to p. 342):

K= {3(r, + rj/[l in + r, r2 + r,) ] }K

9.7.3 Equivalence with Torsion

In Fig. 9.17 a comparison is made between equivalent flow curves for a bulge test and a
tubular torsion test for annealed brass of B.S. 2874 composition (40% Zn, 57% Cu, 3% Pb).

500

a, MPa

400

300

200

O Torsion Test

x Bulge Test

iP

0.1 0.2 03

Figure 9.17 Equivalence between biaxial tension and torsion for brass

0.4

The figure shows the two curves to be in reasonable agreement over a similar range of strain.
The material hardens rapidly initially before falling to attain a steady rate at higher strain.

The dimensions chosen for the instrumented bulge test were to = 0.39 mm, D = 100 mm
and d = 25.4 mm. The tubular torsion test was conducted for similar conditions to liiose in
Fig. 9.8 (i.e. with d, = 12.5 mm, d0 = 16.5mm and I = 50mm). Within the elastic region a
shear modulus G = 39 GPa, was calculated from the torque and twist measurements made.
The elasticity modulus, E = 102 GPa, was calculated from E - 2G (1 + v), assuming
Poisson's ratio v= %. Under monotonic loading, E and G are used to subtract the elastic
components of strain from the total strain. In torsion, eq(9.25b) is applied to give the
equivalent plastic strain. The strain at the point of tarsional failure was e - 20%,
corresponding to 140° twist. Note that this strain is consistent with a tensile elongation of
20 - 30% for this material. The equivalent plastic strain in a continuous bulge test modifies
eq(9.36c) to

-pe = - In
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where & is defined in eq(9.33b). Equation (9.36c) applies when t is measured following a
pressure release from the plastic range. Here, however, t is measured under an increasing
pressure, and so elastic strain is subtracted. The application of eq(9.36c) to find e would
involve negligible error due to elastic strain. The advantage of the bulge test is that a greater
fracture strain is reached compared to torsion. In Fig. 9.17, the bulge would extend the
strain to 64% at the pole before bursting. The state of deformation just prior to failure is
shown in Fig. 9.18.

Figure 9.18 Deformation under equi-biaxial tension

9.8 Equations to the Flow Curve

Most empirical representations [9,19] of the uniaxial flow curve obey the strain hardening
function: a= H (J d ^ ) . The corresponding non-dimensional forms of the more commonly
used functions H are shown in Figs 9.19a-f. Here a0 is the yield stress and e0 is a constant.

a Slope = 1

e
(a) (b)

Figure 9.19 Empirical repraenations of flow curvei
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B = l

(c) (d)

2 • •

Slope

(e) 4̂  (0

Figure 9.19 Empirical lepreientatioas of flow curves (continued)

The simplest and most popular function is the Hollomon power law (see Fig. 9.19a):

a = As' or a
a

e
e

(9.39a,b)

where A (= &j£") is a strength coefficient and n is a strain hardening exponent, which lies
in the range 0.1 s n s 0.55 for metals. Because eqs(9.39a,b) pass through the origin, they
strictly should not be applied to a curve with an intercept on the stress axis. When die
abscissa is plastic strain ep, this intercept becomes the yield stress. Consequently, when
eqs(9.39a,b) are to represent a flow curve a= H {/ d ^ ) , the greatest deviation will arise for
low total strains s' < 0.2%. For s> 5%, the error becomes negligible and many have then
associated e in eqs{9.39a,b) with eF.

9.S.2 Ramberg-Osgood [21]

This well-known equation describes totol strain from the addition of elastic strain to eq(9.39a).
It is usually written in the following form:

(9.40)
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where E is Young's modulus and Eo and m are constants. As with all continuous functions H,
eq(9.40) is unable to represent discontinuous flow curves, e.g. the upper and lower yield
points in low carbon steel.

9.8.3 Prager [22]

Prager's hyperbolic flow curve is shown in Pig. 9.19b. The original expressions

a = Ftanh(£e/F) or alao = tanh{e/#0) (9,41a,b)

describe a curve originating from the origin, with slope E, that rapidly approaches an
asymptote a= o0. As with eqs(9.39a,b), no yield point is identified. Where a hyperbolic
expression is required to give a= aB for £? = 0, we may modify eqs(9.41a,b) to become

a = Y + JTtanh{££/F) or aferg = 1 + Ktmh[e/so) (9.42a»b)

where, as shown in Fig. 9.19c, K may be varied to give the asymptote desired.

9.8.4 Luihvikf23J \

The simplest modification to eqs(9.39a,b), which give a= aa (or a= Y) for d" = 0, lead to
Ludwik's power law (see Fig, 9.19d):

or (9.43a,b)

ID"4 10-11 10-* 10-'

Figure 940 Application of the Ludwick law

Key: O, A steels; D,O, A, • Al -alloys; x brass; • Ti-alloy, D Mg-alloy (Points separated for clarity)
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Equations (9.43a,b) display parabolic strain hardening in which ff> Y for n <1, Here A and n
are empirical constants, similar to those in Hollomon's law. It will be shown in Chapter 10
that eq(9.43a) is particularly useful to the theory of plasticity, allowing incremental strain
expressions to be integrated for the majority of loading paths. In particular, when n = %,
closed solutions apply. Ludwick's logarithmic plot (see Fig. 9.20) identifies « and A in
eq(9.43a) with the slope and intercept respectively of the resulting straight line. Figure 9.20
shows that the flow behaviour of many engineering alloys in tension and torsion conforms
to eq(9.43a) for plastic strains up to 10% [24]. Some initial deviation is found with the
indicated constants because of a large increase in the rate of hardening dafdep as ep -*• 0.
When ep = 0, eq(9.43a) gives deeds'* = °°, in contrast to finite rates observed. Revised
constants A and n can improve accuracy for their application to a small strain range.

9.8.5 Swift [25]

Swift's power function, illustrated in Fig. 9,19e, represents hardening within three constants;

I (9.44a,b)a = K{A + ep)n or — = | 1 + — I
ff

0 I Bo )
In eq(9.44a), constants A, K and n bear a relationship to the yield stress: F = KA". The finite
hardening rate do/dep = nKA"-1 for ep = 0 is preferable to the infinite rate given by
eq(9.43a). However, to separate the constants, one further point is required either, within
a mid-range of strain (co-ordinates a, ep), or at the negative sixain intercept (0, -e0).
Alternatively, the normalised eq(9.44b) gives, daB = 1 and ep = 0 with d(o/ffo)/d(ff/«'o) = n,
this allowing n to be separated from ea. For example, half-hard aluminium has been
represented [9] with the following form of eq(9.44b):

al 105 = (1 + ^ / 0.222) o a

with am MPa over a plastic strain range 0 & ep & 0.4. If we choose the point of instability
in a tension test and apply eq(9.14e) to eq(9.44b), the true ultimate stress and plastic strain
ffs and ep are related to « and sa in the following ways:

The binomial expansion approximations to eq(9.44b) are sometimes useful. These apply to

^ (n- 1 ( « - 2 ) —

and to ep/en> 1:
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9.8.6" Voee/26/

Finally, Voci's exponential law (see Fig. 9.19f) can be adapted as a strain hardening
function

( a \ - —
a = A + (F - A) e " B e P or — = — - — - 1 I e E° (9.45a,b)I J

Equation (9,45a) is consistent with o= Y for ep = 0, where there is a finite hardening rate
do/dd"=B(Y- A). Constant A is determined from matching eq(9.45a) to a stress chosen at
large strain. In eq(9.45b), the initial hardening rate is

= — - 1

Should we match the curve to the ultimate strength point (ou, ef), eqs(9.14c) and (9.45b)
may be combined. This provides the following relationships between ff_ and sQ at the point
of tensile instability;

O & \ U Q / & Q \i* *'****J

*: , _ . .„

e. a e_o

The non-dimensional eqs(9.39b - 9.45b) provide a more rational mathematical basis of
hardening function. In these, a0 is the yield stress, n,so,K and er_ are material constants.
The graphically summary in Fig. 9.19a - f gives the initial rate of hardening and shows trends
appropriate to the choice of n, K and ojaa. Of the various functions mentioned here, the
Hollomon. Ludwik and Swift forms are most often used in plasticity theory.

9.9 Strain and Work Hardening Hypotheses

In the rule of isotropic hardening, the flow potential/appears as a scalar function of the
stress deviator invariants;

(9-46)

where ^ i s an increasing function of a suitable scalar measure j^of hardening. We have
shown previously how to derive O for a Drucker function / (/2', /3') in eq(9.4b). The
corresponding definition of d e will depend upon me hardening hypothesis used, e.g. strain
hardening is given in eqs|9.7a-c). Using the work hypothesis ensures that the flow rule and
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equivalence relationships are associated with the same yield fiinction but it is more difficult
to derive an equivalent plastic strain [3]. However, it is simplified given the yield function
in a reduced stress space. Take, for example, the Drucker yield function/= J 'a

3 - cJ '3
2, for

torsion. The equivalent flow stress follows from eq(9.4e) when 0 replaces F:

a = [(l/3)3-4c/93]

Applying the work hypothesis:

1/6

U 3 93

which differs from d e = d ĵ */(27 - 4c)1* by strain hardening (see p. 274). Consequently,
the flow curves correlate differently between the two hypotheses, as illustrated for tension
and torsion in Fig. 9.1 lc. Recall that the chain line H is found from the strain hardening
hypothesis with O and i derived from similar functions in the stress and strain invariants.
The broken line F applies to the new position of the equivalent torsional flow curve when i
is defined by the work hypothesis. The latter provides a better correlation with tension for
the same constant c in the yield function. We may regard the deviation between F and H
being due to the influence of J3' within the chosen hardening hypothesis. Only when J3' is
absent in the yield fiinction are the two hardening hypotheses indistinguishable.

9.9. J Strain Hardening

Let/in eq(9,46), be equated to the second invariant of deviatoric stress

and d^, be the increment in the second invariant of plastic strain

These give one form of eq(9.46) as
/ 2 ) (9.47a)

Moreover, with /2* = % (fl)2 and df2 = ¥* ( d i ' ) 2 , eq(9.47a) becomes

Equation (9.47b) shows that the current equivalent stress depends upon equivalent plastic
strain. For convenience, strain hardening is expressed directly as ifr= J d e . Taken again
with/= J2', eq(9.46) becomes
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from which a hypothesis of strain hardening [27] is normally written:

(9.48)
where, from eqs(9.2) and (9.6),

~ (9.49a)

(9.49b)

The numerical factors in eqs(9.49a,b) enable the correct reduction to a uniaxial stress state.
That is, e and 8 become the axial plastic strain and stress in a tension test. This test will
establish which of the empirical formulae, discussed in the previous section, is the most
suitable hardening function^ in eq(9.48). The function jfwhich connects alternative ffandd^
definitions, corresponding to/(J2", J3') in eq(9.46), may be also be appraised in this way.
These alternative definitions become necessary when ^/2 ', JJ) provides the required
equivalence between tests. For an isotropic material, & and de are derived from the
invariants of the tensors of deviatoric stress and incremental plastic strain. For example, in
the Brueker function eqs(9.4) and (9.7) apply to eq(9.48). Here, the current equivalent stress
becomes a function of the equivalent plastic strain. There in no further connection between O
and d e other than the similarity between the two invariants from which they derive.

9,9.2 Work Hardening

Equating ^ to the specific work of plastic deformation, WF/unit volume, gives

f = f dWp = f ^de? = f tr ( T d E p ) (9.50)

Taking eq(9.50) with a Mises potential/= /2' = O2/3, the hardening function in eq(9.46)
becomes

This hypothesis of work hardening [26] is normally given as

ff=F df (9.51a)

Equation (9.51a) shows that the current equivalent stress is a function of the specific work
of plastic deformation. The hardening function F may be established from a uniaxial test
where the argument J d Wp is the area beneath the stress versus plastic strain curve. To show
this, we can apply eq(9.50) to a uniaxial stress:

= J o-j def = J if de P (9.51b)

In general, the increment of plastic work dWp in eq(9.5 la) may be expressed in absolute
or deviatoric stress forms. For an absolute stress ais:
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3WP = aa & / = tr (T SE p) (9.52a)

Substituting eq{3.9a) into eq(9.52a) leads to the deviatoric form

= c$ & / = tr (T'M p) (9.52b)

= % ' & / + %'&?/ + % ' & / + 2(an & , / +

in which we have employed «?%** = tr (3 E') = 0 and #„' = tr T ' = 0. We may identity
eequivalent stress & and plastic strain increment d e from eq(9.5 lb), to give

3WP = O 6BP = 0lt8e* = a('Sstj (9.52c)

From eqs(9.49a,b), equivalent matrix forms of eq(9.52c) are

L J L J (9.52d)
= tr(TfiEp) = tr(T'tfEp)

_ p

In the absence of a flow rule, the selection of 6e in eq(9.52c) can be arbitrary. While o
depends upon the chosen yield function, Se derives from a similar function in the plastic
strain invariants, as was shown for the strain hardening hypothesis. When the flow rule is
associated with the yield function, then 9 and 3s in eq(9.52c) are connected. For example,
with a von Mises yield function, a is defined from eq(9.49a). The associated flow rule is
dfiy

p = dAav'. Substituting these into eq(9.52c) gives

_ p

The fact mat de is identical to eq(9.49b) confirms that a Mises material is independent of
the hardening hypothesis. Thus, a plot of a versus J &ds Fwill not correlate flow curves any
better than a plot of O versus J de. However, equivalence plots for other materials obeying
J[J3\ J^) will depend upon the hardening hypothesis. Consequently, this yield function
provides a choice between an abscissa of equivalent plastic strain or specific plastic work.

9.9.5 Comparisons Between H and F

The respective strain and work hardening functions H and F, appearing in eqs(9.48) and
(9.5 la), are found by changing the absissae within the following standard tests (H to the left,
F to the right).
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(a) Tension

O versus \(Mll-dOlE) & versus \a{dlll-d&IE)

O versus J All I - DIE 0 versus J &dlll- 8zt(2E) (9.53a,b)

(b) Uniaxial Compression

A similar expression applies to simple compression with lubrication, say with ptfe sheet,
under continuous loading.

& versus Jdft/ft- »/£ & versus J ffdh/h- &i/(2E) (9.54a,b)

(c) Torsion

</3r versus Jdy'WS V3r versus J (^3 fyd^

versus J (rd&/l - d r / G ) V3r versus J r ( rd#/1 - dr/G)

versus \rddll- xlG V3r versus J r(r dfl/ i) - r2/(2G) (9.55a,b)

(d) Bulge Test (Equi-Biaxial Tension)

O versus (de* - d£r
e} o- versus J &(der' - d<) (9.56a,b)

where, in eqs(9.56a,b), the total and elastic radial strain increments are

ds; = dt/t and dsr
e = - (v/E)(dae+dtr^ = - 2(vm)d& (9.56c,d)

Substituting eqs(9.56c,d) into eqs(9.56a,b) leads to

& versus J (dtit + 2vd&/E) O versus l&idtlt +2vdOlE)

O versus idtlt + lv&lE 0 versus | &dt/t+ va2tE (9.56e,f)

Note, that dl, dh, d^and df in eqs(9.53) to (9.56), denote the total dimensional changes
arising from elastic plus plastic strain. In interrupted tests, plastic lengths I, h and t, are
measured under no-load conditions. The fest integral term men defines plastic stain and
plastic work directly, a technique next followed in modifying compression tests.

(e) Cook and Larke

Under no-load measurements of the cylinder height, the equivalence plots are simplified to:

O versus Jdft/fe O versus J &dhfh (9.57a,b)

(f) Plane Strain Compression

For no-load, permanent thickness measurements, the equivalence relation is derived as
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O versus (2A/3) J Oitlt (9.58a,b)

The calculation of the equivalent stress & within eqs (9.57) and (9.58) has been given with
the separate description of each test in Section 9.6.

9.9.4 Relationships between F and H

The functions H and F are found from the above plots empirically. Alternatively, F can be
derived from a particular strain hardening function H.

Cb)

W '- I Sie

Figure 9.21 Arguments for the hypotheses of strain and work hardening

For example, in Fig. 9.21a H is identifed with the Swift eq(9.44b). The argument of plastic
work in eq(9.53b) becomes

n + I
1 +

-pe
n + 1

Transposing for &, determines the function F as

0- = = a 1 , 1 + H

The explicit relationship between F and H is illustrated graphically in Fig. 9.21b.
On the other hand, with a function H, defined from Ludwik's eq(9.43b), the argument

of plastic work becomes
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/ ;
1 +

_ p

= a s
1 +

- p
e

n + 1

i -p

- pe
- 1 1 +

n + 1

We then see that H does not supply a closed solution for F. In Chapter 10 (see p. 314) F and
H will be used to define an isotropie hardening rule.

9.10 Concluding Remarks

Experiments with a von Mises material (i.e./= ]•£) cannot distinguish between the work and
strain hardening hypotheses. Here, the strain hardening hypothesis is preferred, for
simplicity, since it identifies directly with the common hardening expressions of Hollomon,
Swift, Ludwik etc. The choice between these expressions depends upon the material and
the range of strain. A number of standard tests are available to establish an appropriate
expression with the minimum of experimental error. For isotropie materials, obeying a more
general yield function/C/g', J3'), we have seen how it is possible to distinguish between the
two hardening hypotheses, resulting in different equivalent plastic strain expressions. While
d e from strain hardening may be defined arbitrarily, d i from work hardening is more
exacting as it must satisfy the incremental plastic work expression: OAe = o¥ d&> .
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Exercises

9.1 Confirm the stress and strain predictions, defining the point of tensile instability, as given by the
Swift eqs(9.44c,d).

9.2 Confirm the stress and strain predictions, defining the point of tensile instability, as given by the
Voci eqs(9.45c,d).

9.3 Examine whether it is possible to derive the function F in the work hardening hypothesis for the
flow curves described by Hollomon, modified Prager and Vocfi in Figs 9.19a, c and f respectively.

9A Is the strain hardening hypothesis, which defines e in eqs(9.7c), consistent with a meaningful
work increment expression? Examine this from a consideration of deformation under pure shear.

9.5 The following data applies to the hydrostatic bulging of 0.8 mm thick steel sheet through a circular
die 180 mm diameter:

p.bar 1.45 3.67 12.09 19.62 24.9 32.46 39.11
41.77 46.64 52.39 59.04 63.47 68.79 74.55 76.0

A, mm 0.15 3.00 8.85 12.9 16.35 20.55 24.6
25.95 28.95 32.55 36,9 40.65 46.05 53.7 58.35

t,mm 0.8 0.794 0.769 0.744 0.72 0.689 0.664
0.651 0.629 0.601 0.564 0.492 0.486 0.402 0.372

Construct the equivalent stress versus equivalent strain curve based upon the current pole heights and
thickness values given.

9.6 The following data applies to a plane strain compression test upon an annealed aluminium strip
with initial dimensions: breadth 50 mm and thickness 6 mm and a die of width 6 mm:

W.kN

At, mm

4.98
27.41

0.30
1.78

7.48
29.90

0.32
2.29

9.97
34.89

0.36
3.15

12.46
39.87

0.40
3.75

14.95
44.86

0.58
4.25

17.44
49.84

0.75
4.50

19.94
54.82

0.90
4.75

22.43
59.81

1.11
5.35

24.92
64.79

1.39
5.75

The thickness change At applies to an unloaded condition following the removal of each applied load
level W. Plot the equivalent stress versus equivalent plastic strain carve and determine whether a
Hollomon law can be applied to describe the curve.



 

306 BASIC ENGINEERING PLASTICITY

9.1 The following torque-twist data applies to a torsion test upon a solid bar of mild steel: diameter
20.27 mm and gauge length 203.2 mm. Use the Nadai analysis to obtain a true, equivalent stress
versus strain plot for the material.

J .Nrn

0°

28.25
237.4
288.2
373.0
542.5
649.9

0.2
2.0
17.5
55
200
540

45.21
260.0
291.1
382.0
553.9
678.2

0.4
2.2
20
60
220
600

75.73
274.7
295.0
401.3
582.1
689.5

0.6
2.4
22
70
250
660

96.08
282.6
301.8
418.2
587.8
700.8

0.8
2.6
25
80
270
720

118.7
276.9
310.8
435.2
594.5

1.0
2.8
30
90
300

144.7
282.6
327.8
439.1
605.8

1.2
3.0
35
100
330

168.0
282.6
340.22
4521
616.0

1.4
3.2
40
110
360

191.0
282.6
350.4
491.7
626.2

1.6
3.4
45
140
420

198.9
288.2
361.7
514.3
640.9

1.8
5.0
50
160
480

9M The following force-extension data applies to tensile loading upon a cylindrical bar of mild steel,
diameter 11.43 mm and gauge length 57.15 mm. Construct both the nominal and true stress-strain
curves for the material, superimposed upon the same axes.

W.kN

x, mm

9.47
40.87
51.43
58.81
62.7

0.0254
0.254
1.016
4.06
9.652

13.71
44.16
52.33
59.41
62.8

0.0508
0.305
1.27
4.57
10.16

17.54
45.85
53.33
60.01
62.8

0.0762
0.356
1.524
5.08
10.67

21.93
47.05
53.93
60.51
62.8

0.102
0.406
1.78
5.59
11.176

25.42
47,75
54.63
61.30
62.5

0.127
0.457
2.03
6.604
11.684

29.61
48.35
55.32
62.0
62.2

0.152
0.508
2.29
7.62
11.938

33.19
49.44
56.02
62.15
61.3

0.178
0.635
2.54
8.128
12.192

36.08
50.34
57.02
62.3
44.36

0.203
0.762
3.05
8.636
12.7

38.68
50.84
58.01
62.5

0.229
0.889
3.56
9.144

93 The following force-extension data applies to loading followed by unloading in a tension test upon
a cylindrical bar of mild steel: diameter 11.43 mm and gauge length 50.8 mm.

Loading:

W.fcN 2.59
22.53
44.46
51.73

5.78
26.62
45.45
52.03

7.88
30.60
46.15
52.23

9.77
33.89
47.45
52.53

11.86
36.78
49.64

13.95
39.08
50.04

16.05
40.77
50.64

18.04
42.26
51.04

20.23
43.46
51.44

jc,mm 0.0051 0.0102 0.0152 0.0203 0.0254 0.0305 0.0356 0.0406 0.0457
0.051 0.061 0.071 0.081 0.091 0.102 0.112 0.122 0.132
0.142 0.152 0.178 0.203 0.254 0.279 0.305 0.330 0.356
0.381 0.406 0.432 0.457

Unloading:

W.kN
x, mm

41.07
0.432

32.09
0.406

22.73
0.381

13.46
0.356

5.085
0.330

0
0.315
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Determine the initial modulus of elasticity for the material and the proof stress for offset engineering
strains of 0.1% and 0.5%. What does the modulus become when unloading from the plastic range?

9.10 The following data applies to a tensile test upon a. 12.7 mm diameter mild steel testpiece in which
the diameter of the neck was recorded through to fracture. Calculate and plot the true stress versus the
natural strain in the neck when based upon the Bridgeman correction curve given in Fig. 9.22.

W,kN 34.27
59.36
58.74
53.S5

37.83
59.54
58.3
53.13

44J
59.72
57.94
52.51

46.73
59.72
57.85
51.18

51,18
59.81
56.96
49.84

53.4
59.63

56.52
49.75

56.29
59.63
55.63
48.45

57.85
59.45
55.18
46.73

58.43
59.27
54.29
46.28

rf.mm 12.61 12.57 12.496 12.446 12,357 12.268 12.116 12.014 11.938
11.836 11.735 11.659 11.532 11.465 11.354 11.227 11.151 11.049
10.846 10.719 10.592 10.363 10.236 10.058 9.931 9.804 9.728
9.55 9.347 9.246 8.992 8.915 8.814 8.636 8.484 8,433

1.0

9

0.9

0.8

\

\
\

N

0.9 0.8 0.7 a 0.6 0.5 0.4

Figure 9.22

9.11 The following height reduction data applies to a Cooke and Larke compression test upon three
solid copper cylinders, each with a common diameter d, = 18 mm and initial heights ha of 9,18 and
36 mm respectively.

Ah, mm

Ah, mm

0.03
2.13
4.37

0.08
4.77
9.22

0.14
2.45
4.53

0.34
5.37
9.70

0.30
2.73
4.81

0.72
5.95
10.0

0.50
3.0
5.0

1.15
6.54
10.31

0.73
3.24
5.22

1.65
7.03
10.77

1.00
3.46
(forft0

2.20
7.53
(for h

1.26
3.75

, = 9 mm)

2.82
8.01

= 18 mm)

1.53
3.97

3.46
8.43

1.83
4.17

4.11
8.86
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mm 0.05
9.47
19.14

0.44
10.74
20 29

1.15
12.04
20.82

2.02
13.29
21.34

3.04
14.49
22.29

4.14
15.57
(for A

5.44
16.59

= 36 mm)

6.72
17.57

8.12
18.39

Given that me following loads apply to the M values in each cylinder, construct the true stress versus
natural strain curve for the material when based upon an extrapolation to a cylinder with djha = 0.

10
100
190

20
110
200

30
120
220

40
130
230

50
140
250

60
150
(for all h.

70
160

, values)

80
170

90
180

9.12 The following load versus extension data applies to a tensile test upon a ductile, thin sheet steel.
Testpieee dimensions were, width 9.75 ram, thickness 0.2 mm and gauge length 50 a m Derive the
true stress and natural plastic strain values and show that these conform to a Hollomon law a= Ae"
in which A = 540 and n = 0.17, Take E = l§0 GPa.

x, mm
W.fcN

x, mm
W.kN

0.2
0.499

2,0
0.636

0.4
0.527

2.4
0.648

0.6
0.545

2.8
0.660

0.8
0.564

3.2
0.676

1.0
0.581

3.6
0.687

1.2
0.598

4.0
0.696

1.4
0.606

4.4
0.701

1.6
0.618

4.8
0.715

1.8
0.625

5.2
0.713



 

CHAPTER 10

PLASTICITY WITH HARDENING

10.1 Introduction

When the initial yield stress of a hardening material is exceeded, a subsequent yield surface
is required to express the current flow stress for the strained material. This shows that it
becomes necessary to account for the effect of plastic strain on the yield surface. In this
chapter we restrict our attention to the account provided by the rules of isolropic and
kinematic hardening. Thus the initial yield surface may expand uniformly or translate rigidly
to contain the current stress point by each respective rule. It appears that subsequent yield
functions are mostly based upon Ifte initial von Mises and Tresca conditions for mathematical
simplicity. For example, when the Mises function/= J2', is employed within the simpler rule
of isotropic hardening it leads to the flow rale of Levy-Mises. Any number of flow rules
arise from applying each rule to alternative, initial yield functions. Important among these
are the influences of /3 ' and initial anisotropy on the subsequent yield surface. It will be
shown how alternative flow rules can be based upon: (i) an initial function/£J2', / s ' ) , (ii) the
orthotropic function, discussed in the following chapter, and (iii) Hencky's deformation
theory, extended to account for hardening.

It is also appropriate to examine the elements of the two rules with experimental data.
This is done to enable limitations of their usefulness to be stated. It will appear from this
that a more versatile model is one that combines the two models of hardening. This leads
to a combined hardening concept embracing sources of hardening from within lattice slip.

10.2 Conditions Associated with the Yield Surface

The fundamental laws of isothermal plasticity apply to its irreversibile behaviour. These
laws govern the shape of both initial and subsequent boundaries between the elastic and
plastic regions and provide the magnitude and path of plastic strain. Classical theories
express plasticity in the following manner and couple this with Hookean elasticity.

10.2.1 Loading Function

The subsequent yield surface is expressed as a loading Junction of stress otJ, plastic strain
sf and a hardening parameter %:

%F»Z) = 0 (10.1)

where it has been seen previously that % is either a function of plastic stain or work (see
eqs(9.46)). The total differential of/in eq(10.1) is
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( i a 2 a )

Where all changes occur in time dt, the rate form of eq(10.2a) becomes

dt

where desf and d% depend upon the direction of the incremental stress vector d£rfffrom a
point P on the surface/= 0. Three loading conditions arise, as shown in Fig. 10.1.

Neutral loading

-1

Loading
i w

Elastic region f

Figure 10.1 The three conditions of loading

They are loading, unloading and neutral loading. Bach condition is associated with the
change, or rate of change, to/produced by the corresponding stress change. Writing the
change to/as dfa, it follows from eqs(10.2a,b) that

d/o = ild*(.. and l£f = i l x £ ^ (10.3a,b)
' 3o-tf " dt 3fftf dt

For an elastic-plastic loading we have d/ff > 0 so that dej" > 0 and d%> 0. With an elastic
unloading from the plastic region dfa < 0 and d^/* = d j = 0. Neutral loading refers to a
change of stress state along the yield surface. This gives d/ff = 0 and def = dj = 0. Note
that a change to the elastic strain will result from each loading.

10.2.2 Flow Rule

Hill [1] and Dracker [2] were among the first to employ a plastic potential function for a
plastic loading condition. The potential describes a closed, convex surface in strain space
whose outward normal defines the direction of the plastic strain increment vector [3]. It is
convenient to let this surface lie in stress space, where it differs from the plastic potential in
elastic dimension only. It may then be taken mat the incremental vector of plastic loading
strain lies normal to the stress surface g(o0. This normality condition is expressed in

(10.4a)
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The elastic conversion between the strain and stress spaces identifies g(oj) with me yield
function/. The flow rule is then 'associated' with the yield function and eq( 10.4a) becomes

d&f = d i —*— (10.4b)

The positive scalar dJ. is defined from combining eqs(10.2a) and (10.4b) as

(10.5)

Explicit forms of d i follow from eq(10.5) when/is based upon the Mises yield function and
an isotropic hardening rule:

G (10.6)

where ^ = J d i i * o r iff = $dWp. It is then straightforward to derive d i from the
reduction of eqs (10.5) and (10.6) to simple tension. It will be seen that this allows ̂ t o be
identified with functions H and F from the strain and work hypotheses (see Section 10.6).

10.2.3 Drucker's Postulate

Consider a unit volume of material in elastic equilibrium under a stress state t?,* at point A
in Fig. 10.2a. Drucker [2] considered the net change to the elastic energy stored when some
external action, force moment, torque etc, applied a loading cycle. The sequence of loading
produces a new stress state ov at a point B on the yield surface, then pierces the surface with
an infinitesimal stress change derv before restoring it to o^. We may relate this loading
sequence to a cyclic response ABCA' within each stress-strain component plot (Fig. 10.2b).

O 0

C

FJ

/ ^

(a)

/// Elastic stain energy

Plastic work

Figure 10.2 Drueker's postulate
(b)

It can be seen from Fig. 10.2b, that the incremental plastic strain de/ under dav is solely
responsible for a permanent change to the stored energy. It was shown previously for a
similar cycle (Fig. 8.11) that elastic energy recovers, leaving the plastic work done as

dWp = (0V- av*)def + dailde/>0 (10.7)
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At its extemes ĉ * may either define an unstressed state or era* = <?$, The inequality (10.7)
applies to the loading condition in Fig. 10.1, When dwy corresponds to unloading or neutral
loading, then dWp = 0. Splitting eq(10.7), it follows that two conditions apply to loading:

de* > 0

^ > 0
or

or d &d eP a 0

(10.8a,b)

(10.8c,d)

Drueker's postulate also applies to any subsequent yield surface where av identifies a new
yield condition, e.g. point D instead of B in Fig. 10.2b. Thus when dav loads to point G, the
postulate will apply to the cycle EDGE'. The difference is that the initial store of
recoverable elastic energy at point E (small triangle) is accompanied by the irrecoverable
work of previous inelastic deformation (i.e. area OABCDEF).

It is convenient to visualise each loading condition (10.8b,d) with scalar products of
equivalent stress and equivalent plastic strain increment, O and de . With the von Mises
definition of O, the initial yield surface/appears as a circle of radius OT8 on the deviatoric
plane in Fig. 10.3a.

Figure 103 Drueker's postulate on deviatoric plane

Wilhin eq( 10.8b), &* and (& - &*) appear as respective vectors CA and AB on this plane.
Vector BC is the change to the initial yield stress do, this being accompanied by an
equivalent plastic strain increment d e . The latter may be scaled to stress vector BD on the
deviatoric plane. To do this the principal, incremental, deviatoric plastic strains are
converted to dimensions of deviatoric stress with the constant multiplier 2G [4]. Thus, the
magnitude | BD j becomes the sum of * stress components * IGdif, 2Gdi-[ p.

|BD| = 2 G / I / 2 ^ = 2G x -deP

2
(10.9a)

Equation (9.6e) and ds^ = ddjf have been used with a projection factor v*(3/2) from
orthogonal axes 1", 2' and 3'. Equation (10.9a) shows that |BD[ is proportional to d e and
extends the O vector O'B. The incremental stress and strain vectors form the scalar product:

BC • BD = |BC) |BD| cos# = 3G (& d e ) cos# (10.9b)
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sIt follows from eq(10.8d) and (10.9b) that the included angle #, between d & and d s, must
be less than 90°. Hence, for loading, it may be deduced [2,5,6] that de remains in the
position of an exterior normal, independently of the direction of dff in Fig. 10.3b.
Furthermore, eq(10Jb) shows an included angle $< 90°, between vectors AB and BD in
Fig. 10.3a. The implication is that the yield surface/must always be convex. Figure 10.3c
shows how it is possible for ^ > 90° when a surface is concave.

103 Isotropic Hardening

In the rule of isotropic hardening the initial yield surface expands uniformly in stress space
as a material plastically deforms under an outward loading. Subsequent yield surfaces thus
retain the shape and orientation of the initial surface. Figure 10.4 illustrates this rule within
two common plane stress states: (a) tension-torsion and (b) principal biaxial stress.

Figure 10.4 Isotropic hardening under plane stress

Figures 10.4a,b connect the rule to simple shear and uniaxial hardening curves OPQ, as yield
loci expand to contains flow stresses between P and Q. Clearly, the expanding elastic
interior must be bounded by forward and reversed yield stresses of the same magnitude, i.e.
TR = TQ and <% = Ô Q in Figs 10.4a,b. Consequently, a Bauschinger effect (in which re > tR

and O^Q > e^) is absent in this rule. The mathematical condition for isotropic hardening is
that stress o%i in eq(10.1) may be separated from ^ p and ̂ i n the form of eq(9.46). Hence
the yield (or loading) function depends solely upon aiS while its size will depend upon %.
This is expressed as

(10-10a)

where z"isa monotonically increasing hardening function of a suitable scalar quantity if/ of
plastic strain or plastic work. The change to/in eq(10.10a), corresponding to a change in
stress dffy, is given by eq(10.3a):

d/ = ildff (10.10b)

This change in/will now depend upon the three aforementioned conditions of loading:

(i)
(ii)
(Hi)

d / > 0, d / = d^and d s , / > 0 for elastic-plastic loading
d / < 0, d%= 0 and de,f = 0 for elastic unloading
d/= djf = 0 and dstf = 0 for neutral loading
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No further hardening can occur as a material is either unloaded or is subjected to a neutral
stress change. Note that in the case of a rigid plastic material, or one that has reached
saturation hardening, it is possible for def > 0 under the condition d/= djf in (iii).

The specific forms of eq(10.10a) that follow depend upon the function/and the
argument ifr. The initial condition of the material governs the choice of yield function/,
while ^will depend upon the hypothesis of hardening.

10.3.1 Levy-Mises

The isotropic function/in eq(10.10a) is most often identified with the second invariant of
deviatoric stress: J2' = ¥10$ 'orf, so implying that hydrostatic stress does not contribute to
plastic deformation. Equation (10.10a) becomes

(10.11a)

We know from the previous chapter that the scalar measure of hardening ^ is normally
taken to be the equivalent plastic strain s or, the specific work of plastic deformation
W%nit volume [1]. These give, respectively,

j)* (10.12a)

The left-hand side of eq(10.1 lb) may be identified with an equivalent stress &:

- a' a' (10.12c)
2 "«• "ij

The numerical factors in eq(10.12a) and (10.12c) enable the correct reduction to a uniaxial
stress state, i.e. s and a become the axial plastic strain and stress in a tension test.
Substituting eqs(10.12a) and (10.12c) into eq(lQ.llb), the strain hardening hypothesis
appears in its simplest equivalent form (see eq(9.48));

O = H(fdeP) (10.13a)

It follows that the hardening function H in eq(10.13a) may be established from simple
tension. The most useful explicit forms of eq(10.13a) are those given by Hollomon [7],
Ludwik [8] and Swift [9] (e.g. see pp. 295-297). Alternatively, substituting from
eqs(10.12b,c), the hardening law (10.11b) appears as a work hypothesis (see eq(9.51a)):

-Ff/dW') (10.13b)

Equation (10.13b) is less convenient because function F must be established from the area
beneath a curve of stress versus plastic strain. Equations (10.11b) and (10.12c) provide the
relationship between the hardening functions in eqs(10.13a,b) as
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= — where & = H^Jdi^J = p(dWp) (10.13c)

Taking both stress deviator invariants J2' = Via^o^ and J3' = ^ho^a^a^ into fiinction/(Ojj)
in eq(10.10a) will account for most experimental observations on isotropic yielding [10].
Note that the previous chapter showed that including / / in/required a re-definition of ff and
e through the chosen yield function and hardening hypothesis.

The single most attractive feature of isotopic hardening over alternative hardening rules
is its mathematical simplicity. The latter imposes limitations, as we shall see, but for most
outward loading paths, isotropic hardening can predict plastic strain paths acceptably. The
incremental theory of plasticity is completed when isotropic hardening is combined with the
flow rule (10.4b). Levy [11] and von Mises [12] did this simply by associating the plastic
potential function f (<%), in eq(10.4a), with a von Mises flow potential,^ <%) = J%' = VtOqOy.
This leads to a linear constitutive relation between the incremental plastic strain tensor de^f
and the current deviatoric stress tensor a^\

de/=dlai; (10.14)

where o$ = 0V - %4/%- Kronecker's delta, in which «|, = 1 for i =j and S^, = 0 for i * j ,
ensures that normal stress components are reduced by their mean (or hydrostatic) stress
value. The incremental scalar dA is a factor of proportionality, linking the current equivalent
stress to an increment of equivalent plastic strain, i.e. the co-ordinates (a, d s ) of a uniaxial
flow curve. Here mean stress am = % O and we have o£= &~ % & = % a. Also, the tensile
stain dfiiF -de . Equation (10.14) gives de? = d i at\ from which

d i = J L S ± _ (10.15)

Equation (10.15) shows that dA is inversely proportional to the incremental plastic modulus,
i.e. proportional to the compliance, d e 10. For non-linear hardening, it follows from the
strain and work hardening hypotheses, eqs(10.13a,b), that

^ (10.16a)
deP

(10.16b)

Differentiating the Ludwik eq(9.43b), for example, we find H' in eq(10.16a):

(10.16c)

The compliance may be expressed, from eqs(10.16a,b), in one of two forms:

de do de do nn IT i.\= or = (10.17a,b)
& OH' O F'O2
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Combining eqs(10.15) and (10.17a,b) reveals how d ! changes monotonically with an
increasing & during loading:

2H'ct
or d i = (10.18a,b)

Note, that eqs(10.18a,b) also derive from eq(10J) provided/is expressed in an isotropic
hardening form of eq(10.6). For a principal triaxial stress system: OJ, oj and t%, eq(10.14)
expands to give principal, plastic strain increments:

(10.19a)

(10.19b)

(10.19c)

where d« /ff is given by either of eqs(10,17a,b). Numerical integration of eqs( 10.19a,b,c)
is usually required except in the case of uniform biaxial and triaxial stressings, where
components increase proportionately or follow a single step during loading. Equations
(10.19a-c) are often compared with triaxial elastic relations. In the latter, ^replaces ¥i for
compressible elasticity and de IB is replaced by an elastic compliance HE. More
important than the similar structure between the Hnear elastie and non-linear plastic equations
is a recognition of the entirely different material responses they are to represent.

deF -

p

p

At*'
u

dir

O

diP

0

ffj -

2

- hv *

1

2 °l +

I.
2 J +

10.3.2 Drucker

Employing the Drucker loading function [13] as a flow potential, eq(10.10a) becomes

f(av) = J'2i~cJ'%
1 = z m (10.20)

Now, for any isotropic function/ (J2', J3% the associated flow rule becomes

= d i

= di

= di

dJ'

df
a. +

(10.21a)

where %' = dJ3Wav' = %' %' - % Jt'$9. Substituting/(ers) from eq(10.20) into eq(10.21a)
gives Etocker's flow rule:
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j / = d i (3 / V av' - 2cJ \ %') (10.21b)

Principal plastic strain increments dei
p, de £ and de f fellow from eq(10.21b) with the

following substitutions:

and similarly

Converting to absolute stress components

we then have

(cr,

/ 6

- 2(04 -

(20,
/ 9
/ 9
/9

The scalar dA is again determined from the given yield function by setting
uniaxial stress. Equation (10.21b) leads to

81

27

so that
di = 9di P

2O-5(l - 4e/27)

, = «,=: 0 for a

(10.22a)

(10.22b)

where the equivalent stress is given by eq(9.4a). The equivalent strain is either defined by
the strain hypothesis (eq 9.7c) or, from the work hardening hypothesis (eq 9.52c).
According to each hypothesis, dA follows from eqs(10.16a,b) and (10.22b) respectively:

- 4c/27) - 4c/27)
(10.23a,b)

The derivatives F' = dFlde and H' = dHlds eliminate strain in their arguments so
allowing eqs (10.23a,b) to express the monotonic dependence of d i upon O. Note that
eq( 10.20) provides a uniaxial relationship between the hardening functions H and F:

w n e r e or $ = jdWp (10.23c)



 

318 BASIC ENGINEERING PLASTICITY

10.4 Validation of Levy-Mises and Drucker Flow Rules

Many workers have conducted radial outward loadings upon thin-walled cylinders by
combining tension, torque and internal pressure. The linear plastic strain paths observed in
annealed material have confirmed eq(10.14). That is, for a given uniform stress state within
me wall, flow theory predicts a constant ratio between the plastic strain increment
components under a proportional loading (e.g. see Fig. 10.5).
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Figure 10.5 Linear plastic strain paths under radial tension-torsion

10.4.1 Combined Tension-Torsion

The linear plastic strain paths shown in Fig. 10.5 apply to radial loading under combined
tension-torsion of a 99.8% commercially pure, annealed aluminium (El A). Four constant
stress ratios were employed: R = cn/ffu = 0.26,0.56,0.80 and 1.82 [14]. In the absence of
torsional buckling, Fig. 10.5 also shows that when constant, combined loads are maintained
for a period of 50 hours, the strain paths continue to extend in time without changing then-
gradients. The occurrence of room-temperature creep conforms to earlier observations for
a similar purity 1100 aluminium [15,16]. The creep behaviour suggests that a strain rate
form of eqs(10.19a,b,c) applies when the essential slip mechanisms of low-temperature
deformation are common to plasticity and creep. This may not apply to higher temperatures,
where creep deformation involves thermally activated climb and cross-slip of dislocations,
together with grain coarsening and captation. Linearity has often been seen in many plastic
strain paths arising from tension-torsion loading [15 - 20]. Their gradients, including those
from Fig. 10.5, have been used to construct Fig. 10.6.
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Figure. 10,6 Stress-dependent plastic strain increment ratio

These data apply to radial loadings in En steel [17,18], low C-steels at elevated temperature
[18,19] and commercially pure copper [20]. Predictions from eq(10.14) are simply

dyu
p/ den

p =3aaf au = 3R

dsn
p/den

p =-1/2

(10,24a)

(10.24b)

Equation (10.24a) gives the broken line in Fig. 10.6, this being representative of Jz' materials
only. Improved predictions are found [10, 21] for three homogenous flow potentials
involving both invariants/(Jj', Jj"). For example, eq(10.21b) gives plastic strain increment
ratios associated with Drucker's flow potential:

3X

d /

9 {

11 e(2
27

(10.25a)

9{

27

(10.25b)
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It appears from Fig. 10,6 mat eqs(10,25a,b) represent the data for certain steels better than
/ = J{ can. Heat treatment rendered these alloys with a uniform, isotropie grain size which
permits the selection of a suitable alternative isotropie function / (J j 1 , J{% Figure 10.7
presents a more convincing demonstration of the J3' influence. This is provided by
experiments where bom diametral and axial strains were found in combined tension-torsion
experiments upon: En 25 steel [22], copper, aluminium and two mild steels [23]. These
show that the strain ratio de^/i &sn

p, differs from the - Ms prediction from eq( 10.24b).
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Figure 10.7 Departure ftom/= / , ' theory

It is seen that the effect that stress ratio R has on decreasing the strain ratio can be predicted
from eq( 10.25b) and two further homogenous yield functions in /2 ' and Js' as indicated.

An alternative check on eq(10.14) is provided by Lode's [24] respective stress and
strain parameters fi and v:

d*,' dA a{ - dA a^

def - d&f dA oj' - dA «72'
(10.26)

An observed equality between n and v for a given radial path will validate eq{10.14).
Substituting the principal plastic strains and stresses (p. 21) under tension-torsion (an, %)
into eq(10.26) gives Lode's strain parameter;

v = -
def, 1 (10.27a)

1 +



 

Lode's stress parameter becomes

'u
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(10.27b)

Employing the observed plastic strain gradient dyn
Ft den

F for each stress ratio a ^tr u

within eqs(10.27a,b), has enabled the construction of Fig. 10.8.
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Figure 10.8 Lode parameter plot

This Lode plot applies to steels [22,23], aluminium [23,25] and copper [23,26]. It also
reproduces the fi, vdata from pioneering experiments of Taylor and Quinney in 1931 [23].
They were the first to reveal a systematic deviation from ji = v in each material. The precise
reason for the deviation remains uncertain. It may be due to a residual anisotropy in these
materials because tests were not conducted to establish beyond doubt a condition of initial
isotropy. However, each material in Fig. 10.8 was annealed so, when isotropy is assumed,
it implies that any deviation from ji = v is due to the influence of the third invariant J3'. For
example, using Drueker's yield function in eq(10.2Q) it can be shown [10] that the non-linear
relationship between ji and vis given by

v =
27(fi2 + 3)2 - - 9)

3)2 - 9)
(10.28)
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Figure 10.8 shows that eq( 10.28) and a further homogenous function/{/z', Jj1), can account
Bar the trends observed through the choice of constants b and c. An exception is found in
the function containing constant d because J3' changes sign with stress. Consequently, this
function leads to a discontinuity at p. = 0.

10.4.2 Principal Biaxial Stress

Consider proportional stressing under combined internal pressure-axial loading of a thin-
walled cylinder. Principal stresses a1 and <% in the axial and circumferential directions
respectively, increase proportionately in a ratio R = 0i/fl|.
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Figure 10.S Dependence of strain increment ratio upon principal stress

The Levy-Mises prediction sets the radial stress ô  = 0 in eq(10.19a,b) to give a strain ratio:

de,P nn _ i
1 £K l (10.29)

de' 2 - M

Figure 10.9 compares the prediction from eq(10.29) wim experimental date for En 24 [17],
stainless steel [27] and alloys of lead [28] and zirconium [29]. A similar conclusion can be
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drawn in relation to the observed deviations from eq(10.29). That is, predictions from the
alternative homogenous fuvc&ons f(J2\ J3'), given in Fig, 10.9, usually match the observed
behaviour in a given alloy. For example, we find Drucker's prediction to the strain ratio
from putting «§ = 0 in eq(10.21b):

Aei = 81(1 + R1 - Rf{2R - 1) - 2 c ( 2 g * - 1 - 2fi)[(2 - fi)3 + (2R- I ) 3 - (1 + R)3]

def 81(1 + R1 - Rf(2 - R) -2c(2 - Rz - 2fl)[(2 - R)3 + (2R - I)3 - (1 + R)3]

(10.30)

Here, however, the influence of initial anisotropy in lead and zirconium alloys is more likely
for the discrepancy found with isotropic predictions. The reported initial condition of each
alloy [28, 29] suggests that a strain ratio, based upon an orthotropic yield function, would
be a more approriate choice than eq(10.30) when explaining these results (see Chapter 11).

10.4.3 Flow Equivalence

Consider again proportional loading of alumimum under combined tension-torsion. Figure
10.5 shows linear plastic strain paths, between shear and axial components, resulting from
increasing the corresponding stress components under constant ratios. The measurement of
hoop strain under simple tension confirmed eq(10.24b), indicating that an isotropic yield
function applies. A slight deviation from the same gradient, den

p/ d%'> =-¥i, occurred
with tension and torsion combined. Moreover, the observed slopes are less than the Mises
prediction d y j / / den

p = 3R, from eq(10.24a).
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Figure 10.10 Equivalence correlations under combined tension-torsion

With co-ordinates 1,2 and 3, aligned with the axial, circumferential and radial directions
respectively, the von Mises equivalent stress and strain are found from eqs(9.2c) and (9.6c):

a = + 3 a12

1+I * * ' ,

(10.31a)

(10.31b)
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Equations (10.31a,b) provide a von Mises correlation in Fig. 10.10a, liiis being independent
of the hardening hypotheses employed for the four radial tests.

Using Dmcker's function, the stress invariants /2 ' and J3' in eq(9.5a), reduce to

Jz' = ¥i e-/ Oq = On + ffj,2/ 3,

J3' = % 0y ajk' au' = la^l 27 + an ou
2/3

Substituting eqs(10.32a,b) into eq(9.4a) gives the equivalent stress expression

O =
1/27 - 4e/93

(10.32a)

(10.32b)

(10.33)

By including /3 ' in the yield function, the expression for d s will depend upon the choice
between the work and strain-hardening hypothesis.

(a) Strain Hypothesis
When the strain-hardening hypothesis defines d e r, the invariants in eq(9.5b) become-p

Now the substitution of dfi, ̂  = d£/> with
simplifies these invariant expression to

and d£ , / = &elx
p = M yu

p,

(10.34a)

I (10.34b)

Substituting eqs(10.34a,b) into eq(9.7a) gives

d i p -

l [ 3 d e f J 4

4 l l l
d i»)2]3 _ \

12 J |
27 _
4

n 2

c

ieP d P ,
11 12

2

(10.35)

The constant c in eq(10.35) is found from matching observed dyn
p/den

p ratios in Fig. 10.5
with the corresponding prediction. Derivatives of Drucker's function:/^1, /3") = / i - cJ'3

2

are df/dJ^ = 3 / / and ^" /3 / s ' = - 2cJ3' so fliat eq(10.21b) gives the axial, circumferential and
shear sttain increments respectively:

crI2
2)2(2£r,,/3) -

tn'}

= d y / /2 = d i [3(ffu
2/3 + aa

z fau - 2c (2ffn
3/27

(10.36a)

(10.36b)

(10.36c)
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where tn' = (2<%2 + 3 % z )/9, t^ = (-an
2 + 3a12

2 )/9 and ta' = <% <raf3. Dividing
eqs(10.36b,c) by eq{10.36a) leads to the theoretical plastic strain increment ratios in
eqs(10.25a,b). Identifying eqs(10.25a,b) with the gradients in Fig. 10.5, c = - 2 is chosen
within its limiting range, - 27/8 s c s 9/4, for a convex yield function. Equations (10.33),
(10.35) and (10.25a) provide theoretical equivalence relationships from strain hardening but
the corresponding plot in Fig. 10.10b appears to be no better than that found from the
simplified Mises J% correlation (see Fig. 10.10b).

e is
(b) Work hypothesis
Here & remains as defined in eq(10.33) but d e is re-defined from the work hypothesis (see
eq 9.52c):

d i ' = {an/0) ( dri
F

2 ) (10.37a)

Substituting eq(10.33) into eq(10.37a) gives:

&er =
1/27 - 4c /9 3

(R2 + 1/3)3 - c(R2/3 + 2/27)
[de[t +e[t (10.37b)

where eq(10.25a) expresses the dependence of R upon the ratio dyu
rlden

F. Using the
observed ratios for R anddya

pfden
p in eqs(10.25a) and (10.37b), Fig. 10.10c shows that the

work hypothesis provides a slightly improved correlation compared to Figs 10.10a,b. The
point to note here is that the associated flow rule will match fee strain ratios independently
of the work hardening hypothesis.

10.5 Non-Associated Flow Rules

Up to now only isotropic yield functions/fjj', J3% have been considered. This implies that
the chosen expressions for & and d e (i.e. by Mises and Drucker) are restricted to material
whose flow behaviour is independent of direction. Here, a non-coincidence of flow curves,
when based upon the conventional Mises definitions of equivalent stress and strain, has been
attributed to the influence of the third invariant. When a material is initially anisotropic to
a measurable degree, isotropic invariants should not be used to define its equivalence. For
this we must use a potential that characterises the nature of anisotropy, eg. a normal or
orthotropic form typical of, say, rolled sheet (see Chapter 11).

The literature reveals instances where the flow rule has not been associated with the
yield criterion. This allows the function employed within the flow rule (the flow potential)
to differ from that used to define the yield criterion. This flexible approach has improved
predictions to observed behaviour as compared to making the classical association between
the yield criterion and flow potential. Using both the Tresca and von Mises functions will
serve to illustrate a theory with unrelated equivalence and flow. For a Tresca yield function,
the equivalent stress is simply:

O = aj - (10.3§a)
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where ot and «, are the greatest and least principal stresses, i.e, the roots to the characteristic
eq(1.24a). A Tresca's equivalent strain may be found from eq(10.38a), corresponding to a
uniaxial work expression (9.51b):

dsP = - ( d * ' - dep) (10.38b)

While eqs(10.38a,b) reduce correctly to O = ax andd**" = def for uniaxial deformation,
they will otherwise differ from a von Mises equivalence. Consider pure shear, where the
stresses are ox = r,«% = 0 and % = - rand the strain increments are dsf = dypl2, de/ = 0
and dei

p= - dj^/2. Substituting these in eqs(9.2d) and (9.6d), von Mises gives 9 = v*3 r
and ds = dyF/v/3. With similar substitutions into eqs(10.38a,b), Tresca gives & = 2rand
de =2dypt3. The incremental work of pure shear is;

which is consistent only with vonMisesequivalencedefinitions. Similar plastic workviolations
would be found from de expressions derived earlier from fiJ2', J/) and the strain
hypothesis (see Chapter 9). However, this has not precluded the use of a Tresca equivalent
stress in the non-associated approach. For example, Marin [30] and Soderberg [31]
employed a Mises potential in a flow rule for rate dependent plasticity (creep). Equation
(8,17a) gave this as:

/ i ^ ; (io.39a)

where A is readily defined in terms of a and e for simple tension:

1 = ̂ — (10.39b)
20

For their equivalence, the authors defined & and e Fm eq( 10.39b) by both von Mises
(associated) and Tresca (non associated). For the latter O is given by eq(10.38a) and e is
the time derivative of eq(10.38b):

"_• p

e
 F = -2±- = i. [e

p - ef (10.39c)
dt 3 x J '

Their experiments revealed less spread within the Tresca equivalent stress-strain rate plot
compared to von Mises. Consequently, greater accuracy was found from non-associated
predictions to creep rates in rotating discs, and tubes under internal pressure combined with
axial tension [32 - 34]. Combining von Mises equivalence with a Tresca flow rule is less
realistic practically but has been used for its mathematical simplicity.

10.6 Prandtl-Reuss Flow Theory

In deforming beyond the elastic limit an elastic component of strain continues to accompany
the plastic strain. When the latter is large and elastic stain is small enough to be ignored,
the Levy-Mises theory estimates the total deformation in an elastic-plastic solid. Such
predictions will be unacceptable where elastic and plastic strain components are comparable
in their magnitudes. Here, both elastic and plastic incremental strains arising from a loading
condition dan > 0 are required. The incremental elastic component of strain de/, follows
from Hooke's law and the plastic component de / from the Levy-Mises eq(10.14).
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10,6.1 Tensor Subscript Notation

The Prandtl-Reuss, total incremental strain theory [35, 36] sums the elastic and plastic
incremental stains. The theory was originally presented in the tensor subscript notation.
Since %' = 0, five independent deviatoric stress components may act simultaneously to give
six total strain increments:

ft.. +

e,! = aAa.. + t-— * - + t-o.ao.,

The expanded form of eq(10.40) represente three direct and three shear strain increments:

* da,,)], etc

ds[2 = dfjj/2 = &Aeru + danf(2G) ete

Integration of eq(10,40) shows that the permanent, plastic component of total strain depends
upon the history of stress, while the recoverable elastic component depends upon the current
stress. This applies to the low-temperature, small-strain regime of many polycrystalline
materials where they remain insensitive to the rate of straining.

10.6.2 Experimental Validation of Prandtl-Reuss Theory

The Prandtl-Reuss theory has matched experimental observations on metal plasticity with
both linear and parabolic hardening under a variety of non-radial loading paths [37]. Using
Ludwik's hardening eq(9.43a), the constants A and n < 1 may be found from reported data for
tension or torsion tests. Alternatively, they may be found from within a loading path that
begins with either of these modes. Values of A/Y and n, so found are given in Fig. 9.20 for
many engineering alloys, some of which will be converted to eq(9.43b) and used here. An
exponent n = 1 applies to ideal linear hardening material. Near uniform stress states are
achievable from loading thin-walled tubular testpieces with combinations of tension,
compression, torsion and internal pressure.

(a) Stepped Path Under Tension-Torsion
Equations (10.18a) and (10.40) provide the total, incremental shear and axial strains under
uniform axial and shear stress components an and an»as follows:

¥ll (10.41a)
G

^ i (io.4ib)

12 H'a

A. -

r2 = ff2 + 3ff2Br2 = ffj2! + 3ffj2
2 (10.41c)
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Let the tensile stress ffn be first applied to exceed the initial yield stress <| then held constant
(oil = op) while ff12 increases within the plastic range. Equations (9.43b), (10.16c) and
(10.41c) are employed as follows:

n - 1

H' = dOldeP = {nero/so)[ePfeBf' l= \naj eo)[&lao - l) B

D2 = ap
2 + 3 * 4

(10.42a)

(10.42b,c)

The total incrementol strains under an increasing an are found from eqs(10.41) and (10.42):

n [3

I

r2)2 - I
* (sp/r)2

1 - n
n

—AT
G

I

3T2)1 -
1 - B

(10.43a)

(10.43b)

(SplT

where tiie dimensionless stresses are Sp = 0P faB and T = on lao. Normally, numerical
integration of eqs(10.43a,b) is required unless n = %, when closed solutions are found. For
example, Ivey [38] conducted an experiment of this kind on a 24S-T4 aluminium alloy
where, from Fig. 9.20, n « % and eo = (Y/Af = 2.24'3 = 0.089. Here Sp = 1.46 exceeded the
tensile yield stress and therefore the lower limit of integration for eqs(10.43a,b) is T= 0 (see
the inset Fig. 10.1 la). Under the shear stress branch, eqs(10.43a,b) become

T

Til = 27 Bg

*n = *n = 9VO

2T'

* 37•2 \ i /a 3T2)
d T + — [AT (10.43c)

G J

7

I T - 2T

+37")2\IIZ + 3T2) (10.43d)

Equations (10.43c,d) are composed of standard integrals which lead to total strains:

Yn - T{S? + 3T2)1'2 + - t i

51
G

1 +3 U-

2S_

(10.44a)

(10.44b)
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This integration shows that under the increasing shear stress: (i) the final terms in
eqs(10.43a) and (10.44a) is the elastic shear strain, and (ii) plastic axial strain is present
despite the absence of elastic axial strain. Figures 10.1 la,b show that the predictions from
eqs(10.44a,b) match the trends observed in plastic strain paths and flow stresses.
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Figure 10,11 Stepped tension-toraon loading of 24S-T4 aluminium alloy

The variation in shear modulus under the shear stress path is shown inset in Fig. 10.13b. It
is known that the minimum surface model (see Fig. 8.18) and Hencky's total strain theory
both predict an initial shear modulus Gp = d % / dyl2', of plastically prestrained material
different from the elastic shear modulus Go. Taking an isotropic expansion of the yield
surface to the prestress allows a differentiation of eq(10.44a) to supply a modulus ratio:

p - 1 - 1
3T 2) 1 ' 2

- 1

(10.45)

Equation (10.45) shows that Gp = Ga when T— 0, irrespective of Sp. Further confirmation
of this was found for similar experiments conducted on steel [39], aluminium [40] and
various aluminium alloys [39 - 43], As Tincreases, the fall in G^iG,,, observed in the inset
diagram, is replicated with eq(10.45). Note that when Sp = 1, the fall in GpJGa is so gradual
under increasing <% that one could be deceived into expecting a region of elasticity from
Prandtl-Reuss though, strictly, the condition for this is S. < 1.
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(b) Stepped Path Under Tension-Internal Pressure
One method of achieving stepped stressed paths in principal biaxial stress space is to subject
thin-walled cylinders to combined internal pressure and axial load. Radial stress (<%) is
ignored and the respeetiYe axial and circumferential stress components «i and 04 may be
assumed to be uniform. Equations(10.12c) and (10.40) supply

•• t dads! = -=—
1 T'J * m

2 H"&{ 2 2
- vda.)

l

(10.46a)

(10.46b)

(10.46c»d)

Equation (10.46d) applies where ot increases in the presence of a constant £% (i.e. 0^,).
Substituting eqs(10.42a) and (10.46d) into eqs(10.46a,b) and setting S, = Oi/fffl, S^ = (hplo0

and S = &Iao = (Sx
z - St S2p + S^2 ) w , leads to total, principal strains under increasing a^.

(2S1 - S2p)\S - a t
&S, + — I dS,1 E J !

(10.47a)

.. . t f C2 î
1 - B

dS, -
Fff (10.47b)

<r,/^

n 3
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Figure 10.12 Stepped temion-tension loading of SAE 1020 steel
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In the experiment of Marin and Hu [44], a mild steel testpiece was prestressed to S ,̂ = 1.67.
Thereafter, Sj was increased, as shown in Fig. 10.12a. Figures 10.12b,c show that elastic
stress-strain responses prevail until 8^=1.67, this being the lower limit for the first integral
in eqs(10.47a,b). Taking from Fig. 9.20, n * 14, ea = 6.54 ~3 = 3.575 x 10 ~3 for this material,
eqs(10.47a,b) become

1 -

ts; - s2psl

i
C^ — C C 4. C

= _5 J (2S, - 1 -

l + f J (10.47c)

(S,2 -
JdS,

(10.47d)

where oJE = (674.3) ~l and v= 0.27 from within Figs 10.12b,c. Closed solutions can be
found from the integration of eqs(10.47c,d). However, for the predictions shown, it was
simpler to apply Simpson's rule repeatedly, with a step length ASt = 0.2. These reproduce
the trends observed and suggest that the deviation found can be attributed to plastic
anisotropy in the cold-drawn tube material. The elastic response observed is predictable
from isotropic hardening in its range and magnitude. In this test, where the elastic and plastic
strain magnitudes are similar, an omission of elastic strain would lead to unacceptable error.
We see that the Prandtl-Reuss theory is essential to give the full strain response to St,

10.7 Kinematic Hardening

It has been seen that the rale of isotropic hardening is attractive from a mathematical
standpoint when applied to plasticity arising from outward loading paths. Though intended
for initially isotropic material a similar hardening rule can be applied to initially anisotropic
material with an appropriate change to the yield function (see chapter 11). Moreover, the
same rale can provide for the rate dependence of stress by allowing a strain rate vector to
lie normal to an expanding visco-plastic, or creep, potential. The latter may again be
associated with the yield function but in the flow rale, the incremental plastic strains are
replaced by viscous strain rates. The isotropic hardening rule is only useful for outward
loading paths and works best for radial, or stepped loadings in which plastic strain history
does not exert a strong influence. In Chapter 8 (pp. 262 - 266) we saw that the isotropic
hardening rule could not account for the Bauschinger effect. Moreover, it will not account
for plastic strain arising from a ' neutral" loading condition [45], where a stress path follows
the boundary of an isotropic expansion of the initial yield locus. Clearly, the subsequent
yield condition needs to be re-defined under more complex paths.
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10.7.1 Bauschinger Effkct

The laboratory testing referred to in Chapter 9 was conducted under monotonieally
increasing loading. Correspondingly, the descriptions of flow curves given apply to forward
deformation. One of the critical validation tests for any theory is whether it can represent,
with sufficient accuracy, the stress required to reverse the direction of plastic strain.
Bauschinger [46] first observed a common feature of polycrystalline materials in which a
reduction in flow stress accompanied a reversal to the plastic strain (see Fig. 8.20b). There
is also a marked increase in the reversed hardening rate under the lower flow stress.
Physically, a lesser stress is required to activate slip processes in a reversed direction than
that required to continue with forward slip on active slip planes. To explain this
Kadashevitch and Novozhilov [47] identified a field of residual miero-sttesses wimin a given
slipped state. The Bauschinger effect was explained from identifying the sense of this
micro-stress distribution to oppose forward flow but assist reversed flow. A lower applied
stress is therefore required to promote reversed yielding.

10.7.2 Translation Rules

Prager [48] modelled the Bauschinger effect with a rigid translation of the initial yield
surface away from its origin. He assumed that the direction of translation followed the
incremental plastic strain vector de/, as shown in Fig. 10.13a.

Figure 10.13 Incremental translations given by (a) Piager and (b) Ziegler

The co-ordinates of a rigid, incremental translation, from Oj to Oj, are:

(b)

(10.48)

When eq(10.48) is used to describe the translation of an initial Mises surface, the subseqent
function is referred to the co-ordinates for O2 as:

/= Vi(q! - c\ de/)1 = & (10.49)

where k is the shear yield stress. Applying eq( 10.49) to simple tension:
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Substituting %' = %<%, %' = ~1-*^i arK* %' = -%%» with fy/ = Ba = ~^%'V leads to
the uniaxial hardening law:

(10.50)

where er0 = <</M is the tensile yield stress. Equation (10.50) shows that Prager's translation
describes linear hardeming at a rate proportional to c. A useful consequence of this is that
the path of the centre franslation is proportional to the plastic strain path.

The reader should note the difference between the translations shown in Figs 10.13a,b,
The latter corresponds to an alternative rigid tanslation rule given by Ziegler [49]:

d ^ = dM(f f s - ^ ) (10.51)

where scalar dfi =d ff/ aB = (c/q)d e is defined from the linear hardening rate c in simple
tension. Equation (10.51) ensures a translation along the radial path in the manner of Fig,
3.7 and this may be identified with a linear tensile hardening material, as shown in Fig, 8.21.
Of die two rules, Prager's has received most attention, particularly with its modification to
non-linear hardening [50]:

da^ = cx de/ - (cjaa) a, de P (10.52a)

where Cj and Cj are functions of the plastic strain invariants 4 and J3 (see eqs(9.5a!b)), A
similar, non-linear modification to Ziegler's law [51] gives

d q = (e, fao) di P(<% - e$ - (czlas) av di F (10.52b)

10.7.3 Reversed Yield Stress

The usual way to determine the parameters cx and c2 in eqs(10.52a»b) is to combine either
equation with a standard non-linear hardening law, e.g. Ludwick, Swift, Voci etc and then
to fit the pair of equations to a flow curve with a reversal (see Fig. 8.20b). In this case both
expansion and translation of the yield surface are permitted (Fig. S.20a). For example,
integrating eq(10.52a) gives the translation af= a (sF) for OA under uni-axial deformation

(10.53)

The forward flow stress becomes the sum of two parts OJ= &f+M(sp) where M (BP) is a
1 radius * of the expanded yield surface (see Fig. 10.14) If we let o} be given by Ludwick's
eq(9.43b), with a from eq{10.53), the radius becomes

* ( * ' ) = at - af = flr.[l + « ' /*„)•] - ^ f i ( l - c *>''*) (10.54a)

The reversed yield stress ffP at point P, immediately follows as

0P=af-M(ep) (10.54b)

5i = I f l (l - e^ ' ' " 1 ) - [l + («'/« )«} (10.54c)
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Figure 10.14 Uniaxial plastic flow curve with reversal

10.7,4 Reversed Flow Curve

Equations (10.53) and (10.54c) give normalised stresses for the centre translation OA and
the reversed yield point P respectively in Fig. 10.14. To describe the reversed flow curve
PQ it is necessary to find the corresponding centre translation AB. Strain reversal requires
a change in the sign of the second term in eq( 10.52a) [52]. Applying this with lower limits
of integration for point A («/ , aA)".

f ^ = f d* '
-I ' *-2**'"o

C2 ff
fl

(10.55a)

Substituting osA/aB from eq(10.53), with £** = s/, into eq(10.55a) leads to eer for AB:

5 = flf 2e^
(<'-*')/^ - c*''-2^ - i ] (10.55b)

Now the reversed flow curve PQ is ffr=fl^- J ? w h e r e # = ^ - ctj is based upon the forward
flow curve. That is, J" (sF) in eq( 10.54a) defines both as and aT curves at a given eF, as
shown in Fig. 10.14:

3i = f l f 2eCiie'''e*Vo° - e^'''2^"' - e~Cl'''"ltA - •%- (10.56)
a 2 o

where from eq( 10.53) cl fc2 is an asymptote for alao at large strain The above analysis is
based upon a reversal between tension and compression but this can be difficult to achieve
in practice. Consequently, torsion of thin-walled tubes and bending of thin strips may be
used, in which unwanted friction is removed and stress gradients have been reduced. For
torsion, the translation OA is equivalent to writing eq( 10.53) as:

k ca'
(10.57)
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and eq(10.56) is re-written for the reversed flow curve PQ as

-j- = - ^ le^17 ~rA)t - e C 2 ( r "Zjr*)/* - e'
Czr lk - -f (10.58)

k c2 \ I k
where Cj' = ca/3 arises from the use of engineering shear strain. Figure 10.15 shows reversed
torsional flow curves for annealed En3B tubes with inner diameter 12.7 mm, outer diameter
16.1 mm and a gauge length of 80 mm.

I

300

t;MPa

- 3 0 0 ' •

Figure 10.15 Reversed flow curves under torsion

At each y/ value, the reversed yield point P is determined for 0.01% Mises proof strain.
The mid-point translation locus OA reveals an asymptote in the region of tr/c/ = 0.74. If
we now fit eq(10.58) to the reversed flow curve PQ, having subtracted elastic strain
appropriate to each stress level, then cJk will vary with y1" in the manner of Fig. 10.16. This
identifies the function Ci(/2) with a complex polynomial in which I1 = { yr)z/4. Note
(3x0.74)^/*.

50

e,tk

0.03

Figure 10.16 Dependence of et Ik upon



 

336 BASIC ENGINEERING PLASTICITY

For multiaxial stress states a subsequent combined hardening yield function is required.
We write this to contain both the translation and expansion of an initial von Mises yield
surface as

in which a^ - an -
 %h8n mm and eq(10.54a) will again define the right-hand side when an

equivalent Mises plastic strain i identifies with the tensile strain e F,

10.8 Concluding Remarks

The rule of isotropic hardening is suitable for radial loading paths. The size may be
expressed from a hardening hypothesis though it appears difficult to distinguish between
hypotheses of work and strain hardening as applied to an^/2 ' , J3') isotropic material. The
strain hardening hypothesis may be preferred, for simplicity, since the chosen equivalent
strain expression is directly identified with an empirical hardening function (e.g. Hollomon,
Swift etc). However, the work hypothesis is more exacting since it will ensure non-violation
of the plastic wort Stress reversal involves a Bauschinger effect that is best modelled with
a shift in the origin of the yield locus coupled to its isotropic expansion.
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Exercises

10,1 Bsamine whether it is possible to derive the flmction F in the work-hardening hypothesis for the
flow curves described by Hollomon, modified Prager and Vw£ (see Figs 9.19a, c and f respectively).

10 J Show that the Levy-Mises flow rale may also be written, using the Mises equivalent stress and
equivalent plastic strain increment definitions, as

) Batj

104 Is the strain hardening hypothesis, which defines e in eq(10.35), consistent with a meaningful
work expression? Examine from a consideration of deformation under simple shear.

10J Show that SA in eqs(10.18a,b) may be derived from eq(10.5) and the Mises potential eq(10.6).

10.6 Show that M in eqs(10.23a,b) may be derived from eq(10.5) and the Dmcker potential (10.20).

10.7 Derive, for a thin-walled cylinder, the Prandtl-Reuss predictions to total strain components en'
and yn', that arise from increasing torque under a constant, initially elastic tension. Assume that in
the wall the uniform shear stress increases in the presence of a constant, initially elastic axial stress.
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10.i A tbJn-waUed cylinder with closed ends is constructed from a von Mises hardening material. It
is subjected to a constant, principal stress ratio ajax = 4/3 where ax and «% are axial and
circumferential stresses due to independent axial load and internal pressure. Show that the
corresponding total strains in the axial, circumferential and radial directions are, respectively:

_ ! h + _ L , e
 f = hi 3 * + J l md &' = in \ £. * + _ LUi « UJ « ^ UJ «

where p is the internal pressure and K is the bulk modulus of the cylinder material. Determine the
angle between the vectors of equivalent stress and equivalent plastic strain increment on the principal
stress plane | [Answer: 15.07*]

A thin-walled closed tube with an initial mean diameter da and thickness ta is subjected to an
internal pressure p. Neglecting elasticity and assuming a Mises material with Hollomon hardening
&/ao = (e r/ sj ", show Ihat the circumferential plastic strain is:

Confirm that the relationship between pressure and current geometry which preserves volume is:

10.10 A thuMvalled cylinder with closed ends is constructed from a Mises hardening material. It is
subjected to constant stress ratios o^/att = Ga,lon = 2 where an, an and a21 are axial, shear and
circumferential stresses due to applied torsion and internal pressure p. Show that the total strain
components are

, 4 l n f )
6K 2% { p ) 6K

6K

where subscripts 1,2 and 3 denote the axial, circumferential and radial directions respectively and X"
is the bulk modulus of the cylinder material. Show that the stress vector and the plastic strain
increment vector are co-incident in the <% versus % plane.

10.11 In a torsion test a thin-walled tube is twisted into the plastic range to a plastic shear strain f1".
The torque is then reversed to twist the tube to its reversed shear yield point. Show that the
normalised, shear yield stress for this reversal is expressed as

Assume a Mises material (O = / 3 r, e = y f / \ /3) , a Prager translation (10.52a) and a Swift forward
hardening law: trlk = (1 + y^/fj", where k is the initial shear yield stress, ya and « are constants.



 

CHAPTER 11

ORTHOTROPIC PLASTICITY

11.1 Introduction
— p>

Often, when isotropic definitions of o> and e are employed to describe equivalence, it is
found that flow data from different tests become scattered when plotted on O versus e axes.
TMs is because many materials are initially anisotropic to some degree. To quantify this the
following analysis assumes that orthogonal axes of orthotropy lie within both bar and sheet
metal stock. In this way, the anisotropy is defined within three orthogonal planes as it arises
from different processes, including the production of rolled and drawn sheet, extruded and
forged billets. The residual stress resulting from each process may be eliminated by post heat
treatment but there may still remain an orthotropic anisotropy. Klinger and Sachs [1] were
among the first to show this for a heat treated 24ST aluminium alloy plate. They found for
tensile testpieces, aligned with orthogonal directions, that the incremental plastic strain ratios
did not conform to the isotropic value d%p/ deu

p= - V4. This was attributed to the partial
retention of the original preferred grain orientation. These authors so identified a
crystallographic anisotropy, originating from within the highly anisotropic single crystals
that comprise the polycrystalline matrix. It was also shown that laminar inclusions, cavities
and arrangements of alloy phases can produce similar deviations from isotropic plasticity.

11,2 Orthotropic Flow Potential

Hill's quadratic yield function (3.27) accounts for the directionally dependent yield sttesses
in orthotropic, metallic materials. To describe the plastic flow behaviour a similar function
is taken for the plastic potential in the flow rule (3.22). This is simplified when the Cartesian
stress co-ordinates coincide with the material's orthogonal axes. The isotropic hardening
rule is taken to define the subsequent yield surface in a generalised quadratic form (3.29).
Combining this with eq(10.10a) describes isotropic hardening in initially anisotropic,
incompressible material."

( " - I )

For an orthotropie condition and with plastic incompressibility imposed by the stress
deviators, it has been shown previously (see p. 84) that the fourth order tensor Hm is
equivalent to the six anisotropy parameters F, G,H, L,M and N in eq(3.27). Equation (11.1)
ensures that an initial orthotropy remains unchanged for constant ratios FfG, G/H etc, during
hardening. For this, it is sufficient that the argument ^ b e identified with an appropriate
anisotropic form of equivalent plastic strain. We shall see how d e may be derived from
either the work or strain hardening hypothesis so that the choice between them remains
within the argument ifr= s in eq(l 1.1). Furthemore, because we shall identify the left-hand
side of eq(ll.l) with the square of an orthotropic equivalent stress expression, the harening
rule is simplified to O = &( e ). In fact, most equivalent stress-plastic strain correlations
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for anisotropie materials [2-4] have been derived from this hardening function.
Othotropic, incremental constitutive relations are supplied by the flow role (3.22).

These relations must be used with appropriate definitions of & and de to establish the
scalar multiplier dA. The following theories of othotropic plasticity are similar to those
proposed by Jackson, Smith and Lankfbrd [5], Dorn [6], Frager [7] and Fisher [8]. Certain
modifications to quadratic potential theories were proposed by Hu [9] and Jones and Gillis [10]
to provide for a wider range of anisotropie behaviour.

11.2.1 Equivalent Stress

Firstly, it is necessary to derive expressions the equivalent stress and plastic strain increment
for an orthotropie material in terms of its anisotropy parameters HiiU within eq( 11.1). Hill
[11] employed the reduced form with six coefficients F, G,HtL,M and N (see eq(3.27)).
When the six stress components av align with principal material (orthotropie) axes 1,2 and
3, the plastic potential becomes

- auf + H(an- e^f + 2L%* + 2Mau
2 + 2Nau

2 = 1 (11.2)

The unity value on the right hand side is preserved during hardening. It follows that F, G,
H etc, (with units stress"2) must diminish as the stress components <%, % etc, increase. For
uniaxial flow along each axis, eq(l 1.2) shows

(G + l f ) O i 2 = l (11.3a)

(F + H)o?=l (11.3b)

(F+G)o- 3
2 =1 (11.3c)

When the flow stresses at, 0% and a3 are constrained to increase proportionately with
hardening along 1,2 and 3, Hill connected an equivalent stress to function_/(<Ttf) in eq(l 1.2):

J (11.4a)

Substituting eq( 11.2) into eq( 11.4a), gives an equivalent stress expression

G{oSi -

(F + 6 +• H)
(11.4b)

Setting F = G = ff=landL = M = iV"=3Fm eq(l 1.4b) restores the Mises definition (9.2c).
Finnie and Heller [12] defined an alternative form of equivalent stress for creep of

orthotropie material, simply by taking F, G, H etc as constants:

2 O% = F ( % - % ) 2 + G(% - 0h)2 + # ( % - Gfe)2 + fi^ofcs1 + 6M01J2 + QNffa1 (11.5a)

The reduction in eq(l 1.5a) to a Mises isotropic form is easily achieved from setting all
constants to unity to correspond with^o^) = Jj = 5^/3. Consequently, we may identify O
in eq(11.5a) with its orthotropie potential as:

2Bf1 (11.5b)
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11.2.2 Equivalent Flow Rule

The flow rule provides plastic strain increments when the plastic potential is either mat given
in eq(l 1.4a) or (11.5b). Alternatively, the flow rule can be based upon a Hill or Finnie &
definition from eq(10.4b):

da di AJL (ii.6)
1 datj do da.j

Clearly, the relationship between/(o^) and & will differ between eqs(11.4a) and (11.5b).
From Hill, we substitute eq(11.4a) into eq(11.6)'.

and from Finnie, substitute eq(11.5b) into eq(11.6);

Since the function/(£^) is homogenous, of degree n = 2 in stress, Euler's theorem states

Combining eq(l 1.8a) with the work hypothesis and the flow rule gives

dWp = ffieP = a.dffu = dltr.A-^-) = 2/di (11.8b)

when, from eq(l 1.8b), it follows , - p
di = * ^ - (11.8c)

Correspondingly, we substitute into eq(11.8c): (i) 2/= 1 from eq(11.2) and (ii) 2/= 2
from eq(l 1.5b). Thus, dA is defined by Hill and Finnie respectively;

d i = »deP and d i = 3 d g (11.9a,b)

These scalars ensure that making the substitutions from eq( 11.9a,b) into eqs( 11.7a,b) will
lead to an identical equivalent rule of flow:

d^-d.'^] (11.10)

11.2.3 Incremental Constitutive Relations

Substituting eq(ll,2) into eq(11.6) gives the following relations between the six
independent components of stress and incremental plastic strains:
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= di

- %)]

and

(11.11a)

(11.1 lb)

(11.11c)

(lUldse,f)

Summing eqs(ll.lla-c) confirms incompressible plasticity (i.e. def = 0). Finnie's potential
(11.5b) gives identical engineering shear strains (ll.lld-f) but the coefficient dA in
eqs(ll.lla-c) is replaced by dJfi. Consequently, we must take dA appropriately from
eqs(l 1.9a,b) to ensure that the strain components agree.

11.2.4 Equivalent Plastic Strain

To determine Hill's equivalent plastic strain increment de ,pwe write from eqs(l 1.9a) and
(ll. l la-c):

F den
v - G d%F = (FG + GH+ HF)(au - <%){ & d i ' ) (11 • 12a)

GdEl{~Hdem
F=(FG + GH+HF)(am- %)(ffdip) (11.12b)

Hdem
p- Fden

p = (FG + GH + HF)(i^i- an)(grdep) (11.12c)

Combining eqs(11.4b) with eqs(11.12a-c) gives, eventually,

» D \ 2 / » » \ 2

2(F + G + H)

- Gdef

FG + GH + HF]

2

FG + GH +

FG + GH + HF 2L 1M 2N
(11.13)

Alternatively, from Finnie's eqs( 11.5a) and (11.10),

ii" = F

jf a

FG

C&

FG H

p

+ GH

22 - H

- GH +

+ H F

HF

2

+ .

2

t A
M

+ G

P 2

FG + GH + HF)

6M

(11-14)

Equation (11.14) reduces to an isotropic definition (9.6b) for constants of unity. To achieve
a similar reduction from eq( 11.13) the coefficients obey F = G = H and L = M = N= 3F.

11.2.5 Anisotropy Parameters

The parameters F, G, H, L, M and N can be expressed either in terms of the yield stresses
or the plastic strain increment ratios obtained from tension tests. Identifying aly, a^ and
a3y with the uniaxial yield stresses in principal material directions and oUy, e%y and any,
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with the shear yield stresses in each plane, Hill's equivalent stress (11.4b) gives coefficients
F, G, Hetc (unite of (MPa) ~2):

F = / tf /
G = % (l/0i/ + I / a / - l/flfc*) (11.16a-f)

H = W {Vag + 1/ff,/ - 1/ffj/)

N= 1/(2%/), L= 1/(2%/) and M= 1 / (2^ / )

Finnie's equivalent stress (11.5a) gives F, G, H etc as dimensionless constants;

F = < O 2

) 0 2

) , L= ff2/(3%/) and M=

where O z = (ffj/ + a£ + a^% Since absolute values of F, G, H etc, are rarely necessary,
it is more common to identify the ratios between them with plastic strain increment ratios.
For example, let r = dej/de,1" be the gradient to a plot between width and thickness plastic
strains from tensile testing sheet material along its orthotropie axes. The tensile stress lies
in the plane of the sheet so that in one test 0J is aligned with 1 and in another test e^ is
aligned with 2. A through-thickness compressive stress % aligns with 3. Eqs (ll.lla-c)
give corresponding r values;

r1 = de2
pide3

p = HIG (11.18a)
p p = HtF (11.18b)

= FtG (11.18c)

in which r3 = rjrj. The departure from unity in each r-value provides: (i) a sensitive
measure of degree of orthotropy and (ii) a useful measure of formability in sheet metals.

11.3 Orthotropie Flow Curves

11.3.1 Work Hypothesis

Hill's theory, which is based upon the work hardening hypothesis, is employed for the
following analysis. When in-plane stresses ffn, % and au are applied to a rolled sheet
material, eq(l 1.4b) reduces to

fir =

2 X

F + G + H
(11.19)

in which direction 1 is aligned with the rolling direction. Reducing the stress components
in eq(11.19) and substituting fromeqs(11.18a,b) gives equivalent, uniaxial flow stresses for
the rolling and transverse directions respectively:
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& =
3 r , d * r,

r2)

2(r, + r2

(11.20a)

(11.20b)

The equivalent stresses are the same when, from eqs(l 1.20a,b),

(11.21)

If def is the plastic strain increment under olt the two lateral strain increments become

de[
1 + r.

and hdei
1 + r,

(11.22a,b)

in which eq(11.18a) has been combined with eqs(l 1.1 la-c). Similarly, for a strain increment
ds/ arising from the tensile stress o^, the lateral strains become

1 + r .

P
and ds3

P = -
d £,

2

1 + r .
(11.23a,b)

' 2 x ' 2

Here dsf + d^F + dSjP= 0 applies to each test. Substituting eqs(l 1.22a,b) and (11.23a,b)
into eq(l 1.13) and omitting shear strain terms provides equivalent plastie strain increments
for each direction:

2(r ,

3r a(l + r,}

(11.24a)

(11.24b)

3r,( l + r2)

The equivalent plastic strain increments are the same, when from eqs (11.24a,b):

(11.25)

Equations (11.21) and (11.25) enable a transverse flow curve (2 - direction) to be predicted
from the axial flow curve (1 - direction). The validity of the theory may be checked from
the experimental measurement of the two flow curves.

It is also possible to predict compressive flow in the thickness (3 - direction) for a thin
sheet given its tensile flow curve for the 1 - direction. Equations (11.4c) and (11.20a)
provide the following stress relationships;
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& =

<h =

3(r,

2(r ,
(11.26)

(11.27)

Taking the thickness strain def to be positive, the lateral strains are found from the
ineompressibility condition;

1 + r,

1 + r,

(11.28a)

(11.28b)

where eq(11.18c) defines r3. Substituting eqs(11.28a,b) into eq(11.13) gives the equivalent
thickness strain:

2(r ,

r, + r 2 )
(11.29)

Equating (11.24a) and (11.29) relates incremental strains for the 1- and 3-directions:

del" =
r2)

r a ( l
dsf (11.30)

Where it is not practical to compress a thin sheet, the hydraulic bulge test (see p. 290)
will provide the required equivalence between in-plane and thickness strains. To show this,
put at = % and e% = 0 in eq(l 1.4b), This gives a similar equivalent stress to eq(l 1.26) when
oj replaces «%. From eq(ll.lla-e), the principal strain increments become

def = diGoj, def = diFer, and d ^ = - (G + F) d i ^

Expressing de/ and de^ in terms of rx, r2 and def confirms strain increments (11.28a,b)
and therefore eq(l 1.29),

11,3.2 Strain Hardening Hypothesis

Chakrabarty [13] defined an in-plane equivalent stress as

(G (H 4 + 2JVffi2

G + H
(11.31)
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Equation (11.31) gives & = an for uniaxial flow in the 1-direction, which differs from
eq(11.19). Intaking/= ft, the flow rule (11.10) gave the equivalent strain increment as

deP = (G + H)
2{G2 + GH + H2)

(11.32)

The following principal stress and strain relationships, between uniaxial flow in the 1- and
2- directions, are found from eqs(11.31) and (11.32):

def = d + r a )

(11.33)

(11.34)

Equations (11.21) and (11.33) agree, but eqs(11.25) and (11.34) show that the work and
strain hypotheses connect the two in-plane strains differently.

Thickness compression is assumed identical to in-plane, equi-biaxial tension. Hence the
1-and 3-flow relationships follow from substituting trn = On = ff3and au = 0 in eq( 11.31):

O = a, - (7,

' , * h) " '

(11.35a)

(11.35b)

i - P •Equation (1135b) agrees with eq( 11.27). The reduction to d e is found from substituting
eqs(11.28a,b) intoeq(11.32), with de = dfif:

(11.36a)

(11.36b)

(1

( ' I

(r,

(1

+ r,)

+ rj %

+ h)

+ r,) *

1

1

r * H

• r22

+ r i

+ r i

h r2

+ rir2

+ rf

+ rx
2

+ r.r7

11.3.3 Comparisons With Experiment

In Fig. 11.1, a comparison is made between the longitudinal and transverse flow in as-rolled,
6.35 mm (W") thick, copper sheet. The specification C101 (see B.S. 2870) refers to an
electrolytic, tough-pitch copper of 99.9% purity.
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300 i -

250 -

10 13 20

Figure 11.1 Longitudinal, transverse and thickness flow to copper sheet

(Key: 1,2 and 3 are experimental flow curves, o work hardening predictions to curves 2 and 3 as calculated from
curve 1; x strain hardening predictions to curves 2 and 3 calculated from curve 1. Inset figure shows axial versus
width plastic strain paths for 1- and 2- directions, from which r, and r2 are calculated from their gradients)

Waisted testpieces were machined from the 1- and 2- directions with their parallel gauge
dimensions 55 mm long by 12.5 mm wide, according to B S 18. Incremental tension tests
were performed in a tensile test machine. Permanent length and width changes were made
with the toad removed. The continuous lines 1 and 2 in Fig, 11,1 are the experimental true
stress versus natural axial plastic statin curves for the 1- and 2- directions. Shown inset are
plots between the width strain and axial plastic strains. Using de/ = 0, enables the
calculation of rx = 0.835 and r% = 0.934 from the slope to each path. Linear strain paths
show that ratios between F, G and H remain constant in plastic flow. This fact enables the
curve for the 2 - direction to be derived from the 1- direction curve in the manner outlined
above. Work hardening eqs(l 1.21) and (11.25) give <% = 1.03oj and e1

p = Q,971sf. Strain
hardening eqs(11.33) and (11.34) give £% = 1.03oi and e / = 1.0012e,'*. Applying these
relations to curve 1 provides the calculated points from work and strain hardening. Their
coincidence with curve 2 is good beyond 10% strain, where strain hardening appears sightly
superior. The thickness flow curve 3 in Fig. 11.1 applies to lubricated uniaxial compression.
To predict compressive flow (i.e. £% versus e3

F) from tensile flow, substitute r, = 0.835 and
rz = 0.934, in eqs(l 1.27) and (1130). This gives ffl, = Q.9840i and e/= 1.016*,'', for work
hardening. Making similar substitutions into eqs(l 1.35b) and (11.36b) gives equally good
predictions, OJ = 0.984ff, and e^ = LOOls,*", from strain hardening.

Figure 11.2 confinns that each hypothesis provides an equivalent account of the spread
in flow behaviour between the rolling and thickness directions. Points predicted from work
and strain hardening are indistinguishable, these all being consistent with the slightly lower
flow stresses observed under compression. With rx and r2 values marginally less than unity,
the sheet anisotropy was not severe.
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Figure 11.2 Equivalent tensile and compressive flow in copper sheet

0.3

11.4 Planar Isotropy

When shear stress is absent along material directions 1 and 2, eq( 11.19) reduces to a
principal, plane stress form:

(11.37a)

(11.37b)

% (F + G + H)O2 = (F + H)e^z + (G +

Dividing throughout by F, eq(l 1.37a) beomes

= constant

Putting <̂  = 0and oj = oXy in eq( 11.37b) gives r2(l+rj)«r,^ = constant, where oly is the yield
strength for the 1- direction. Equation (11.37b) becomes

rz(l oi* - 2rtr2olal = r2(l (11.37c)

where from eqs(l 1.18a,b), rt = H/G, r% = HIF. An r3 value is defined from a thickness
compression test as either r3 = GIF or r% = FIG, depending upon how the width and thickness
is arranged (see Fig, 11.3). It follows that one of the corresponding relationships holds:

r, r, = r-, or r, r, = r, (11.38a,b)

Let us consider any metal stock production processes, i.e. extrusion, cogging, hot and cold
rolling with interstage anneals. Assume that a given process results in a grain structure in
one of three directional forms shown in Figs 11.3a-c. Each schematic block arrangement of
grains indicates a preferred orientation. These impart a planar isotropic character to the
material when the preferred direction aligns with each orthogonal axes 1,2 and 3, as shown.

(a ) Flow behaviour independent of orientation in the 1-2 plane (Fig, 11,3a)

When grains have been compressed uniformly in the 1-2 plane, rx = rt = ru and aly = a^,
For uniaxial flow in the 3- direction, e.g. from a through-thickness compression test, both
eqs(11.38a,b) show rs = 1. The yield function (11.37c) becomes
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a? + <r?- 2"12

1 + ri2

1 + r,12

= 1

(11.39a)

(11.39b)

where x = aja^ and y = ffj/o^. Equation (11.39b) describes a yield criterion tor sheet
metal with normal anisotropy. Here the thickness flow stress differs from the in-plane flow
stress, the latter being invariant to its orientation (see also Section 11.8). We shall see that
in practiee an r variation often occurs in the 1-2 plane of rolled sheet metal. If the variation
is slight, a single, weighted f value replaces ra in eq(l 1.39b), i.e. F = W (r0 + 2% + r^ in
which 0°, 45° and 90° are orientations to the roll.

Figure 113 Planar isoiropy in three forms

(b) Flow behaviour independent of orientation in the 2 - 3 plane (Fig. 11,3b)

Grains with a preferential orientation aligned with 1 are token to be transversely isotropic
in their 2-3 plane. This gives r2 = r3 = rM and ^ = a,r Equation (11.38a) gives r, = 1 so
that eq(l 1.37 c) becomes

* * +
hi

IT.
(11.40a)

23

Normalising in the following manner we find

t a x \ \ (1 +rn)( c 2(^V.
'U. 2r,23 'UN

where, from eq( 11.37b),

'23

r2)

-2L = 1 (11.40b)

(11.40c)
'23
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Substituting eq(11.40e) into eq(11.40b) gives

2r,
x2 + y2 - 23

1 + r,
xy = 1 (11.41a)

Equation (11.38b) also gives rx = %2, which leads to an alternative yield criterion:

x2 + y2 -
4r,23

\ 1
2

xy = 1 (11.41b)

The two yield criteria (11.41a,b) together define an inner elastic bound of the yield locus.

(c) Flow behaviour independent of orientation in the 1-3 plane

Grains aligned with 2 are transversely isotropic in the 1-3 plane. This gives alf = c%y with
*i = *3 = % • Equations (11.38a,b) show that ra = rl3

2 or r% =• 1. Two corresponding forms
of normalised yield criteria follow from eqs(l 1.37c):

x2 + y2 -
4r,J

r.,Xl
and

xy = 1

x2
 + y2 -

2r 13

1 + r
xy = 1

(11.42a)

(11.42b)
13 ,

For a given r13 value, eqs(l 1.42a,b) identify an inner elastic bound for the yield locus. In
Fig. 11.4, a comparison is made between eqs( 11.39b), (11.41a) and (11.42b).

figure 11,4 Yield lod for transversely isotropic material
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Clearly, the loci from eqs{ 11.41a) and {11.42b) will coincide for similar % and ru values.
However, these loci can only coincide with the locus defined by eq( 11.39b) for r values of
unity in a fully isotropic material. Otherwise, it is seen that the rn, rn and rt3 values in the
plane of isotropy must differ if the three loci are to coincide. Within the first quadrant of
Fig. 11.4, it is seen that the resistance to yielding increases as r exceeds unity. The yield
stresses are more sensitive to changes in ra than to changes in ru or %.

11.5 Rolled Sheet Metals

Heavily rolled sheet metals are orthotropic in character, having their principal directions
aligned with the rolling and transverse directions. Assume that the strength and, therefore,
the flow behaviour (i.e. the stress-strain curve) varies with orientation in the plane of the
sheet but that it shows transverse isotropy as in Fig. 11.3b. The r values for orthotropic
plasticity are again used to characterise the dependence of flow upon in-plane orientation.

11.5.1 In-Plane r Variation

The off-axis tensile test will quantify in-plane sheet anisotropy, when the precise processing
history is not known. Conducting a number of tensile tests upon testpieces machined at
different orientations 0 to the roll direction (see Fig. 11.5) reveals the variation in r with 8.
Here the respective axes 1 and 2 refer to the roll and transverse directions in the sheet while
axes 1' and 2' refer to the testpiece axial and width directions.

Figure 11.5 Off-axis tensile testpiece in the 1-2 plane

The plane strain transformation eqs(2.9a-e) give off-axis strain increments

u u a e^/sin 20

ddn
p = d£u

psaf6+ dsn
pcosi0- dsn

psm20
ddu

p =~Vk (dfi/ - den
p} sin 20+ d%peos 20

(11.43a)

(11.43b)

(11.43c)

The in-plane stress state <%, o^ and au is aligned with material directions, 1 and 2, as
shown. The material strain increment eqs(l 1.1 la-d) are reduced to

(11.44a)
(11.44b)
(11.44c)
(11.44d)

£ n
p = dl l(H + G)an ~ H

en
1' = d i l(F + «)<% - ff oii

%p = - d i (G% + Fa®)
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A tensile stress a, aligned with the testpiece 1'- axis, transforms to give stress components
along the material axis as

% = ffcos2^ (11.45a)

a12=asm10 (11.45b)

(11.45c)

Substituting eqs(l 1.45a-c) and (11.44a,b,d) into eqs(l 1.43a-c)» leads to

V = dAo[(H +G) eos*(?~ 2M sinz#cos2#+ (F+fl)sin*#+ (JV/2)siB?20] (11.46a)

# + c o s 4 0 ) - (M2) sin22l?] (11.46b)

sin20[(F + H) s in20- (H + G)cos1*?]

+ (Hf2)(sint0sm20- cos20sin20) + (Nt2)sia20CQs20} (11.46c)

dem
p = d%p = - Uo{G eos2<?+ F sin26) (11.46d)

where e* is the principal thickness strain. Dividing eqs(l 1.46b,d) gives the r - 0 variation

d ^ + cos4*?) ~

The coefficients F, G, H and A? in eq(l 1.47a) may be found from measured re values for
testpieces with orientations: 9= 0°, 45° and 90°. Equation(l 1.47a) shows

(11.47b)

which confirm eqs( 11.18a,b). Equation (11.47a) is now re-written in these three r^-values:

_ 2r 0 r 9 0 (s in 4# * cos4ff) - [rQrm - riS(r0 + rn)]m220

2(rQsin20 + r w cos 2 ^)

11.5.2 Comparison with Experiment

Consider the off-axis tensile plasticity of four rolled sheet materials: C101 annealed copper,
C638 copper-alloy (3% Al, 2% Si, 0.46% Co), each 6 mm thick, and two plated steels 1 mm
and ¥A mm, used in the automotive and canning industries. Tensile testpieces were machined
with parallel gauge dimensions: 12 mm wide x 62 mm long. End widths were enlarged to
25 mm for mounting in wedge grips. Axial, width and thickness changes were all measured
following unloading in steps from the plastic range. An axial extensometer, with 50 mm
gauge length, was mounted upon each testpiece. The greater ductilities of the copper and
steel facilitated micrometer measurement of current width and thickness. A thickness
extensometer and post-yield strain gauges were used to determine the smaller thickness
changes and plastic width strain in copper-alloy.

(a) Copper
The linear, natural plastic strain paths found for annealed C101 copper sheet (Fig. 11.6)
confirm that the anisotropy parameters remain constant during deformation. The linearity
applies to 20% plastic axial strain, i.e. dn

p = In (l/lj = 0.2.
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Figure 11.6 Plastic strata paths for off-axis tension in cojjper sheet

Note that engineering strain axes would not produce a linear plot. Natural width and
thickness plastic strains are similarly defined: dn

p = In (w/wo) and 4/ - In (tito). Each
gradient in Fig. 11.6 conforms to the incompressibility condition

(11.48)

Applying eq(l 1.48) to the 0°, 45 s and 90° strain gradients gives r0 = 0.924, rw = 0.877 and
r45 = 0.924. These enable eq(l 1.47c) to predict the observed r variation fa all intermediate
orientations, as shown in upper curve of Fig. 11.7.

1.0 -

0 30° 60° 90°

Figure 11.7 Variation in strain ratios with orientation for C101 copper
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The agreement between theory and experiment is acceptable but this sheet does not depart
greatly from an isotropic condition (rB = riS = r90= 1). A second, as-rolled C101 copper
sheet gave lower r values, r0 = 0.631, r2 = 0.658 and rw = 0.705, which have again been used
with eq( 11.47c) to predict an rg variation, shown in Fig. 11.7. It would be appropriate to
describe the near planar isotropic condition of each material with a single r-value for a
measure of their formability. For example, the r value is often correlated with the largest
diameter blank that can be drawn through a die without tearing [17].

(b) Copper-Alloy
The strain paths for a copper-alloy sheet (C638) revealed a far greater degree of in-plane
anisotropy with r0 = 0.6, r^ = 1.15 and r90 = 2.03. The r value for the 90° orientation is
more than 100% greater than the isotropic, unity value within a range where axial plastic
strains did not exceed 1%. The orthotropy and limited ductility is a consequence of a 52%
thickness reduction by cold-rolling in three passes. Figure 11.8 again shows acceptable
predictions to the the r variation from eq{l 1.47c). Within re there is a more sensitive
measure of in-plane anisotropy than would be given by a width to axial strain ratio.

* Tin-plated steel

• Zinc-plated steel

30° 60" 90°

Figure 11.8 Variation in r value with orientation for rapper alloy and coated steel sheets

(c) Plated Steels

In practice, consistently high r values are most desirable if a sheet is to resist thinning when
being formed at moderately high strain, particularly under in-plane, biaxial tension [14-16].
Figure 11.8 shows that r > 1 for all 6 in a 0.85 mm zinc-plated, automotive steel (zintee) and
a 0.3 mm can body steel (tin plate). We have seen from eq(l 1.47c) that a homogenous,
quadratic yield function expresses the full re variation in terms of three known r values.
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Consequently, this prediction may not fit intermediate re values precisely. An improved
fit is provided by a higher order yield function. For example, a homogenous, cubic yield
function:/(fy) = Cmtmnag au am, gives re as

C, Qcos*0 sin2# + C, cos2<? sin*0
1 * (11,49)

The six parameters, Cx, C2.... Q , in eq(11.49) allow a good fit to most observed variations
in re [18]. Moreover, a cubic function can describe earing in deep drawn cups [19], There
appears to be no single yield function available to match all manifestations of plastic
anisotropy across a range of engineering alloys. The choice of function {Table 3.3, p. 84)
will reflect a match to more important influences with minimum mathematical complexity.

11.5.3 Equivalence Correlation

To establish an equivalence between the individual off-axis flow curves, the parameters F,
G, H and Nia eqs (11.4b) and (11.19) are required. For example, with the r values quoted
above for the second C101 sheet, eqs(lL18) and (11.47b) give G = l.5B3H,F= 1.52Hand
N= 3.74H, Substituting into eq(11.13), leads to an equivalent plastic strain increment:

0,993 1.282 +0.366 (11.50)

where deu
p, den

p and den
F, refer to increments of plastic strain aligned with the axes of

anisotropy (Fig. 11.5). In the off-axis test, the stain components, d^i,p and d ^ / were
measured. An inverse strain transformation E = M ^ ' M (from eq 2,5a) gives:

deu
p = d£n

p c

de22
p = d / / sin2<9+

deu
p = den

F = % sin 20+ ddl2
p (cos1*?- si

+de11
p ) =

(11.51a)

(11.51b)

(11.51c)

(ll.Sld)

Substituting eqs(l L51a,b.d) into eq( 11.50) provides the equivalent plastic strain increment
in terms of incremental plastic strain ratios:

(&if)2 = 1,25

+ 0.993

cos2©

cos2 0 +

sin2 d

2 dt\

. - I l i^s i n ^ _ ±\Zl-i±\tm26

cos2 0
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+ 1.2S2

+ 0.366

¥»] «.»8 • I

1 -
d / ' did

12

1 l l i

(11.52)

We can substitute into eq(11.52), either the measured ratios d/2 / /d/u*' and ddn
F

for each orientation, or, theoretical ratios derived from eqs(l 1.46a-d). Since no attempt was
made to measure the small order of shear strain d/w

p , in the off-axis tests, it is necessary to
employ the theoretical expression (11.46c) with eq(11.52). For example, with 0 = 45° we
find a strain ratio d / r / A i i ^ / = - 0.0237. Substituting this and din

p/dtfu
p = - 0,414 in

eq( 11.52), gives d s =1.0232 ddu
F. Hazlett, Robinson and Dom [20] demonstrated the

appearance of shear strain in off-axis tension of an anisotropic magnesium-aluminium alloy
(AZ3IX). Transverse lines, marked on the surface for all but the 0° and 90° testpieees, were
rotated by applying perpendicular tension. Note that engineering shear strain d j ^ 2

p Is the
sum of the rotations of transverse and longitudinal fibres, but gripping prevents the latter
from rotating. The equivalent stress corresponding to eq( 11.52) is found from eq(11.19):

&2 = 0.944 Oh2 - 0.731 an % + 0.922 % 2 + 2.735 oj2
a (11.53a)

Substituting eqs(11.45a-c) into eq(l 1.53a) gives

O = vt0.944cos*#- 0.73lcos*#sin20+ 0.922 sin*<9+ 0.684 sin*20]ff (11.53b)

where a is the stress applied parallel to the orientation 0. For example, with 0 = 45°,
eq(ll.53b) gives & = 0.982a Figure 11.9 gives the plot between eqs(11.52) and (11.53b).
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Figure 11.9 Equivalence correlation for off-axis tension in as-rolled copper
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The excellent correlation confirms a description of anisotropy in the sheet's plane with three
ratios: F/H, GfH and NiH. The ratios identify conveniently with the three r values supplied
by tension tests in longitudinal, transverse and 45° directions.

11.6 Extruded Tubes

Let direction 1 be taken as the the tube's extruded direction so that the principal material
directions 1, 2 and 3 become aligned with the tube's axial, circumferential and radial
directions respectively. Consider a thin-walled tube subjected to various combined loadings
that produce plane stress states aligned with these material directions.

11.6.1 Biaxial Tension

The combination of axial force and internal pressure gives axial and hoop (i.e. principal)
stresses, 0; and 0% respectively, in a ratio R =
one tenth of the mean diameter, radial stress

Provided the wall thickness is less man
in the wall is small enough to be ignored.

Symbol

X

n
•

•

Material

En 24

s. steel

s. steel

Pb alloy

Zircaloy

lef.

21
22

32

23
24Iff

Figure 11.10 Dependence of strain increment ratio upon biaxial stress ratio
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Making appropriate reductions to eqs(ll.lla,b) gives the ratio between the axial and
circumferential (hoop) plastic strain increments;

- 1) + GR _ (H/G)(R - 1) + R
F - H(R - 1) ' (FlH)(H/m - (H/G)(R -

rt(R - 1) + R r^ziR - 1) + Rr2

(rifr2) - rt(R - 1) r, - V2(R - 1) (H-54)

where rt and r% in eqs(l 1.18a,b) are found from separate axial and circumferential tension
tests. Figure 11.10 shows that eq{11.54) accounts for the manner in which the strain
increment ratio depends upon the stress ratio fer five materials [21 - 24]. With the exception
of En24, which conforms to a von Mises condition, it can be seen how materials with r values
different from unity in eq(l 1.54) depart from this condition. For example, the asymptotes
given for a zirconium alloy (Zirealoy) correspond approximately to rt = 1.3 and r2 = 0.7.

11.6.2 Tension-Torsion

(a) Strain ratios

Combining an axial force with torsion produces two independent stress components: an and
% respectively. Dividing eqs(l 1.1 la,b,d) gives the following ratios between increments of
shear, axial, diametral and thickness plastic strains, dj*,/, d%p, d%p and d%p, respectively:

(r t + r a ) ( l +2r45)<?12

r 2 ( l + rl)an (H.55a)

(11.55b)

(11.55c)

in which eq(l 1.47b) has been applied. Either eqs(11.55b,c) provides r, when diametral or
thickness changes are measured with twist and extension. A circumferential tension provides
r2 while r4S is calculated from eq(l 1.55a) for a given stress ratio R = onlon. Alternatively,
r values can be found from miniature tensile testpieces michined from the tube wall.
Equation (11.55a) predicts a strain increment ratio linearly dependent upon R. Figure 11.11
presents evidence of this behaviour for 5 materials [3,21,25,26], previously considered
with isotropic potentials (see Fig. 10.6). When anisotropy is present, eq(l 1.55a) shows how
r values explain a gradient different from 3 (by Levy-Mises). Test temperatures 300°C and
400°C apply to the 0.17% carbon steels (m.s.). On steel conforms to Mises condition at the
higher temperature. For the other materials at ambient temperature, it is seen how having
r values different from unity explains their departure from a von Mises condition.
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Figure 11,11 Dependence of strain increment ratio upon combined tension-torsion stress ratio

(b) Equivalence Correlation

The work hypothesis gives an equivalent stress in eq(11.19) as

(r, + ra)(l

Setting g = dfi2P/dgu
F in eq(11.13), the equivalent plastic sixain appears as

3 \ r a(I r2)

(11.56a)

(11.56b)

In the hypothesis of strain hardening, eqs( 11.31) and (11.32) correspondingly reduce to

O

ff,,
1 +

(r,
r 2 ( l + r , )

1 +
(1

4 ( 1 + r t + r,2)

(11.57a)

(11.57b)

-Piwhere eqs( 11.55b,c) have been used. To compare correlations of & versus J d e from each
hypothesis, four radial loading tests with R - <rniffn = 0.39, 0.92, 1.77 and 7.1, were
conducted on tubes machined from as-received, 99.8% pure aluminium bar. The testpiece
diameters were 25.4 mm id. and 28.4 mm o.d. Of the 75 mm parallel length, 50 mm defined
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a gauge length for attatchment of an extensometer. The latter housed displacement
transducers for the measurement of extension and angular twiit simultaneously. Reductions
to the outer diameter were measured with a micrometer. Force and torque were applied to
the testpiece through threads and a square register machined into each of its enlarged ends
[26]. Elastic sixains were removed from total strains using elastic constants determined from
initial elastic loading, i.e. E = 68 GPa, G = 25.5 GPa and v= E/(2G)- 1 = 0.33. The
resulting inelastic stttins enabled the strain paths to be plotted for plasticity under
incremental loading and, thereafter, creep under a constant load, as shown in Fig. 11.12.
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Figure 11.12 Anisotrqpic plastic strain paflis undo- combined temioB-tariion
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The axes in each figure correspond to the inelastic strains

rt 12

ll

4

Note that the paths soon become linear with increasing plastic strain. An account of the
initial rotations, which are characteristic of a material with pre-sttain history, will be given
in the following section. The ratios between the incremental strains in eqs (11.55a,b) are
identified with the slopes of linear paths in Figs 11.12a,b. The r values were also found
from miniature tensile testpieces, machined from the bar in longitudinal and transverse
directions. Equations (11.56a,b) give the equivalent stress and equivalent plastic strain from
the work hardening hypothesis:

O = 0.907 (1 + 2.05R2) m au

-p
= 1.103 [ 1 + 0 . 4 8 8 g 2 ] M e u

r

(11.58a)

(11.58b)

in which R = (%iffn is the stress ratio and g = dyn
pfd&n

p is the plastic strain increment
ratio, i.e. the constant slope to a linear plastic strain path. In the strain-hardening hypothesis,
equivalence is expressed through eqs(l L57a,b):

(11.59a)

(11.59b)
-p

=[ 1 + 0.33

Substituting the observed values of g for each R enables equivalence plots in Figs. 11.13a,b
to be constructed for each hypothesis.
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Figure 11.13 (a) Equivalence based upon work hardening
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Figure 11.13 (b) Equivalence based upon strain hardening
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Clearly, these experiments are unable to reveal which is the better hypothesis. Narrow
scatter bands result from the observed strain paths and confirm that orthottopic plasticity
theory may be employed equally well with either hypothesis.

11,7 Non-Linear Strain Paths

The foregoing equivalence correlations require linear plastic strain paths. Consequently, the
constant ratios between the anisotropy parameters F, G, H, L, M and N describe an
unchanging anisotropy. For this condition. Hill [27] showed that the parameters decrease
as yield stresses, in eq(l 1.2), increase in strict proportion to the amount of cold work. In
Finnie's alternative formulation (11.5a) F, G, H, etc, are dimensionless constants. The
literature reports linear plastic strain paths for orthotropic sheets of aluminium [28],
aluminium alloy [1,20,25] and mild steel [20,28]. In contrast, curved plastic strain paths
were found for alloys of magnesium [20, 29], titanium [30 - 32] and aluminium 3S [33].
Here, the gradient, i.e. the incremental plastic strain ratio, changes with increasing plastic
strain. An example of non-linear behaviour of aluminium alloy strip (HE 30TF) under
tension is given in Figs 11.14a,b. The stress-strain plots in Fig. 11.14a apply to a testpiece
with gauge dimensions: 12.7 mm wide x 50.8 mm long, machined from 9.5 mm thick, rolled
sheet Testpiece axes were aligned with the roll direction, 1 and the transverse direction, 2.
Total strains were measured with bonded, post-yield, strain gauges which also provided
elastic constants E = 78.3 GPa and v= 0.30 for the 1- direction, E = 77.4 GPa and v= 0.336
for the 2- direction. Corresponding E and v were used in Fig. 11.14b to remove elastic
strains from the total axial and lateral stains:

«fn' = du - a IE

dzi =dn~ volE

where l ' and 2' denote the testpiece length and width co-ordinates, i.e. in Fig. 11.5, l'coincides
with 1 and 1' coincides with 2 in each testpiece. The quadratic theory supplies an
incremental strain ratio din

Ffddn"" from eqs(11.46a,b) with 8=0° and 90°. Using the
normality rale and preservation of volume, it follows that the quadratic theory can match a
non-linear plastic strain path when F, G, H, L, M and N, become functions of plastic strain.
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Figure 11.14 Naa-inear tensile flow behaviour of aluminium alloy

In an alternative approach [34], the initial, constant values of the anisotropy parameters are
retained within a combined linear-quadratic theory (3.30). A reduction to plane stress gave

(11.60a)

= LqtTn + LzCfi2+L}ffa + fiiOiia + fi2*%Z + C3ffn <% + fi«oij2 + fi3°h°M + Gs^z°ia (11.60b)

when, from eq( 10.4b), the incremental stress-strain relations become

deu
p = U (3/7 dan) = d i (L, + 2Qt au + G3 % + fis ®n ) (11.61a)

dsn
p = d i (3// 3%) = d i (I^ + 2Qt a^ + Q3 ern + Q6 % ) (11.61b)

de , / = di (3// 3ff12) = d i (Ij + 2Q4 «r12 + Qs au + Q6(^2) (11-6 lc)

def =-(de^ + dsn
p)

0s)oii + (G3+:
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Applying the stress and strain transformations (11.45a-c) and (11.43a-c) to an off-axis
testpiece, the axial and transverse strains become

+ IL2 + 2Qt(<rsin*0) + Q3(acas*0) + Q6(W sin 20)]sinz0

+ [L, + IQ^asia 20) + Qs(trco&z0) + e6(o-sina0)]sin 20} (11.62a)

+ 2Ql(0cos%0) + Q3(asm20) + Q5(Viasifi 20)]sin20

2Q1(asin10) + Q3{aao^d) + Q6(¥i sin 20)]eos20

) + Q6(asin2#)]sin 20} (11.62b)

a
p =di{ - [Li + 2Q

+ [4 + 2fit(ff sin
2!?) + fi3(ffcos2#) + Q6(% sin 20)1*4 sin 20

+ [L, + 2aO4ffsin 20) + es(ccos20) + ggCcmn^Xleos 20} (11.62c)

def= - di[(Li+ £5) + (2Qi+ Q$)&ca&18+ (Q3+ 2Q2)£?sin20+ (Qj+ Q6)Vi sin 20] (11.62d)

Taking the ratios between the strain increments shows that the applied stress am retained
within the resulting expression. For example, putting 0= 0° and 90° in eqs(l L62a-d), gives
two plastic strain increment ratios for each orientation:

d^'zP
2 _ L2 + 03o- (11.63b)

Li

" CL> + 6 3 f f ) (11.63c)
(L, + L,) + (2QL

r
L ' + ^ g _ (H.63d)

It follows that when eqs(11.63b,d) are applied to Fig. 11.14b, with L,, Lj, Qx, Q% and Q3

assumed constant, the applied stress <7governs the ratio. Thus, by taking a= o -(^u ' ) from
Fig. 11.14a, enables each strain path in Fig. 11.14b to be found by numerical integration.

The yield function (11.60b), assumes different tensile and compressive yield stresses,
as seen in Fig. 3.12. Note that in using an associated flow rule, normality is implied between
the plastic strain increment vector and the yield surface. The stress-dependent, plastic strain
increment ratios, given in eqs(l 1.63a~d), suggest that the curvature of the yield surface is
continuously changed in the vicinity of an advancing stress. Clearly, this contravenes the
assumption that the yield surface expands uniformly within an isotropic hardening rule.
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11.8 Alternative Yield Criteria

There have been inconsistencies reported between the predicted and observed equi-biaxial
yield stress in materials with r-values less than unity [35]. To overcome this, further
generalisations have been made to Hill's criterion, including modifications made by that
author [36] (see also Table 3.3). The reduction of these criteria to a plane, principal stress
state is the most common form and these will now be examined.

If we identify Hill's parameters F, G and H with the r values in the usual way and omit
shear stress terms, the principal stress form of Hill's yield function (11.2) becomes

r i (°2~ O'i)2 + riiai ~ <h)% + rlr%{al- O02 = r 2 ( l + r1)ff1/ (11.64)

where aly is the yield stress for the material 1- direction. Here the principal stresses are
aligned with the material axes. In the modification proposed by Hosford [35], eq(l 1.64) was
written as

where a >2 is an integer and each modulus | | requires a positive stress difference. Values
of a were suggested lying in a range from 6 to 8 for pencil glide and from 8 to 10 for bcc
materials in general.

Hill [11]
Hosford [35]
Hill [36]

• Bassani[37]

-1 -0.5
Figure 11.15 Comparison between planar-isotropic yield loci

For a planar isotropic yield criterion we set ff3 = 0 and r = rx = r2 in eq(l 1.65), to give

ff,B+er,a + »-)<?•,- 0 ^ | a = ( l + r)CTi/ (11.66a)

If a = 2 in eq( 11.66a), the corresponding quadratic form becomes

ffi- al)
1 = 2{l + r)aly

2 (11.66b)
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which can be written as

4 - .

This is the planar isotropie form previously identified in eq(l 1.39a). In Hill's 1979
modification to eq(l 1.66b), a non-quadratic potential was proposed [36],"

| oj + q j m + (1 + 2r) | oi - 0i| - = 2(1 + r )erly
m (11.66c)

where 2a»ia 1. Bassani [37] employed different exponents in a non-quadratic yield criterion:

| a, + <* | * + {qlp){l + 2 r )0 i / - ' | Oi - a2 \' = [1 + (qlp) (1 + 2r ) ] oly* (11.66d)

where pi 1, qz 1 are integer exponents and r = f. A comparison between eqs(l 1.66a-d) and
flow data for two V* mm can-end steels is given in Fig. 11.15. Takingm = 1.5,« = 6,p = 1
and q = 2 in the respective criteria demonstrates the divergence between them for a material
with r = 0.874. Here, the equi-biaxial yield sfresses, found from bulge forming, exceed
the tensile yield stress in each r < 1 material [38]. The loci are sensitive to their stress
exponents, which control the curvature (and hence the strain path) in a region of biaxial
tension. It is seen that Hill's modification (11.66c) best deicribes this. Note, however, that
the small difference observed between tensile yield stresses in the rolling and transverse
directions, i.e. eriy/aly * 1, do not appear within these symmetrical loci. Hill [39] later
corrected for this by combining cubic and quadratic dimensionless stress terms in a criterion:

(pffj + qa2)
(P * ?) - — = 1

where a^ is the biaxial yield stress, p and q are constants and c combines the three yield
points in Fig. 11.15:

c 1 1 1
4, 4y

11.9 Concluding Remarks

The choice of yield function (i.e. the plastic potential) depends upon the initial condition of
a material. Generally, an isotropic potential will predict the plasticity in heat treated material.
Otherwise, an account needs to be made of crystallographic anisotropy resulting from
processing, particularly in rolled sheet and extruded bars. Hill's 1948 homogenous,
quadratic yield function, with its associated flow rule, provides a good account of plasticity
under radial loading of an orthotropic solid, e.g. a rolled sheet metal. However, certain
anomalies have arisen with a quadratic potential. Among these are the absence of a
Bauschinger effect and a positive difference between equi-biaxial and uni-axial yield
stresses. This has led to modifications with the addition of linear and/or cubic stress terms
and from using non-quadratic stress exponents. Increasing flexibility by these means allows
the anisotropy parameters to match observed behaviour more closely. As with isotropic
material there appears no particular advantage in using the work or strain hypotheses of
hardening for an orthotropic solid. The equivalent stress-plastic strain cerrelations from each
hypothesis would appear to be equality suitable within a normality rule of flow.
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Exercises

11,1 Derive the relationships between the components of Hm in eq(l l . l ) and the six anisotropy
coefficients employed with Hill's orthotropic yield function in eq(11.14).

115 Figure 11.16 shows an off-axis, combined tension-torsion test cylinder. Axial and shear stress
components (a;/, %*) are prodaced in the wall of a thin-cylinder by the combiaed action of tension
and torque (W, I). The material axes of orthotropy 1,2 are inclined to tube axis, while axis 3 remains
radial, as shown.

Figure 11.16

Show, from eq(l 1.4b), that the equivalent stress can be expressed as

where the ft - coefficients are given by

) cos*0+ (H + F) s in 4 #- 2U sin2#eosa#+ (3JV/2) sin22#

= (H + G) eos2#sin2#- (2H+F) sin2#sin 20+ H eos20 sin 20- 3i¥cos 2#sin 20

113 Show that the plastic strain increment ratios for the cylinder in Fig. 11.16 are given by

and "5 " 1 2

12

where coefficients ftt, fi% and 0} are defined in Exercise 11.2 and

5 = (2H + G) sin 2#sin2f - (2H + F) si 2 0+ 3iVsin 20 cos 20

UA If the stresses for the tube in Fig. 11.16 are applied in a constant ratio R = d\<Jdllt show that the
principal axes of stress coincide with the principal material axes when 0 = % tan ' (21?). What then
is the incremental plastic strain ratio dyi/Ma,,*1? Employ eqs(ll.l la-c) to show that the principal
plastic strain increments for this condition are
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3A
3

6A
3

a

a

H + G/2

1 + 4i?2

H + F/2

1 + 41?2

F + G +
G - F

Hint: The principal stress directions are found from by tan 20= 2dnldn

11.5 If the off-axis tube in Fig. 11.16 is subjected to a separate tensile force W and a torque T,
determine the corresponding d ̂ / / d / j / * ratios. Show, (i) in the absence of torsion, that the axial
plastic strain increment becomes

J7
and, (ii) in the absence of tension, the plastic shear strain increment becomes

For what orientations 8, do d^j,1" and &fn attain their maxima?

11.6 Show that when the thin-walled tubular specimen in Fig. 11.16 is subjected to torsion only, the
equivalent stress reduces to

where oja is the shear flow stress for the giveri orientation 0.

11.7 Conflnn that the Oexpression in Exercise 11.6 also applies when, under torsion, $is identified
with the relative rotation of the material's 1 - axis to the testpiece axis 1'. Take the two axes to he
aligned initially.

11.8 Show that the ratio between the shear yield stress o ^ and the tensile yield stress aiy is given by
eq(11.2)as

when the stress components are aligned with the principal axes of orthotropy. What are the
corresponding ratios between yield stresses: (i) GJ2J, and c ^ and (ii) CTHJ and e ^ ?

[Answer; % , / ^ y = [(H+Fyim)m, ofc,,/<%, =[(F+G)Kmim ]

11.9 Establish further relationships between the following shear and tensile yield stresses for an
orthotropiematerial: (i) % y and erly (ii) % y and o^, (iii) % y and <%j, (iv) a^lf and ojy , (v) % ? and

d d

[Answer: % , / o i y = KH+G)/(6L)]ia, % ^ = [(ff+F)/(6L)3!fl, 0 b , / ^ y

flS,,/«H, = l(H + G)/(6M)]ia, i%,,/«i, = [(ff + F)/(fiM)]w, %,/«%, = [(F + G)/(6M)]WI]

11.10 A sheet is transversely isotropic within the 1 - 2 plane (r = ro» = r^.). Show that plane strain
compression and simple tension are related through

p = (1 + r)otl (1 + 2r)m and dtlt = (1 + 2r) l s£jF / (1 + r)
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where Oj, ef are the stress and plastic strain for a tension test In plane compression p is the pressure,
dtft is an incremental through-thickness strain where t is the curent thickness (see Fig. 6,38).

11.11 Show that the variation in flow stress for tensile testpieces lying in the 1 - 2 plane with their
axes inclined at 0ta the 1- direction is given by

when a is defined from eq(l 1.4b). Hence show that the condition for a maximum or minimum yield
stress is given by

z 3N)/(2H+F~3N)

11.12 Repeat Exercise 11.11 for testpieces lying in the 1 - 3 and 2-3 planes. That is, show that the
yield stress variations are respectively

& = /2«r[(#+ G) cos*0+ (G + F) &m*0+ i4 (M - G) s in 2 20] ' m

& = J2a[(H+F)ms*0+{G + F)mn*0

for which the maximum or rninimum correspond to

t a n 2 g

2G + F - 3M 2F + G - 3L

11.13 What is the condition of instability when the off-axis tensile equivalence correlation for copper,
shown in Fig. 11.9, obeys the Swift law (9.44b)? Find the particular instability condition for a
testpiece orientation of 0= 45°,

11.14 A planar isotropic rolled material resembles that given in Fig. 11.3a. Following a further plane
strain process, which allows deformation to occur in the 2 and 3- directions, but prevents further
deformation in the original roUing direction 1, the structure is converted to that shown in Fig. 11.3b.
Assuming that the r value for each isotropic plane is similar, i.e. rn = r13, compare the elastic
boundary resulting from each process for plane stress states within plane 1-2.
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CHAPTER 12

PLASTIC INSTABILITY

12.1 Introduction

There are many examples where the influence of plasticity upon the load-carrying capacity
of a structure must be considered. A purely elastic analysis will supply the critical loading
at which plasticity first appears but the analysis will not extend into the plastic regime
without modifications. These can take the form of a change to the modulus of a material to
reflect the loss in stiffness of a strut, the introduction of empirically-based plasticity
reduction factors for plate buckling and the derivation of an appropriate sub-tangent under
multiaxial stressing. We may treat such problems with the plasticity theory appropriate to
the initial condition of the material. The Levy-Mises theory is adequate for an isotropic
condition but in orthorropie sheets such problems should employ anisotropy parameters, e.g.
the r values as discussed in the previous chapter. An example of the latter arises in the
determination of the limiting strains in sheet metal forming. The theory may be coupled to
either a diffuse or local instability criterion for the sheet material to determine the
combination of limiting, in-plane plastic strains. These strains are used in the construction
of a forming limit diagram.

12.2 Inelastic Buckling of Struts

12.2.1 Tangent Modulus

Engesser's modification [1] to the Euler's buckling theory accounts for inelastic buckling
simply by replacing the elastic modulus with a plastic tangent modulus. With this reduction
in stiffness, the section stress is given by

v*)
where L,, is an effective length that accounts for the particular rotational restraint exerted by
the end fixing. Within the range of slendemess ratios 50s Lel k •& 100, the effect of end
constraint on the plastic buckling load P is less than that of an elastic strut with similar end
fixings. For example, we should not assume that the plastic buckling load of a pinned-end
strut, lying in the same range, will be doubled by fixing its ends. However, for LJk s 50 an
elastic constraint is assumed and an equivalent elastic length Le = cL may be employed,
particularly when a safety factor is used. This gives: Le=L for pinned ends, Le= 1/2 for fixed
ends, Le= LJ%/2 for pinned-encastre end fixings and Lt= 2L for fixed-free ends fixings. The
tangent modulus E, = dc^de in eq(12.1a) is the gradient of the tangent to the uniaxial
compressive stress-strain curve within its plastic range (see Fig. 12.1). It follows from this
definition of E, that the buckling stress ffin eq(12.1a) must satisfy the following condition:
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- (12.1b)

Since a appears on both sides of eq(12.1b) it may be solved by trial. That is, a plastic
buckling stress a, is selected to be greater than the yield stress trB. Assuming that a stress-
strain curve is available, E, = Adde is found and eq(12.1b) is solved for LJ k. The solution
is correct only when LJk matches that for the given strut The procedure is aided when all
such solutions to eq(12.1b) appear as points on a plot of a versus Lel k. Alternatively, a
suitable empirical representation to the a versus e curve may be employed, the simplest
being the Hollomon law (9.39b), which is represented graphically in Fig. 12.1.

= Q,3

Figure 12.1 Hollomon carve with tangent modulus

Given that the stress-strain curve is described by

the gradient of its tangent is

(12.2a)

(12.2b)

where e0 and n are material constants. Substituting eq(12.2b) into eq(12.1b) results in an
equation that is soluble in a:

( \n( \in
\-Ar\ (12.3)

Equation (12.3) defines the Engesser's curve 1 in Fig. 12.2, this curve being valid for a net
section stress <r> ao. In contrast, Buler's elastic curve 2 in this figure applies to section
stresses a<a0 and is expressed as:

P
o — — =

A (v*)1
(12.4)
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(LJk)^ (V*W 120 LJk

Figure 12.2 Buckling curves (Key: curve 1 - Engesser, curve 2 - Euler)

To ensure an intersection between the two curves at a= aa, we first find Euler* s critical
slenderness ratio from eq(12.4):

\
2 5 )

Since (LJk)mUlI definei an intersection co-ordinate, substitution of eq(12.5) into eq(12.3)
leads to the condition

n<79 = Eea (12.6)

We then see that Euler becomes a special case of eq(12.3) when n = 1. Thus, a curve of any
0 < n < 1 value will pass through this common point [(LJk)^^, cjj. Correspondingly, the
intersection occurs at the common yield point {ea, cQ for Hollomon curves with different n
values (see Fig. 12.1),

Contrary to the Hollomon law, the stress in a plastic strut cannot be increased
indefinitely. The cut-off ordinate in Fig. 12.2 occurs at the ultimate compressive strength
au as shown. Thus, the critical value of LJk for an Engesser strut follows from eqs(12.3)
and (12.6) as

'Bag a\aJa_ ii n
(12.7)

12.2.2 Empirical Formulae

Empirical plastic strut formulae account for a range of short struts with LJk initially less
than the critical Engesser value (from eq 12.7) but they extend LJk partly into the elastic
range. Figures 12.3a,b show the range of interest in which section stresses may vary from
the ultimate value ffa to less than the yield stress aB. In each diagram the Engesser and Euler
curves, 1 and 2 respectively, intersect at point A. The empirical approach replaces the two
segments of each curve with a continuous curve that plots to the safe side and terminates at
au on the a- axis. The following strut formulae are available for this, the choice between
them depending upon the strut material.
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(a)

a

LJk

(b)

120

Figure 123 Empirical approximaians (3) and (4) compared to Euler (1) and Engesser (2)

(a) Straight Line
The straight line 3 in Fig, 12.3a is is simply written as

a=aull-q(LJk)] (12.8)

where q is a material constant. For aluminium alloy struts, eq(12.8) is arranged to intersect
the Euler curve at LJk = 80 while for other non-ferrous metals an intersection at LJk = 120
may be preferred. The Euler stress ordinate at each intersection is found from eq(12.4).
Substituting this into eq(12J) q is found. Typically, E = 75 GPa, au = 320 MPa and q = 8
x 10~3 for an aluminium alloy.

(b) Parabola
The parabola 4 in Fig. 12.3a provides a safer prediction for steel struts with effective
slenderness ratios lying in the range LJk s 120. This is written as

tr= aai 1 - b (Lei k) \ (12.9 J

where b is a material constant, found from known co-ordinates (a, LJk) at the intersection
with the Euler curve. Values of b for steels lie in the range (40 - 50) x 10"6 for ultimate
strengths between 400 and 500 MPa and with a modulus E = 210 GPa.

(c) Rankine-Gordon
Their critical plastic buckling load FEG is found from the condition

(12.10a)

where Pu=Aau is the ultimate load and P ^ = Aa. Re-arranging eq(12.10a) for PR 6 gives

P
u- (12.10b)RG

Substituting Pm separately from eqs(12.1a) and (12.3) with Po = %A gives two alternative
forms for FRG:
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A a
RG l2n

Equation (12.11b) is a more useful for combining with eq{12.6). This reveals material
constants aa, am E and n within the section stress:

a = (12.12)

Equation(12.12) appears as curve 3 in Fig. 12.3b for which the stress is a= aj{\ + ffjo^)
at (Le /Jb^ja. and lies on the safe side of the Euler curve 2. The slenderness ratio at an
intersection point B with curve 2. is found from equating eqs(12.4) and (12.12).

Example 12.1 An 800 mm long steel strut has a thin-walled, elliptical cross-section shown
in Fig. 12.4a. The mean lengths of the major and minor axes are 80 and 30 mm respectively
and the wall thickness is 3 mm. At its end fixings, Fig. 12.4a shows that the strut is free to
rotate about a pin aligned with its y-axis but it is prevented from rotating about its x-axis by
the rigid walls shown. Compare the allowable compressive plastic loads according to the
Engesser, parabolic and RanMne-Gordon formulae, using a safety factor of 1.5. For steel
take ffo = 300 MPa, aa = 450 MPa, E = 210 GPa and n = %.

ff.MPa

of. = 450

444
402

296

(a)

i 00

s
(Hi)

(b)

——v

> -

|

(iv)
/

/

1 LJk

0 16.96 S3.12 120

Figure 12.4 Elliptical section showing plastic budding stress

The required properties of the cross-section are:

A =aab =it [(83 x 35) - (77 x 27)] = 2073.45 mm2

4 =nab3lA = (s74)[83(33)3 - 77(27)3] = 1.1523 x 10* mm4

kx = J{lJA) = 23.583 mm

/, =s-|>a3/4 = (?z74)[33(83)3 - 27(77)J] = 5.1385 x 10s mm4

% = V(yA) = 49.782 mm
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The strut will buckle about the axis for which LJk has the greater value (this gives the lower
load). For the x-axis the ends are fixed, so Le = 400 mm and

LJ kx = 400 / 23.583 = 16.96

For the y-axis the ends are pinned so that Le = 800 mm giving

LJ k, - 800 / 49.782 = 16.07

Having established that budding is more likely to occur about the jc-axis the following safe
loads can be found.

(i) Engesser
Applying eqs{12.3) and (12.6) Engesser's plastic buckling stress is

= (210 x 103/300)w(ff/16J6)M = 1.339

a = 1.339 x 300 = 401.76 MPa

Hence the safe stress is 401.76 /1.5 = 267.84 MPa, from which the safe load is 267.84 x
2073.45 = 555.35 kN.

(ii) Parabola
Taking the intersection with the Euler curve to occur at LJk = 120, the corresponding stress
in eq(12.4) is

a=n%E/ (LJ kf = 143.93 MPa

and b is found from eq(12.9) as

b = (1 - 143.93 / 450) / (120)2 = 47.23 x 10" s

Hence the plastic bucking stress is

a= 450[l - (47.23 x 10*6)(16.96)a] = 443.89 MPa

Thus, the safe stress and load are 295.92 MPa and 613.58 kN respectively.

(Hi) Rankine-Gordon
The buckling stress follows from eq(12.12), in units of N and mm, as:

0 = 450
3 0 0 ^ x 2 1 0 0 0 0

3 0 0 'M16-96}3 = 296.1 MPa

Thus, the safe stress and load are 197.38 MPa and 409.27 kN respectively. Figure 12.4b
compares the three buckling stress predictions graphically. It is seen that Engesser gives a
valid stress (er < <?„) and that RanMne-Gordon (ff < oQ is rafter conservative. The
intersection between curve (i) and Euler's curve (iv) is found from eq(12.5) as LJk = 83.12.
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12.2.3 Wide Strut

Consider the compression of a wide, thin plate, thickness t, with similar length and width
dimensions, a and b respectively (see Fig. 12.5a). With unsupported sides, the strut deflects
laterally with uniform curvature while the cross-section bxt remains rectangular during
bending. Consequently, biaxial, in-plane stresses, a, and a,, exist in the body of the plate.

Figure 12.5 Buckling of a wide plate strut

With no dimensional change in the y - direction:

vox)
(12.13)

When b is small compared to a, the absence of ey results in anticlastic curvature, i.e. the
cross-section does not remain rectangular. The distortion arises from opposing lateral strains
induced within the tensile and compressive surfaces (the Poisson effect). Here ay = 0 and
the strains along the length and width are simply: ez = aJE and ey = - v aJE. Comparing
with eq(12.13) reveals a difference in sx between narrow and wide struts, i.e. it is necessary
to modify the flexure equation for a wide strut by the factor (1 - v2), From Fig. 12,5b,

Substituting from eq(12.13), with Mil = ajz, it follows that

With bending moment M =- Pw, the solution to the critical buckling load for a pinned-end

P k t e i S
 P *2E1

"~ ( 1 - v 2 ) a 2

Substituting PCT = acrbt and / = A&2 where ft2 = fz/12 leads to the section stress:

- v2)(a/kf
(12.14a)
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Setting Le = a{\ - v̂ )*4 for simply supported ends, other edge fixings may be accounted for
by re-writing eq(12.14a) as _ 2

nlE

in which
(12.14b)

h, =
- v2)

for fixed ends

for pinned-fixed ends

for fixed-free ends

Engesser's inelastic theory applies to these equivalent lengths when E in eq(12.14b) is
replaced by E,. For example, in the simply supported case CMfc)^ in Fig. 12.2 is identified
with the plate term: (1 - v%f*{alk). All other relationships, derived previously for plastic
buckling of strute, including the empirical approaches, can then be applied to wide struts.

12.3 Buckling of Plates

12.3.1 Uni-Directional Compressive Loading

(a) Simple Supports
Under a uni-directional compression, the critical buckling stress trx, for a plate with all four
sides simply supported, is given as [2]:

(aj„ = CD**/1) [(m/af + (nib? ] *(afr

(ox)cr= CDs-2/ tb1) [mbla + rfatmb]1
(12.15)

where D = Et3/ [12(1 - v1}] is the flexural stiffness, t, a and b are the plate thickness, length
and breadth respectively. The number of half-waves in the JC- and y- directions are denoted
by m and n respectively. For simple supports, the interior buckles with a half-wave (n = 1)
in the y - direction, as shown in Fig. 12.6.

13-_

J^nre 12^ Buckling of a thin, simply-supported plate under uniaiM compression

From eq(12.15), the buckling stress becomes

b2)[mlr+ r/mf (12.16)
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where r=afb. Differentiating for m-values that minimise eq(12.16) with integral r values:

= 2(m/r + rlm){llr - rim1) = 0

m/rz+l/m- l/m-ri/m3 = O

The condition m = r implies that the plate interior will buckle into an integral number of
square cells ax a each under the same stress. That is, from eq(12.16)

1 lcr tb2 3(1 - v2) { b)
The graph in Fig. 12.7 provides the buckling stress when non-integer values of r are taken
with particular values of m in eq(12.16).

(mlr + rim)

r = alb

Blgure 12,7 Effect of r and m on nniaxial buckling stress

The trough in each curve corresponds to eq(12.17) and at the intersections of these curves
where: r = i/2, i/6, V12 etc, m has been increased by one. This occurs when,froineq(12.16),

[ mlr + rim ] = [ (m + l)/r+ r/(wt + 1) ]

.-. r = ^m(m + 1)

from which: r = ^2 for m = 1, r = \/6 for w = 2, r = V"12 for m = 3 etc. Equation (12.17)
should not be confused with the buckling stress for a thin, wide plate acting as a strut with
its longer, parallel sides are unsupported (see Section 12.2.3).

(b) Other Edge Fixings
A number of approaches have been proposed for constrained edges. The simplest of these
employs the expression

^ 2 ) (12.18a)

(12.18b)

where the restraint coefficient Kr applies to any edge fixings when

Kr=(mlr)2+p + q (rim)2

Clearly, with restraint factors^ = 2 and q = I, eqs (12.18a,b) contain eq(12.16) in the special
case of simple supports. The dependence of Kr upon the two rotational edge restraint factors
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(p and q), plate dimensions (r = alb) and buckling mode m, has been established
experimentally in certain cases. Table 12.1 applies to the case of fixed sides.

Table 12.1 Restraint coefficients for a plate wifli fixed edges

r = a/b 0.75 1.0 1.5 2.0 2.5 3.0

11.69 10.07 8.33 7.88 7.57 7.37

As r increases, the effect of edge restraint lessens and Kr approaches the minimum value of
4 as found from eq(12.17) for a plate with simply supported edges. An alternative graphical
approach [3] employs design curves derived from the restraint coefficients. The latter supply
the ratio between the critical elastic buckling stress (c^)e for a plate with a given edge fixing
to that of a simply supported plate (eq 12.17) with a similar geometry r=a/l». For example,
Fig. 12.8 shows how the stress ratio varies with r for clamped and various mixed-edge
fixings. A similar graphical presentation has extended this to biaxially loaded plates [3].

3 r

to.
I I U

t t t t
b

A

2 r =
Figure 12.8 Plate buckling under compression
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(c) Inelastic Buckling
In thicker plates the critical elastic stress ( e ^ as calculated from eq(12.17), can exceed the
yield stress F of the plate material. The solution wiE be invalid because, with the use of £
and vin eq(12.17), linear elasticity is assumed at the critical stress level. Figure 12.9a
shows that where plasticity has occurred it reduces the buckling stress to a lower level (ffcr)p.
Figure 12,9b shows how tangent and secant moduli, E, and E, respectively, are used to
account for a plastic stress level.

a

0.

(b)

(ffJJE e s

Figure 12.9 Tangent and secant moduli

The secant modulus gives the total strain at a reference point n (see Fig. 12.9b) as

e»=^/E, (12.19)

The Ramberg-Osgood description [4] to a stress-strain curve gives the total strain under a
plastic stress:

(12.20)

(12.21a)

(12.21b)

(12.21c)

Substituting eq(12.21c) into eq(12.20) and multiplying through by Elan lead to a normalised
stress-total strain relationship

Combining eqs(12.19) and (12.20) for the reference stress aH gives

EIE,- \ = a(anIE)m-1

Differentiating eq(12.20) gives the gradient E, = da/de at point n:

Let ffH be the stress level at which E, = EH. Equation (12,21b) gives

s = \
ff miff.

(12.22)

where q, and m are material properties found from fitting eq( 12.22) to a stress-strain curve.
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Typical m values lie the range 16-29 for aluminium alloys and in the range 5-17 for steels.
The m value depends upon whether the material is in sheet or bar form. Figure 12.9a shows
that me elastic strain under (o^,)e is e= (a^JE, Substituting this value for s in eq(12.22)
allows a= (o^p to be found. Design date [5] employ & plasticity reduction factor (i<l with
a graphical solution for ( o ^ , :

H = (or,),/ (trcrX (12.23)

Both m and an influence ji in the manner shown in Fig. 12.10.

CO,
CO.

1.0

OJ

0.8

0.7

0.6

O G

1 1 1

0.5 1.0 CO.".

Figure 12.10 Plasticity reduction factor

Firstly, we find from eq(12.17) a critical elastic stress. This determines the ratio (atr)Jan

from which a ji value is found from Fig. 12.10. Equation (12.23) is then employed to find
(crcr)p as in the following example.

Example 12,2 A 320 mm square steel plate is 7 mm thick. It is is simply supported along
all sides and carries a uni-axial compressive stress. Determine the critical elastic and plastic
buckling stresses. What is the influence of clamping the unloaded sides upon the plastic
buckling stress? Take: E = 210 GPa, Y = 310 MPa, an = 450 MPa, v= 0.27 and m = 5.

The plate aspect ratio is an integral number r = 1. Equation (12.17) provides the critical
elastic buckling stress for simply-supported sides;

w2 x 210 x 103 7
320

= 356.59 MPa
x "'' 3(1 - 0.27 2)

Since this exceeds the compressive yield stress F = 310 MPa, a correction for plasticity
becomes necessary. Thus, (ajjq, = 356.59/450 = 0.792, when Fig. 12.10 gives fi = 0.916
for m = 5. Hence we find from eq(12.23) a critical plastic buckling stress:

( o ^ = 0.916 x 356.59 = 326.64 MPa

With the loaded sides clamped, Fig. 12.8 gives {acr\ - 1-7 x 356.59 = 606.2 MPa.
Correcting for plasticity as before: (acXJctn = 606.2/450 = 1.347. Figure 12.10 gives a
reduction factor ji = 0.753 when, from eq(12.23), the plastic buckling stress has been
increased to {ajw = 0.753 x 606.2 = 456.47 MPa.



 

PLASTIC INSTABILITY 383

12.3.2 Bi-axial Compression

Consider a simply-supported, thin rectangular plate axb with thickness t. Let uniform
compressive stresses ax act normal to b x t and oy act normal to a x t, as shown in Fig. 12.11.

t t t f t t f t '

Figure 12.11 Buckling of a thin plate under biaxial stress

When the stresses increase proportionately in the ratio P= arlax the actual number of half
waves of buckling are those which minimise ax. In general, this stress is expressed as [2]

= Dx2[(mfa)2 + (nib)2]2

t[(mla)2 + P(nlb)2]
(12.24)

where D is the flexural stiffness and m and n are the respective number of half waves m and
n for buckling in the x and y directions. In Fig. 12.11, for example, m = 3 and n = 1 is
shown. For a square plate, where a = b, buckling occurs wim one half wave in each direction
and m = n = 1. Equation (12.24) reduces to

h) = ^ i~y (12.25a)
1 '" 3(1 - v2){\ + P)

and in the case of equi-biaxial compression fl= 1, when eq(12.25a) gives

hi =6(1 - v2)\ a
(12.25b)

Another useful buckling stress ((rx)cr applies to b « a. Firstly, we must find the number of
half wavelengths of the buckled shape for the x - direction. Taking n = 1 for the much
smaller b dimension, eq( 12.24) becomes

= Dx2(m/r + rim)2

b2t[l + P(rlm)2]a2t(m2 + 0rx)

and m is found from the condition that (ox)cr is a minimum. This is

(12.26)
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d(aXJdm = [l +0(rim)1]2{mfr+r/m)(ltr- ri

[1 - (r/m)2][l + fiirtm)1] +

.:(rim)2(l-2fi)=l
This gives

m = r(l-2fi)m (12.27)

with the corresponding half wavelength alma rim = (1 - 2fi)'w. Substituting eq(12.27)
into eq(12.26) gives

2 * 2

bt2[l +#/(l - 20)] bh

It is apparent from eq(12.28a) that as P -*• ¥i the half wavelength in the x-direction
approaches infinity as the buckling stress becomes

{oXT-*&Dn%)l{bH) (12.28b)

The critical lateral stress follows from each of these solutions as {o^cr = fi(ax)er. These
stresses remain elastic provided they satisfy a von Mises yield criterion:

which gives

If (&x)cr exceeds this limiting elastic value a correction for plasticity may be made with a
reduction factor as before. When applying Fig. 12.10 to one component of a biaxial stress
it becomes necessary to re-define the abscissa as (ax)er/an' where an' = aj (1 - fi - ft1)*.

12.3,3 Local Buckling of Plate Sections

The straight, thin walls of an open section may distort without translation or rotation.
Localised stress concentations at corners may exceed the yield stress and cause either a
local crippling failure or a reduction in the resisitance to buckling by other modes. Strut

sections, consisting of straight sides such as I, T , ] ,"[_ and LI, as well as thin-walled closed
tubes, are prone to local buckling at sharp comers. When the strut length is at least four
times the section depth h, each Hmb may be treated as a plate with simple side support from
one or both its neighbouring limbs. A supported side will restrain an unsupported side. The
solution to the local elastic compressive buckling stress takes the common form

abe = KE(tlh)% (12.29)

where the thickness t of the sides t < d/5 where d is the semi-flange length. The buckling
coefficient K depends upon the d/h ratio and the neighbouring restraints within the four
sections as shown in Fig. 12.12. When v * 0.3, K should be corrected by a multiplying
factor ( 1 - 0.3a)/(l- v1). If abt from eq(12.29) is found to exceed the yield stress of the
strut material it again becomes necessary to employ the plasticity reduction factor <% =
with a suitable description to the stress-strain curve, as in the previous example.
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K

5.0

2.5

I dlh
0 0.25 0.50 0.75 1.0

Figure 12.12 Local buckling coefficient for uniform thin sections

In medium length struts, local instability results in a loss of stiffness but without complete
failure. However, the influence of local instability upon global buckling arising from flexure
and torsion is important. If the strut is very long the global buckling stresses are attained
well before the onset of local buckling. On the other hand, a short strut may carry more
compression beyond that producing local buckling. Final failure is estimated to occur under
a crippling stress oc, found from

^ = (0^fn}* (12-30)

where <7ai refers to the 0.1% compressive proof stres for the strut material. Test data shows
that eq{12.30) is accurate to within 10%.

Example 123 Find the buckling and crippling stresses for a short strut of \ section, given
its dimensions: h - 125 mm, d = 25 mm and t = 4 mm (see Fig. 12.12). Take E = 74 GPa,
v- 0.3, m = 10, aai = 325 MPa, and an = 280 MPa.

From Fig. 12.12, we find K = 4 for dlh = 0.2. Equation (12.29) gives the local elastic
buckling stress

orte = 4 x 74 x 103(4/ 125)2 = 303.1 MPa

This exceeds the yield stress because an = 280 MPa corresponds to E, = 2E as in Fig. 12.9b.
The ratio ffta/ffB = 303.1/280 = 1.083 is used with Fig. 12.10 to give a plasticity reduction
factor fi = 0.877. Equation (12.23) provides the local buckling stress

ab = M ffbe = 0.877 x 303.1 = 265.82 MPa

and using eq( 12.30), a crippling stress is estimated:

ac = (265.82 x 325) la = 293.92 MPa

12.3.4 Post-Buckling of Flat Plates

When a plate buckles the load may be increased further as the axial compressive stress
increases in the material along the side supports (see Fig. 12.13).
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_J-
Figure 12.13 Stress distribution in a buckled plate

Only a slight increase in axial stress occurs in the central budded material. Consequently,
if we assume that the whole load P is carried by two edge strips of effective width 2w, over
which cris assumed constant, the load supported becomes

P=2wta

With the edges of our equivalent elastic plate all simply supported, the critical buckling
stress is [2]:

(12.31a)

from which w may be found once (t^)cr attains the yield stress F:

w =
37(1 - v2)

(12.31b)

Taking v = 0.3 in eq( 12.31b) gives

w = 0.95 f / W F

Experiment shows that the coefficient is nearer 0.85. With other edge fixings along the long
sides, the asymptotic values of the critical elastic buckling stress ratio applies. These appear
in Fig. 12.8 in which eq(12.31a) defines the denominator. For example, when one side is
simply supported and the other is free, Fig. 12.8 gives 0erl0b = 0.106 and this modifies the
semi-effective width:

w = 0.31 tJEfl

12.3.5 Buckling of Plates in Shear

When the sides of a thin plate a x b x t are subjected to shear stress r, the principal stress
state (Oi, 00 within the plate becomes one of diagonal tension and compression. The
principal stresses are of equal magnitude: oj = rand oj = - r(see Fig. 12.14a). Hence, we
have a principal, biaxial stress ratio fi= - 1. Shear buckling occurs with parallel wrinkles
lying perpendicular to the compressive sttess <̂  (see Fig. 12.14b).
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-». t

(a) (b)

Figure 12,14 Plate in shear showing principal stress directions

Under this condition the plate cannot sustain a further increase in diagonal compression
though an increase in diagonal tension is possible. Thus, a compressive buckling of flat
plates arises under shear. The critical elastic shear stress is given by [6]

(12.32)

where & is the lesser side length. The shear buckling coefficient Ka depends upon the edge
fixing in the manner of Fig. 12.15 when v = 0.3.

12

K.

10
b

0.25 0.50 0.75
bla

1.0

Figure 12.15 Dependence of shear buckling coefficient upon geometry and edge-fixing

If v * 0.3 the K, value is factored by 0.91/ (1 - v2). Equation (12.32) supplies (rcr)8 but this
critical elastic stress will need further correction if it exceeds the shear yield stress k of the
plate material [7]. The plasticity reduction factor jti is obtained from Fig. 12.16 knowing an

and m for the material. This gives:

i%r)p = (12.33)
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0.5 1.0 1.5

Figure 12.16 Plasticity reduction factor in shear

2,0

Example 12.4 Find the critical buckling stress in shear loading an aluminium plate 2.5 mm
thick, 100 mm wide and 200 mm long. The longer sides are clamped and the shortes sides
are simply supported. Plate material properties are: k = 200 MPa, an = 350 MPa, m = 15,
£ = 70GPaand v=0 .33 .

For b/a = 0.5, the appropriate curve in Fig. 12.15 gives Ks = 9.0. Correcting for Poisson's
ratio gives: K, = 9.0 x 0.91/ (1 - 0.33 2) = 9.19. The elastic buckling stress is therefore,
fromeq(12.32),

(rje = 9.19 x 70 x 103(2.5 /100)2 = 402.1 MPa

Since this far exceeds the shear yield stress k = 200 MPa, a plasticity reduction factor is
required. The abscissa in Fig. 12.16 now has a value:

(rJJVn = 402.1/ 350 = 1.149

Interpolating for m = 15 gives an ordinate of p. = 0.52. Therefore from eq(12.33):

(TJF = 0.52 x 402.1 = 209.1 MPa

12,4 Tensile Instability

12.4.1 Uniaxial Tension

In Chapter 9 it was shown that the maximum load condition (9.13a) provided the relation
between nominal stress and strain at the inception of necking in a tension test. The various
Considire expressions (9.14a-c) employ nominal or true stress, engineering or natural
(logarithmic) strain according to the manner of presenting a stress-strain diagram. The
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empirical equations used to describe flow curves (see Figs 9.19a-f) employ true stress and
natural strain so these are to be used with eq(9.14b) as the following example shows.

Example 12.5 Determine the true stress and true strain at the point of tensile instability for
the HoUomon and Ludwik functions.

From eq(9.39b),

and from eq(9.14b), at the point of instability dff/de - a:

which shows that:
e = n and tr=

That is, the strain at which necMng begins equals the work hardening exponent for a given
material. The Ludwick law (9.43a) gives

Combining this with eqs (9.14c) and (9.43a) we find the instability strain

ep-n(l- F/ff)

giving a quadratic in the instability stress

a1-(Y+Ann)a+Ann*1Y=O

12.4.2 Orthotropic Sheet

The previous example assumes an isotropic condition, i.e. the analysis is independent of the
testpiece orientation. In orthotropic sheet both the condition of the material and the
orientation of the testpiece need to be considered. Recall that equivalence expresses a
current stress and strain state aligned with the material's orthogonal directions. Using
eqs(11.2) and (11.4a), a plane stress yield function/appears in terms of an anisotropy
parameters F, G, H and the equivalent stress & as

2 / = (2/3)(F + G + H) &1 = (G + H )o? - 2HOJ at + {F + H)a£=l (12.34)

Re-writing eq(12.34) in terms of the r values: r, = HIG and r2 = HIF, leads to an equivalent
plane stress expression:

O2 = r 2 ( l + rjo? - 2 r 1 r a g 1 g 2 * r , ( l + rt)aj ^ ^

The equivalent plastic strain increment is found from the plastic work expression (11.8b):
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Fromeq(12.35),

(12.36)
3(1 + r, + r2)

When a tensile testpieee is aligned with the sheet's rolling direction the equivalent stress
follows from eqs(12.35) as

, 3 r a ( l + r.)ff'

2(r, + rxr2± ra)

where ax m the tensile stress. The lateral steain increments are

P defP r.def
and

1 + r.

(12.37)

(12.38a,b)

Substituting eqs(12.38a,b) into eq(12.36) gives the total equivalent plastic strain

2(r, + rx
(12.39)

Ifwe write eq(12.37) as O - Kat theneq(12.39) becomes i F = (s[)IK where X"is the
square root of the coefficient containing r, and r2. It follows that the instability condition
(9.14b) applies to the true stress-strain curve for the 1- direction as

(12.40a)
Equation (12.40a) may be written as

da
I x d*P do

de, K

giving dBr
= KD (12.40b)

so that the reciprocal of K becomes the strain intercept (i.e. z in Fig. 12.17) made by the
-ptangent to the O versus e curve at the point of instability.

Figure 12.17 Suk-tangent to an equivalent flow curve
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If we approximate this curve with the Hollomon law (9.39b) this gives d Old e = n &fe
from which K = nfs . The equivalent strain at the point of instability is therefore
e = nIK. It is also possible to predict this strain for off-axis testpieces using a single flow
curve equation and the strain transformation equations in a similar manner [8].

12.4.3 Subtangent

We may extend the previous instability analysis to problems involving more than one sttess
with the use of equivalent stress and plastic strain. Equation (12.40b) shows that this will
modify Considfire's condition to

d&tdiP = Olz (12.40c)

where z is the subtangent that defines the particular problem. Figure 12.17 gives a
geometrical interpretation to eq( 12.40c) in which z is the intercept along the strain axis made
with the gradient d Old e of the tangent and the ordinate O as shown. Clearly, for a tension
test upon isotropic material z = 1 since O and e are, by definition, the axial stress and axial
plastic strain in that test. For tension upon an orthotropic sheet, discussed above,

J_
K

2(r, + r2 + r, ra)

3r 2 ( l + r,)

Other problems require z to be found usually from combining a maximum pressure
instability criterion with constitutive relations defining the material condition. The
conversions will enable & and e to be written in terms of a single dependent variable
allowing the application of eq( 12.40c), as the following examples will show.

(a) Spherical Pressure Vessel

Let the pressure vessel's isotropic steel have an equivalent stress-strain curve represented
by a Swift law:

& = ag 11 + e *7 sg i

It is required to find expressions for (i) the internal pressure at which a bi-axial tensile
instability occurs, (ii) the equivalent strain and (iii) the maximum hoop stress and strain
reached at the point of instability. The hoop and meridional stresses are ag=a$=prfZt, from
which

In ag= In (p/2) + In r - In t

dff9/ f%= d p / p + d r/r - dtft

Since dpfp = 0 at the point of instability and deg
p = dr/r, def = dtlt then

dael0g = ds/ - der
p (12.41)

For the Mises equivalent stress (9.2d) we replace subscripts 1, 2 and 3 by 0, $ ^ d r to
identify the stress components: OJ = ag, £% = o^ = ae and (% = ar = 0. Thus:

0 = JL^O + ff#
2 + al = ae (12.42)
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The Levy-Mises equation (9.29a-c) gives

de/ = (2 dM)ael2 = de/

de/ = - (de/ + de/) = - 2 de/

.; de/ = de/ = - de/12 (12.43)

when from eq(9.6d) the equivalent plastic strain increment is

der= ^2/3) A(AB/)% + (de/)2 + (- 2<te/)2J = 2 de/ (12.44)

d&ldeP =

From eqs(12.42) and (12.44):

where, fromeqs(12.41) and (12.43)

dojdei = crs(l - deft dej") =

i P = 3S-/2

Thus, in the equivalent plot of Fig. 12.17, the subtangent value is z = 2/3. The equivalent
plastic instability strain is found from the Swift law:

d&fde1" = n&l[ea(l + eFfeJ] = 3012

:. eP = 2«/3 - eo

from which the maximum hoop strain is eg = ¥t e and the equivalent stress at instability
is & = ao[2nf(3eo)] ". Since O - ag- pr/2t, this gives the critical pressure as

2ta ( 2n ) "
» | Z « . (12.45)

(b) Cylindrical Pressure Vessel

For a thin-walled, closed cylinder the stesses are or - 0 and c s = pr/f = 2ov Hence
eq(12.41) again applies to the point of instability. The equivalent stress eq(9.2d) gives

(12.46)

and from eq(9.29a-c), it follows that de[ = 0 and:

de/ = (2 dM)[arg - W(0 + %a^\ = (dA/2)ag

der
p = (2 di/3)[0 -

(12.47)
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The equivalent plastic stain is, from eq(9.6e),

d i ? = (v*2/3y[(d«r/)2 + (- def)1 + (Q)2] = (2 M3>)de£ (12.48)

Combining eqs(12.46) and (12.48) gives

d ff/di P = (3dag) / ( 4 d e / )

where, from eqs(12.41) and (12.46),

dDldeP= §ioi,(d£/ - der
p)i{de/) = 3ag/2

i.e. a subtangent of 1A/3 in this case. Hence from the given law

daldeP = nOl{eo + eP) =

.-. eP = nN3 - e0

The corresponding equivalent stress is 6 = ao (n / v*3 ea) ", giving a critical pressure as

12.5 Circular Bulge Instability

The attainment of maximum pressure in a bulge test is similar to that for a spherical vessel.
However, eq( 12.45) is inappropriate because the bulge continuously forms out of the plane
of the sheet. Consider the section of the bulge shown in Fig. 9.16 in which an instability
arises from bulging isotropic material in a circular die. The radius of curvature at an instant
where the current height is h, is given by:

R = (a2 + ht)/(2h) (12.49)

where a = D/2 is the radius of the circular die and A is the bulge height. The in-plane, equi-
biaxial stress at the pole consists of hoop and meridional components (see eqs(9.33a,b)), as
with a spherical vessel:

ff9=a4=pRf2t (12.50)
Differentiating eq(12.50) gives

Sere/ae= 4?/p + Mm - &/t (12.51a)

where der
p =dtft defines the pole thickness strain. Setting dp/p = 0 in eq(12.51a) gives an

instability condition

{\lao){daeIder
F) = - 1 + {UR){Ml8e?) (12.51b)
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The hoop ami meridional pole strain increments are each equal to MR so it follows from
the incompressibility condition that Sef = - 23hfR giving Shldef = ~ ViR. Also, from
differentiating eq{ 12.49), SRJSh = 1- R/h and, therefore

- R/h) (12.52)

Substituting eq{ 12.52) into eq( 12.51b) gives

±^l = ±Ja_ = _l+± (12J3)
<*e de? & §'sF 2 2h

We have readily converted the left-hand side of eq(12.53) into equivalent stress and stain
since & = a^ = agsad de = deF at the pole of a bulge (see eqs(9.33b) and (9.36a)).
The term RI2h within the right-hand side of eq(12.53) appears from an integration involving
eq(12.49) and a series expansion as follows:

= - 2 j dMR = - 2 fh 2hdhl(a2 + h2) = - 2 hi [2Rh/(2Rh - h2)]
J o

1 - MZR = exp (er
pm = 1 + sr

pH + {er
p)%® + ...

Rf2h=-_

= - [1/(2O1I1 - efM + (*??*& - 1
« - l/(2e,0 + 1/8 (12.54)

in which squared strain is neglected. Note that ^.F is negative since the pole material thins
but, by taking e = eF as a positive quantity, it follows from eqs(12.53) and (12.54) that

_d£_ =[^.-_I_] * (12.55)
de \ ° 2s )

Comparing eq(12.55) with eq(12.40b), the sub-tangent is written as [9]

- = •£ - 4? (12-56)
_ p *

where fij is the equivalent instability strain. Combined with Swift law (9.44b), this
subtangent becomes

I = Z— (12.57)

When eqs(12.56) and (12.57) are combined e, becomes one root to the quadratic:

( i / V + [a. - (4/ ll)(2n + 1)]if - 4eJ 11 = 0 (12.58a)

In the case of an annealed material, where ea - 0, eq(12.58a) provides

if = (4 / 1 l)(2n + 1) (12.58b)

Equation (12.58b) will also apply for a Hollomon hardening law (9.39b). Alternatively,
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using his own hardening law, Swift [10] identified the critical pole strain as a root to the
cubic equation in et . If we use a Hollomon's hardening law instead, Swift's analysis results
in the following quadratic equation;

- F -P; ) 2 - (« + 33/10) ef+ (9/10)[l + ^(363/50)] = 0 (12.59)

For example, with a hardening exponent n = 0.6 for annealed stainless steel, we find er as
0.8 and 1.26 from eqs(12.58b) and (12.59). These compare with i / = 0,77 from eq(12.58a)
on taking eo = 0.048 for this material.

12,6 Ellipsoidal Bulging of Orthotropic Sheet

We may extend the circular bulge analysis to a more general problem of ellipsoidal bulging
of orthotropic sheet metal. The problem is simplified when the rolling direction of the sheet
is aligned with the minor axis of the die aperture (i.e. the major principal strain direction),
as shown in Fig. 12.18.

Figure 12.18 Ellipsoidal bulge geometry

The principal radii of curvature are

and R2 = (h1 + a1) I Ih (12.60a,b)

where ft is the bulge height and a, b are the semi-lengths of the major and minor axes of the
die aperture respectively. Figure 12.18 shows the principal stress state at the pole, from
which the corresponding strain increments are

def = dhfRt = 6JL [H (cr,

de/ = dh/R2 = di [F^ - H fo -

Dividing eqs(12.61a,b) allows the stress ratio to be found:

Q = cfc/oi = [J8, + * , ( ! l/rt)J

(12.61a)

(12.61b)

(12.62)
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Given a lateral pressure p and current thickness t, the membrane equilibrium equation for
the pole's in plane principal stresses is [9]

- p /1 (12.63a)
which may be written as

crt=pR/t (12.63b)
where

R = R^l (Rz + QRt) (12.63c)

12.6. J Instability Strains

Differentiating eq(12.63b) and setting Sp/p = 0 gives the condition of instability as

fer/Gj = M/R - de3
p (12.64)

where
SRfR = (BRidR^lMJR) + ldR/dR2)(SRt/R) (12.65a)

Now from eqs(12.60a,b) and (12.63c)» eq(12.65a) becomes

MR = # dR, //?! + O M2/R2 (12.65b)
where

= 2 ( l l / r 2 ) [ 2 g ( l l / r 1 ) ^ ( l l / r 2)]

[2 + q(l + l /r2) + (1 + l / ) / ] [ l (1 l / ) ]

Q _ (1 + l /r2) + 2(1 + l / r , ) ( l + l / r a) /g + (1 + l / r t ) / g
2 ] {12.66b)

[2 + f ( l + l / r a ) + (1 + l /

in which 9 = R^Ri. Dividing eq(12.64) by def and introducing eqs(12.65b) leads to

- (l/oi)(iJffi/&jF) = - 1 + (mR1)(M1/Sei
p) + (nm^(m2/de/) (12.67a)

Introducing, from eqs(12.60a,b)» the following relationships;

^Ri/& = 1 - RJh, SRJSh = 1 - i?2/A and MSe3
p = - «,i?2/ (i?i + i?z)

where <5%P = - (Sel
p + 3ef% eq(12.67a) becomes

ffi)(foi ISef) = ~l- mi- Rilh)l{l +R1tR1)- O(l- R2/h)/(l + ^ 2 / « ! ) (12.67b)

Equation (12.67b) will supply the critical subtangent at instability when ax and Se3
p are

converted to equivalent stress and strain. To do this we use reduce eqs(l 1.4b) and (11,13)
to one dependent variable as follows:

O = Jfffj, deF = Z d e f (12.68a,b)
where
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X =
i ( l Va + fi'r^l

»W

a + &

d*,'
• « **> N

(12.69a)

f l + c ^ i (12.69b)

The coefficients a, & and c in eq(12.69b) are

a = [2 (r, + ra +1^ r2)(l + r 2 ) ] / [3 ra(l + r, + ra)]
fe= [2 (r, + ra + r,ra)(l + r , ) ] / [3 r%(l + r, + ra)]
c = [4 (r, + r2 + r , r 2 ) ] / [3 (1 + r, + ra)]

The thickness strain follows from the incompressibility condition as

Se%
p= - {Sef + Se/) = - (1 +RlfRi)fisiP (12.69c)

Combining eqs(12.67b), (12.68a,b) and (12.69c) and applying eq(12.40b) leads to the sub-
tangent expression

1 _iRi+R2)
l +

r j ) - Q]f 3 z

Q/r2) 2B
-p

Q[Q{1 + l/r3) -

(1/r, + Q/r2) (12.70)

Taking 1/? = nle from the Hollomon law enables eq(12.70) to be solved for the
equivalent strain at instability. The pole strain follows from eqs(12.69a,b,c) as

-p

* ' = — , «,' = — * ' and £3
P = -(ef + &f)

Z i?2

For example, with a circular bulge setting Rx = i^, eq{12.70) gives

z{n(l /r , + fi/r2) + #[(1 + 1/r,) - Q] + Q[Q{\ * l/ra) - 1]}
g = —J, 1

1/r,) - fi] + fi[O(l + l /r a) -

Also, by setting r% = r% = 1 for an isotropic sheet gives # = 1/3, fl= 2/3, Q = 1 and Z = 2, so
recovering eq(12.56) from eq(12.70).

12.6.2 Pressure Versus Height

So far we have dealt with the pole instability condition only. One ready measure of prior
pole deformation is the pressure versus height curve, which may be predicted from
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eq(12.63b) and (12.68a) as
p = at/RX

The current thickness t follows from the thickness strain e/ as

Now from eqs(12.6Oa»b)
1 +

i 2h2

h2 + a3

Substituting eq(12.73) into eq(12.69c) and integrating:

, 2 j . „% J. 1.2

where

p _ 2h2 + a 2 + b2 p
— — ——-. 0

h2 2

o h2 + b

eF = Ze[ = 2 In | 1 + —

(12.71)

(12.72a,b)

(12.73)

(12.74)

(12.75a)

(12.75b)

Combining eqs(12.74) and (12.75a) and substituting into eq(12.72b) gives the current pole
thickness:

- I (12.76)

Thus for any given h value we may find e from eq( 12.75b), when O follows from the flow
law chosen for the material.

h, mm
Figure 12.19 Jtasure versus height for ellipsoidal bulging through S dies
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The predicted pressure follows from eqs(12.71) and (12.76). For example, this procedure
has been used [11] with Hollomon's law to predict thep, h curves for elliptical bulging of
an automotive steel (where A = 570, n = 0.385). In each of 5 dies oil is pumped to the
underside of the disc so forming a circular or elliptical bulge depending upon the die
aperture. The major axis of the latter was constant at 180 mm while the minor axis varied
with the die aspect ratios; b/a=l, 0.90,0.79,0.67, and 0.45. Sealing was achieved with a
rubber O-ring in the lower ring and by a circumferential bead in the blank which formed
when the top and bottom rings were bolted together. A pressure transducer was eonnectsed
to the oil feed. A dial gauge measured the pole height h above the die surface. In all the
present tests the rolling direction was aligned with the minor axis. Though mere is not
complete agreement with the experimental curves, Fig. 12.19 ihows that the S-shaped curve
and a pressure maximum at instability are reproduced satisfactorily.

12.7 Plate Stretching

There are a number of theoretical predictions to the instability arising from in-plane, biaxial
stressing of thin sheets. Those reviewed in [12-14] all appear as particular sub-tangents z,
within the Considfire expression (12.40b). In this section we shall examine the possibility
of both diffuse and local instability conditions promoting necking in a thin sheet. Since
either condition places a theoretical limit on the strain available for forming, the two
predictions may be used to construct a material's forming limit diagram (FLD).

12.7.1 Diffuse Instability

In the bulge test, where both in-plane strains are positive, a visible neck does not form
instantly with the attainment of maximum pressure. Instead, thinning spreads around the
pole at this pressure showing that there still remains useful strain for forming before a local
neck finally forms into a crack. A similar diffuse instability condition arises in thin flat
sheets under in-plane biaxial tension. Swift [10] and Moore and Wallace [15] identified this
condition with the simultaneous attainment of maxima in applied perpendicular forces.
Figure 12.20 shows a sheet with rolling direction (1) aligned to the major principal stress.

Figure 12 JO Sheet orieaBtion and co-ordinates

The following plastic strain increment ratios are found from eqs(12.61a,b):
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r =
*«,'

ra[r,(l

r,[ra(l

r2U~
- Q)

-Q)

+ 1]

- Q]

(12.77a)

(12.77b)

where - 1 < (Q = e^/oi) < 1. The equivalent stress is again given by eqs(12.68a)» i.e.
a = Xox, where X has been defined in eq( 12.69a). The equivalent strain is written from
eq(12.68b) as e P = Zsf where Z now follows from eqs(1236) and (12.77a) as

(12.78)

in which a, b and c appear with eq( 12.69b). Now, at any instant in the deformation,

oa, 99"

da3 do,
So,

(12.79)
I _, L X * X _

where from eq(12.35):

= 3 g j r 2 ( l +T,) - Qrir2] (12.80a)

2ff(r, + r2 * r^)

( 1 2 - 8 0 b )

r,ra)

Assuming homogenous deformation and that a neck band forms perpendicular to the major
principal stress direction, the simultaneous instability conditions apply:

°l = er, and —% = o2 (12.8 la,b)— w M tuiu _ _ _ _ _

6B? Se2
p

Equations (12.81a,b) and (12.77a) lead to

So*. <y, as?
— i = ——^ = Qw (12.82)

Substituting eqs(12.80a,b) and (12.82) into eq(12.79);

Q 00T = J^ j£J 0H7- (l_&_O3aJ(

where it depends upon rls r2 and 0 as follows;

+r1r2)[rl{l - Q) + 1] (12.83b)
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The sub-tangent z is identified from combining eqs(12.68a,b) and (12.83a):

- ^ = - ^ (12.84)

Comparing eq(12.84) with eq(12.40c) shows z = X*Z! K and we may substitute for X, Z and
JTfrom eqs(12.69a), (12.78) and (12.83b) to give

* [ | d + h + r
2)][Cl + 1/r,) - 2Q + G2(l + .

z = N l 3 J l ; J (12.85a)
+ 1/rj)2 - 0(1 + 2/r,) - e 2 ( l + 2/ra) + Q3(l + l / r 2 ) 2

~ P P ~ P

Knowing z allows s to be found from which the component strains are ex = s IZ and
s/ = w£jF. An alternative expression [10] leading to the diffuse instability subtangent zD

in eq(12.85a) employs the flow rule with the yield criterion/in eq( 12.34):

J ^(df/d^f <T2(df/da2f

12.7.2 Local Instability

For simple tension of a thin strip, the transverse strain is negative and a local neck can occur
obliquely to the applied stress. Similarly, under in-plane, biaxial plate stressing a negative
transverse strain is crucial to local neck band formation. As with the onset of necking in a
tensile test, it has been suggested [16] that local neck formation in a plate requires plane
strain deformation, irrespective of the original straining path. This means that for a groove
to form strain is prohibited along its length as widening and thinning continues. The
condition for the initiation of local necking is that the maximum force per unit width of plate
reaches a maximum. Thus, in Fig. 12.20 when Q = oj/ffj is constant, a condition of local
instability occurs when force T% = ax t aligned with the sheet's rolling direction reaches its
maximum. This gives

<ST, 1TX = <Joi/oi + Alt = 0 (12.86)

Now from eqs(12.68a,b) and (12.77a),

Sei
p=dtlt^-{l + w)SifIZ and S = Xal (12.87a,b)

Substituting eqs(12.87a,b) into eq(12.86) gives

from which the subtangent of local instability is

z = Z?(l + w) (12.89)
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Substituting for Z, w, a,bmdc from eqs(12.69b,e) and (12.77a),

1 + w =
r^l - fi) + 1]

= y a + bw2 +

r, + r2) - Q)**

(12.90a)

(12.90b)

From eq(12.89), we divide eq(12.90b) by eq(12.90a) to give z:

z =
Q/r2

(12.91a)

An alternative expression leading to the subtangent (z j for local necking uses the flow rule
and yield function/in eq( 12.34) as follows [17]:

± = ! i 1 (12.91b)

in which & appears in eq(12.35). The equivalent instability strain follows from HoUomon
as ex =nz or, from Swift (12.57), as et =nz- sa. The components of el are e? = et fZ
and e[ = wef. Equation (12,91a) is important when e/ is negative for - l s g s 0.5 since
a local groove will form at a fixed orientation to the stess axes 1 and 2 (see Figs 12.21a,b).

n

50 r

40

30

(a) 10

(b)

Q = fft/a

-1 -as o

Figure 12.21 Groove formation under local instability
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Here the axes of stress coincide with the material axes (i.e. with 1 parallel to the roll and 2
transverse to the roll). Let an axis I lie normal to the groove at an orientation a to 1. Axis
II lies parallel to the groove as shown. Transforming the principal strain increments deF

and dsf along the axis II gives the normal strain component aligned with the groove as

Setting den
F = 0 leads to

den = d^j sura + de /cos a

cos2flf=(l - w) (12.92a)

where w = de2
pid£1

F depends upon the stress ratio Q = «%/oi, as in eq(12.77a). Substituting
eq(12.77a) into eq(12,92a) gives the groove orientation in terms of Q and the two r values:

2- =-i (12.92b)
ra(l + 2r,) - Qrt(l + 2r2)

Bi the case of a simple tension test under an axial stress 0i with ô  = 0 (see Fig. 12.22a) we
set Q = 0 in eq(12.92b) to give cos 2a = 1/(1 + 2r,). If the material is isotropic then r, = 1
and we find m=¥i cos"1 (VI) = 35.26° (i.e. the groove lies at 90° to this). The Mohr's strain
circle (see Fig. 12.22b) provides a geometrical interpretation of this solution.

(a)

(b)

Figure 12,22 Mohr's circle showing groove orientation

Setting ef and e^ = - ¥iex
palong me plastic strain e F- axis, the centre C bisects these

points and the circle passes through them. The groove direction II passes though the focus
F and a point of zero ep as shown. For other stress ratios, applied to isotropic material, the
groove orientation follows from eq( 12.92b) as

(12.92c)
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As Q increases from zero the centre C moves to the right along its ep axis. With Q = Vi,
under plane strain, the circle becomes tangential to the vertical, semi-shear strain axis •fl2.
Correspondingly, &= 0° and the groove becomes vertically aligned. For Q > %, it follows
that the circle will lie to the right of the f/2 axis, when no further inclined grooves can form.
Figure 12.21b shows the dependence of groove inclination a upon stress ratio Q in the range
- 1 & Q s Vk. Superimposed tensile data at Q = 0 reveal that rolled sheets of aluminium
alloy and tin-plate form grooves across a range of inclinations deviating from the isotropic
prediction. For stress ratios Q > %, failure may be diffuse or a groove may form
perpendicular to ff, by another mechanism, as outlined in the following section.

12.73 The Forming Limit Diagram

The local and diffuse theories of instability given above provide a combination of critical
principal strains (ef, s2

F) depending upon the stress ratio. When the full range of stress
ratios - 1 £ Q < 1 are considered across crucial instability regimes, the critical strains plot
to define a forming limit diagram (ELD) for the material. Different instability criteria result
in different FLD's in co-ordinates of e* and e/, i.e. the criteria control both the shape and
position of the FLD within a given quadrant of strain. The question as to which prediction
supplies the most appropriate limiting strains for forming operations may best be answered
from a comparison with experimental data. Figure 12.23 compares results from laboratory
tests upon an automotive steel with predictions using sub-tangents from: (i) maximum
pressure, (ii) diffuse and (iii) local instability [18]. The sub-tangents appear in eqs(12.70),
(12.85a) and (12.91a) respectively.

\

\ 0.6r

\
\

bulge foraiing at 0°, 90°
uni-axial tension at 0% 90°
ball Indentation of dry strip at 0", 90°

T, A ball indentation of lubricated discs

+, •

-0.4 -0.1

local instability
diffuse instability

' maximum pressure

-0.2-

-Q.4 L

\

Figure 12.23 Forming limit diagram in natural strain axes
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The subtangents were calculated with material properties r, = 2.31 and r2 = 2.54 for n =
0.37, ea = 1/25 and ao = 200 MPa in Swift's eq(9.44b). Stress ratios Q cover three strain
quadrants. For example, Q = 0 for tension in the 1-direction, Q = °° for tension in the 2-
direction and 1 < Q < 2 for elliptical bulging, depending upon alb for the die and r,_ z for the
material. The conversion to the equivalent instability strain uses et = «z - so. The
component strains e* and e / are derived fron e} in the manner outlined above. Natural
strains apply to these calculations and to the plot in Fig. 12.23 though they may be converted
to engineering strains for a convenient working ELD using the relationship e = expe - 1. In
Fig. 12.23 the sheet's othotropie axes are taken as the co-ordinates. Thus, data in quadrants
2 and 4 apply to 0° and 90° orientations respectively for tension testpieces and for punch
indentation of strips with different widths. The experimental data lying in the first quadrant
applies to bulge forming, with 0° and 90° orientations to the roll and to hemispherical punch
indentation of discs. The symmetry of the latter test reflects all its data about a 45° line in
this quadrant. The strains in all tests were measured from the deformation to a circular grid
pattern in the vicinity of a failure. Of the three predictions shown, that based upon diffuse
instability appears the most representative of the limit strains measured. Veerman and Neve
[19] postulated that a true ELD applies in the absence of strain gradients at the instant
localised necking begins. They were able to detect this from the plot of strains across
adjacent circles within the necked region of spherically punched testpieces. Hence we
should expect local instability to provide the true fracture strains in quadrants 2 and 4. The
two predietons agree only at points of intersection with the axes, i.e. the plane strain limit.
The local instability prediction is not appropriate to quadrant 1. The maximum pressure line
is adequate for providing limiting strains under near bi-axial tension in bulge forming.

Figure 12.23 shows that instability predictions are likely to provide a conservative
estimate to the forming limits in a low carbon, ductile sheet steel. This is because the
forming limit strains are sensitive to the practical definition of that limit Strains found from
the distortion to grid circles or from thickness measurements in the fracture zone, can exceed
the predictions by the extent of diffuse straining. This is most likely in the positive strain
quadrant of an ELD where we should predict the onset of diffuse straining as a lower
forming limit Consequently, we should not expect precise agreement between predicted and
measured fracture strains. Alternative approaches to ELD construction: (i) rely solely upon
experimental data to give a shape resembling a combination of local and diffuse instability
predictions between quadrants 1 and 2 [20,21] and (ii) assume that a groove will form from
a pre-existing defect [22], as outlined in the following section.

12.7.4 FID from Groove Formation

A modification to the local instability prediction is clearly required for quadrant 1. In the
original Marciniak hypothesis [22] a pre-existing defect provides a local reduction in
thickness between the two zones A and B in Fig. 12.24a With original thicknesses £Bo and
tfa in each respective zone, the defect size factor is defined:

/ . = *>./**, (12.93a)

Under in-plane, biaxial tension, the current thickness reduction factor is modified as follows:

/ = . ?k = _ 2 £ x i g _ x ^ (12.93b)
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A
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B A
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Figure 12.24 Local groove necking withia a stretched plate

Using the following thickness strain definitions

= In (rB/

it follows from eqs(12.93b) and (12.94a,b) that

/ = / o e x p ( % ,

(12.94a,b)

(12.95)

Figure 12.24b shows that the principal, in-plane plastic strain ratio d£a'Vd£jlf>m region A
remains constant. That is, the direction of the outward normal to locus/A is constant as/A

expands isotropically from the initial yield point P. Point A contains the current stress state
(°k» °IA) a s it increases in a constant ratio Q A= a %lo m In contrast, the corresponding
stress and strain ratios within groove B continuously change to approach the plane strain
condition de/ldef = 0, as shown. At this point em

p increases rapidly to failure when the
strain state in the adjacent region A is taken to constitute the forming limit. To find the
limiting strain in A first note that the major principal stress &m in the groove leads that
within A to satisfy force equilibrium:

from which

where/< 1. Also, a minor principal strain compatibility condition applies:

(12.96a)

(12.96b)

(12.97a)

In an orthotropic sheet the principal axes of stress and plastic strain coincide when the stress
axes alifm with material axes. This permits a substitution from eq(l 1.1 lb) into eq(12.97a):
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<73) ~H{at~ e0]A = [F((% - oQ - H{ax - ot,)]B (12.97b)

Setting OJ = 0 and ra = HIF leads to the minor principal stress within the groove:

am = 02A-(0m- Ob) rt r2/ (1 + rj) (12,98)

Dividing eqs (11.1 la,b) connects the stress and strain ratios within each region as

d s f r.[(Q - l ) r , + Q]
- 2 - = - ^ - ^ -2 !LL (12.99)
d ^ r a [ ( l - O r , + 1]

where Q = ojo\. Also required are the equivalent stress and plastic strain in region A and
an appropriate relation between them, e.g. HoUomon, Swift etc. We may write these as

7j and dsP = Zdef whereX and Zfollow from eqs(12.34) and (12.36) as

X =

in which rx = fl/G and

r a ( l + r,) - ra)

2(r, r,ra)/3

Z = a + b
d%

2

+ C
dftf'

de/"

(12.100a)

(12.100b)

where a, b and c depend upon the two r-values (see eq 12.69b):

a =
2(r, r2)

3ra(l r,)
o =

2(r, r,)

ra)
c -

3(1 + r, + r2)

Table 12.2 Iteration for a groove plane strain failure

1) Assume, or find from measurement, an initialX value, normally: 0.95 <fa < 1

2) Apply an increment of equivalent plastic strain to region A, i.e. d eA

3) Find the three principal plastic strain increments:
d £ j / = d e / / Z , d ^ / = w A d«, / and d£,/= - (de1A

p + d V )

4) Form sums: ̂ d ^ ' and Jjieuf over successive iterations

5) Find &A from YA** using Swift's law: & = cr fl + e ' / g 1*

6) Find the principal stresses in repon A:

ojA= &A /Xand «%A = fiAoiA

7) Determine the principal stresses in region B:
am = Oyjfv (initially) or oln = o^lf (subsequently) with e% from eq(12.9S)

8) For gg = O^/CTJB, find wB firom eq(12.99). Stop when wB -* 0.

9) Find the principal plastic strain increments within the groove:

d£iB
F = de-^lw^ and deJB'" = - ( d * ^ + dem

F) where de%/ = dej/

10) Sum the thickness strains increments e^ = YAeih a nd emF - YA^nF
within successive iterations and re-define/from eq(12.95).

11) Return to step 2.
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Given the r Yalues and Swift's flow properties quoted earlier, an iteration (Table 12.2) is
applied to a constant stess ratio QA within the system of eqs(12.93) - (12,100), Let the
radial stress path, defined by QA, extend beyond the yield point P in Fig. 12.24b due to an
increment dsf A repeated calculation of the strain increment ratio w = decide* is made
ftom following the steps given. The iteration stop as w -* 0 within stage 8 so that the stain
sums formed from stage 4 constitute the forming limits. These limiting strains can be found
for any stress ratio but more often the analysis is confined to quadrant 1. In quadrant 2, the
limit strains would coincide with those found from the sub-tangent for an inclined local neck,
considered earlier. Figure 12.25 shows that the quadrant 1 limit line from Table 12.2 lies
above the diffuse instability limit, thereby extending the bi-axial stretch strain Emits for an
automotive steel at the chosen defect ratio fa value.

local instability

- 0.5 0 o J

Figure 12.25 Comparison of FLDs tan diffuse, local and groove fonnatinn

Either prediction given in quadrant 1, when combined with the local instability line in
quadrant 2, provides an ELD of in-plane limit strains under any stress ratio Q. For example,
in axes of engineering strain, Fig. 12.25 shows that the strain path is linear for equi-biaxial
tension {Q <= 1) but is non-linear for uni-axial tension (Q = 0) and pure shear (Q = - 1).
Limit strains are provided by their intersections with the chosen FLD. Note that plane strain
constitutes the lowest strain limit and is responsible for most product failures in the region
of bends and folds.

12,8 Concluding Remarks

Plastic instability appears in many forms: from the buckling of long struts and thin plates at
loads beyond the elastic limit to the material instabilities that control fracture. We have seen
that among the analytical methods used are extensions to elastic analyses using suitable
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plastic moduli and the realisation of pressure and load maxima coincident with the onset of
failure, e.g. as with the Considere condition in simple tension. The extension to biaxial
stress states may involve local or diffuse instability depending upon the applied stress ratio.
In practice, where biaxial stress states occur in pressure vessels and in sheet metal forming,
the initial orthotropy of the rolled sheet may become an important factor in these analyses.
In the most common plane strain failure mode, anisotropy is almost always admitted along
with an initial imperfection, when constructing the forming limit diagram based upon failure
from a narrow, inclined local neck.
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Exercises

12.1 It is required to find the maximum compressive load that a brass strut with an elliptical thin-
walled section can support without plastic budding. If the strut length is 825 mm, the major and
minor axes are 80 mm and 30 mm respectively and the wall thickness is 3 mm, estimate the buckling
load for the minor axis where the ends may be assumed pinned. Take the Hollomon stress-strain law
for brass as: dac = TXiem where the compressive yield stress trc ~ 144 MPa.

12.2 A pinned-end strut 1.5 m long has the cross-section in Fig. 12.26. Find Bngesser's plastic
buckling load given that Hollomon's law: oiq, = Sem describes the compressive stress-strain curve
in the region beyond a yield stress of ac = 300 MPa. Compare Engesser's load with predictions from
the straight line and parabolic formulae using mid-range constants for steel on p. 374: E = 207 GPa.
[Answer: 817.2 kN]
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Figure 12.26

12J Determine the elastic compressive stress which, when applied to the shorter sides of a thin plate
390 x 200 x 7,5 mm, will cause it to buckle in to presence of a constant stress of SO MFa which acts:
(i) in compression and (ii) in tension along its longer sides. Take E = 72.4 GPa and v= 0.33 with all
sides simply supported. Correct the stresses fa plasticity effects using Fig. 12.10. Take crm = 405 MPa
andm = 16. [Answer: 265 MPa, 371 MPa, 455 MPa]

1X4 A plate a x b x t is subjected to a normal tensile stress «£ = a on its a x t sides and a compressive
stress c^ = - a on its b x t sides. If all edges are simply supported show that the minimum value of
critical buckling stress is given by («&)„ = (8 s-aD)/(fta) for one halfwave in the y-direction. To what
values of r = aib does this minimum apply? [Answer: I A/3,2/^3 etc]

125 Find the shear stress for which a rectangular plate 200 mm wide x 260 mm long x 4.5 mm thick
buckles when the short sides are clamped and the long sides are simply supported. Using Figs 12.15
and 12.16, correct for plasticity given an = 340 MPa, m = 16, E = 73 GPa and v= 0.3. [Ans: 198 MPa]

12.6 Determine the equivalent stress and strain at the point of instability for a thin-walled, open-ended
pressurised cylinder of mean diameter d and thickness t, if the material hardens according to the law:
o = ag(l + BeP)n. What is the pressure that causes this instability?
[Answer: a = aa(2nB/3)\ i/ = {\/B%2nB/3 - l).p = (4 taJd%2nBIW\

12.7 Determine the true fracture strain of a ductile material in terms of: (i) the % elongation at fracture
and (ii) the % reduction of area at fracture in a tensile test.

12.8 The following table of results applies to a tension test on a cylindrical testpiece 13 mm diameter
and 50 mm long:

Force, kN 10
76.6
78.37

Extension, mm 0.02
5.0
14.2

20
77
78.16

0.04
6.2
15.0

30
78
77.82

0.05
737
16.1

40
78.3
77.50

0.07
8.21
16.9

52.29
7B.53
77.12

0.50
9.01
17.5

61.5
78.72
76.71

1.20
9.90
18.1

67.2
78.79

2.03
11.23

72
7S.73

3,45
12.20

74.8
78.6

4.3
13.0

Determine graphically, from the Considere condition, the true stress and natural strain at the point of
instability. Detennine the strength coefficient, hardening exponent and instability strain from a
Hollomon description of the given data. Compare with Considere's instability strain.

12.9 Construct an FLD for conditions of simple local and diffuse instability within quadrants 1 and
3 respectively. The sheet metal has a yield stress 150 MPa with a Hollomon exponent n = 0.25. The
in-plane anisotropy is characterised with r, = 1.7 and r2 = 2.0. Hint: Determine the sub-tangents z
form eqs(12J5) and (12.91) for a range of stress ratios. Convert each z to an equivalent instability
strain which decomposes into the two principal in-plane engineering strains.
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C H A P T E R 13

STRESS WAVES IN BARS

13.1 Introduction

This introduction to elastic and plastic wave generation within round bare applies to slow
heavy strikers and lighter struck members, as in a forging operation and faster impacts from
projectiles upon heavier bodies. By equating external work to the strain energy stored, the
dynamic stresses and deflections may be found, usually from assuming that the static and
dynamic deflection curves are the same. This approach usually gives a good approximate
solution though it provides little information on the mechanics of loading. Where a hard,
fast moving striker is of similar weight to the struck member, as from an explosive charge,
the stress waves generated apply to relatively short times after impact. The full solution for
longer times after impact would require an examination of normal vibration modes using the
exact equations of elasticity. However, the approximate dynamic solutions are more
realistic, usually, than those as found from a static stress analysis and thereby can predict
certain observed effects, including spalling and scabbing. The analysis begins with a
geomeuieal interpretation of the elastic impact wave equations from which bar stresses and
particle velocities are found. This is followed with an analysis of plastic waves using a
simple bi-linear approximation to the stress-strain curve. For a more expansive discussion
the reader is referred to dedicated works [1-10] upon this topic.

13 2 The Wave Equation

Let the longitudinal wave propogation in a bar be ca m/s and the particle velocity in the bar
be v m/s. The latter is intimately related to the stress in the bar and is readily converted to
an absolute velocity from knowing the bar velocity after impact. A given cross-section in
the bar, distance x from the left end origin, displaces by an amount u where the compressive
stress is a. At a further distance Sx away from this cross section, the displacement and stress
increase by the respective amounts (du/dx)& and (dafdx)&c respectively (see Fig. 13.1).

rr
( - - C T K (Y

X

x+ &

K

dx

Figure 13,1 Elastic stress wave in a bar
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Hooke's law gi¥es the elastic stress as

a=Ee =Edufdx

so that its rate of change with respect to x becomes

d<ildx = E(dlutdxt) (13.1)

where E is the elastic modulus of the bar. Newton's second law of motion connects the axial
force due to the change in stress with the force required to accelerate the plane through & in
time St. Writing the mass m = pAdx, where p is the density and A is the bar's section area,
this becomes

F-pAdxx ^=A**
dt2 dx

and substituting from eq(13,l)

A d2u - , _, d2u .
pA ox = AE ox

dt2 dx2

This results in a one-dimensional wave equation:

where co = J(Etp). The general solution [1] to eq(13.2) is

« =/j (c, * - x) +/, (co * + x) (13.3a)

in which the two functions/, and j j may be interpreted from a simple harmonic motion of the
displacement: u = a sine*. With a period Tt the wave frequency is <a — infT and its
wavelength is X = ca T. Thus

u = a sin (2 KlA)cot (13.3b)

To match eq(13.3b) with the first function/! in eq(13.3a), the former equation must be
modified with a time delay xlca for position x as follows:

u = asm(2K/A)(cat-x) (13.3c)

and this reveals a wave propagating in direction jc-positive. Similarly, within the second
function^ in eq(13.3a), a wave propagates in direction x-negative. Thus, the solution given
in eq(13.3c) reveals two waves in opposing directions both travelling at the propagation
velocity cg =• J(E/p) but in opposite directions.

13.3 Particle Velocity

Consider the bar in Fig. 13.2 with a compressive stress maintained at its left-hand end. The
velocity v of particles, due to the effect of the stress wave produced, may be found from
equating impulse to the change of linear momentum.
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Figure 13.2 Impulse and particle velocity due to a stress application

That is, at time t in Fig. 13.2:

from which

a=pcBv or v=.

ot )v

(13.4a,b)

in which pco is the acoustic impedance. Equations (13.4a,b) show that both erand v are
independent of the bar's dimensions. The two waves identified above may now be
associated with the sense of the particle velocity as follows:

• A compressive wave has both c0 and v in direction ^-positive (same sense).

• A tensile wave has ca in direction ̂ -positive and v in direction x-negative (opposite sense).

13.3.1 Reflection at a Boundary

A compressive wave will be reflected at the free end of a rod to become a tensile wave, i.e.
compression returns as tension and vice versa (see Figs 13.3a,b).

..—-rrfirk-
Q _

—mm—
T(a)

Figure 133 Reflection at a free boundary
(b)

The stress reversal must produce a condition of zero sixess at the free end if an identical
wave of opposite particle sign is refiectd by the boundary. As a consequence both the
velocity and displacement are doubled at tiie free end. In contrast, at a fixed boundary the
end displacement must remain zero so that the reflected wave remains in the same sense as
the incident wave, i.e. it remains either in tension or compression (see Figs 13.4a,b).

(a)

T * ' T

Figure 13.4 Reflections at a fixed boundary

I
(b)
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It follows that upon reflection at a fixed boundary the stress is doubled but the velocity and
hence the displacement must cancel to zero.

13.3.2 Displacement-Time Diagram

The position of both compressive and tensile elastic wave fronts at their propagation and
particle velocities co = ^(Efp) and v = a I (pca) can appear with similar stress levels but
opposing directions on an x-t diagram. In any region of this diagram the force at all points
must be in equilibrium if additional stress waves due to discontinuities in section area are
to be avoided. Moreover, a compatibility condition is ensured when all points within this
region have the same absolute velocity.
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Figure 13.5 The x-t diagram for a compressive stress pulse
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Finally, to conserve momentum at a given time, the momentum change must equal the
impulse applied up to that time. Example 13.1 embodies these principles within the
construction the x -1 diagram in Fig. 13.5 when a stress pulse is applied to one end of a bar.

Example 13.1 A uniform circular bar of length / is subjected to a constant compressive
stress at its left-hand end for a pulse time t=li(2eo). Construct the x-t diagram showing the
tensile and compressive waves. Use this diagram to show how the displacements of the bar's
ends and centre vary with time.

The x-t diagram consists of a repeated pattern of wave reflections with alternating sense as
shown in Fig. 13.5a. The given pulse is equivalent to applying a compressive wave followed
by a tensile wave separated by the pulse time (see Fig. 13.5b). The time for this wave to
reach the right-hand end is Uca. Hence, the compressive wave reaches the bar centre before
the tensile wave begins. Within the regions 0, 1, 2 etc in Fig,13,5a, the net stress and
absolute velocities within Table 13.1 apply.

Table 13.1 Stress and velocity within given regions of the x -1 diagram

region
stress
velocity

0
0
0

1
- 0

V

2
0
0

3
0
2v

4
0

V

5
0
2v

6
0
0

7

V

8
0
0

9
0
2v

10
a
V

11
0
0

The time-dependent displacements of the bar ends and centre. A, C and B respectively, may
be constructed from the wave intersections at these positions, as shown in Fig. 13.5c. The
gradients dx/df of the sloping parts of these diagrams define the particle velocities v and 2v.

13,4 Longitudinal Impact of Bars

13.4.1 Equal Section Areas

Impact between circular bars with similar section areas but different lengths must satisfy a
dynamic equilibrium and a compatibility condition. Let the velocity of bar 1 be vx and that
of bar 2 be v%, where v, > vt (see Fig. 13.6a). At the instant of longitudinal impact each bar
experiences a compressive wave of identical magnitude «7at a particle velocity v, found from

Vj - v = va + v => v = 54 (vi - Vj) (13.5a,b)

Substituting eq(13.5b) into either side of eq(13.5a) shows that the absolute velocity of each
bar becomes 4§(vj + vj). The x-t diagram in Fig. 13.6b applies to this condition. From this,
the time at separation point S is found as ts = 6ltc0. The conditions of stress and velocity
across each region is given in Table 13.2.

Table 13.2 Stress and velocity regions

Region
stress
abs vel

0
0
v2

1
0
v,

2
-0

MVi + Vz

3
0

) %

4
0

5
0

6
0
v»
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I

= z/c,

(b)

x(+ve)

Figure 13.6 Longitudinal impact of two bars

13.4.2 Bar or Striker with Stepped Change in Section Areas

When a striker impacts a larger longitudinal bar, a wave reflection occurs at the change in
section (see Fig. 13,7a). Firstly, let the incident wave a exist in the smaller section. Waves
b and c reflect and transmit respectively at the section change. Their stress levels era, ff6 and
ac, where aa > ah, are denoted positive when eompressive, as shown in Fig. 13.7b.

(a)

•» x

Figure 13.7 Reflection with a step-up in area

By assuming compression within the three waves a, b and c, equilibrium and compatibility
conditions provide simultaneous equations:
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(trg (13.6a)

(13.6b)

GivenA2 = 2A,, for example, the solution to eqs(13.6a,b) shows ab = &J3 and ffe = 2aJ3.
However, if A% is very large the efifect is similar to incidence upon a fixed end. Now let the
incident wave exist in the larger section (see Fig. 13.8a).

(a)

(b)

Figure 13,8 Reflection with a step-down in area

The two conditions become
(att+ob)Ax = avA%

aa- ab=ae

(13.7a)

(13.7b)

and, if A, = 2At, we find from eqs(13.7a,b) stress levels ab = - oaB and oc = 4aaf3, showing
that the reflected wave b changes sign, i,e. it becomes tensile.

(a) i

\

21

m
/

A/4 v>

I

i

Separation

(b)

Figure 13.9 x - r diagram for a pneumatic striker showing magnitude, direction and sense of stress waves
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Example 13.2 Figure 13.9a shows the stepped steel striker of a pneumatic tool which
impacts upon a fixed target at its left end. Plot the x -1 diagram and find the highest impact
velocity if the dynamic elastic stress limit is 675 MPa. The initial stress may be taken as
unity by setting ao = pcav-l. Take E = 210 GPa and p = 7890 kg/m3.

With zero net velocity at the target end: vx - v = 0. From eqs( 13.4b), at the stress limit:

Vl = a I (pco) =
= (675 x 10*) /vt210 x 10 9 x 7890) = 16.58 m/s

Applying eqs(13.6a,b) across the stepped increase in the cross-section, where Aj = 4Al5 gives
a,, = 3era/5 and ae = 2aJ5. Applying eqs(13.7a,b) to the step-down section change, where
A2 = Aj/4, gives ab = - 3aa/5 and ac = BaaJ5 and. The x -1 diagram (see Fig. 13.9b) is
constructed from the repeated application of these stress multiplication factors to
transmission and reflection of incident waves as they meet the section change from either
side. Recall that at the fixed, target end, the reflected wave retains the sense of the stress
within the incident wave but the particle velocity is reversed.

Example 13,3 A striker travels lengthwise with a velocity 3vo/2 to impact the left end of a
bar that is rigidly fixed at its right end (see Fig. 13.10a). Assuming elastic impact
conditions, plot the x-t diagram, showing the separation point on this diagram and from it
produce stress-time and velocity-time plots for locations X, Y and Z. Assume that the striker
and bar material is the same.

Table 133 Regional wave stresses ami velocities

Region

0
1
2 (
3 <
4 <
5 I
6 (
7 |
8 (
L
M
N
0
P
Q
R

Stress

0
-2a

[- 2a+4a/3) = - 2a/3
'- 2(7- 2a) = - 4a
> 4a+ 4a13) = - %d3
;- 8o73 + 2a) = - 2eO
;- 8o73 + 4ff/3) = - 4of".
[- 2a/3 + 4rf3) = 2a 13
[+2aB + 2a) = Ba/3

0
- a

0
- a/3

0
- a/3

0

Absolute velocity

0
v = 3vo/4

- v/3 = - vo/4
0

- v/3 - v = - 4v/3 = - v0

- 4v/3 - v = - 7v/3 = -7vo/4
3 - 4v/3 + 4v/3 = 0

-v=-3v o /4
0

2v = 3vJ2
3vo/2 - v = (3vo/2 - 3vo/4) = 3vo/4
3vo/4 - v = (3vo/4 - 3vo/4) = 0
- v/3 = - vJ4
- v/3 - v/3 = - va/2
-2v/3-v/3 = -v=-3v o /4
- v - v/3 = - 4v/3 = - vo

Force balance gives aaA = al A / 2, which shows that the bar stress is twice that of the
striker. The absolute velocities of particles at the contact surfaces must be the same:

3vs/2 - v = v + v.
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and since Vj = 0, this shows that v = 3vo /4 is the particle velocity of two identical
compressive waves directed away from the contacting surfaces. Because the area of the bar
section is halved, the multiplication factors in eqs(13.6) and (13.7) apply. These provide a
sufficient portion of the x -1 diagram (Fig. 13.10b) to reveal that a bar separation occurs at
point 2. Within the enclosed regions 0, 1, 2... and L, M, N... , the stress and absolute
velocities are calculated within Table 13.3. The stress column in Table 13.3 enables the
accompanying stress plots for positions X, Y and Z to be constructed to the left side of the
x -1 diagram, as shown in Fig. 13.10c. The absolute velocity column in Table 13.3 allows
the displacement plots for points X and Y to be constructed to the right of the x -1 plot (see
Fig. 13.10d)» there being no displacement at Z.

13.4,3 Change of Material

Where a change of mateial occurs in the bar length, a transmission and reflection occurs at
the interface, similar to the effect of a section change. Let E, p and c describe the modulus,
density and propagation velocity in each bar material 1 and 2, as shown in Fig. 13.1 la.

E, £2 Pt

(a) K 2

(b)

Figure 13.11 Reflection at the interface of a composite bar

For an incident wave a the force and velocity balance equations yield

(13.8a)

(13.8b)

Solving eqs (13.8a,b) leads to the stress within the reflected and transmitted waves b and c
(see Fig. 13.11b):

o« . (13.9a,b)

Example 13,4 Find the proportion of stress for an incident wave within epoxy resin that is
transmitted and reflected at an interface with glass. Repeat for the same arrangement but
with an incident wave within the glass. For epoxy: E = 3.24 GPa and p = 1245 kg/m3 and
for glass: E = 62 GPa and p = 2215 kg/m3.

For a transmission from epoxy (subscript 1) to glass (subscript 2):
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= ^(3.24 x 10s x 1245) = 2.008 x 106Nm/s*

= A& x 10* x 2215) = 11.718 x 10* Nm/s2

Substituting into eq(13.9a,b) gives

oj, = (1L71E - 2.008)«ra/ (11.718 + 2.008) = 0.707fffl

ac = (2 x 11.718)*,/ (11.718 + 2.008) = 1.707 cr.

Interchanging subscripts 1 and 2 for glass to epoxy, eq(13.9a,b) gives

ab = (2.008 - 11.718)/(2.008 + 11.718) = - 0.707 att

ac = (2 x 2.008) / (2.008 + 11.718) = Q.293oi

Note that for air V(Ep) is small enough to be neglected compared to glass (say). So, for a
glass to air interface eqs(13.9a,b) show ab » - oa and ac» 0. That is, the wave is fully
reflected with a change in sign, as was shown earlier for a free-end condition.

13.S Plastic Waves

We have seen when the end of a long rod is struck in such a way that a constant elastic stress
is maintained at its end, then a wave of compression with constant amplitude will travel
along the rod at a speed of co = <J(E/p). Where the stress level in a longitudinal wave
exceeds the yield stress of the bar material, i.e. cr> ag, two wave fronts arise; (i) an elastic
wave of amplitude ao travelling at c0 and (ii) a plastic wave of amplitude a which follows
the elastic wave with a tower velocity c (see Fig. 13.12a). The distances x travelled by each
wave at time t axe respectively cj and ct. Since c < co, at the plastic wave front, there will
be a step up in the stress from cr0 to 0, where oremains constant between the plastic wave
front and the left struck end of the bar.

o...

(a) (b)

Figure 1M2 Elastic and plastic wave ftonts in a tar at time t

Where the naterial flow curve can be represented in a bi-linear form (see Fig. 13.12b), the
corresponding strains in the bar are simply proportional to the stresses within Fig. 13.12a.
Otherwise, an account of the plastic particle velocity c is required. Plastic wave theory
applies to a static stress-strain curve [ 11,12] in which the hardening rate S = deMs decreases
with strain. Let a particle displacement occur at position x within a circular bar of area A,
due to a change in stress over the infinitesimal length &t, as shown previously in Fig. 13.1.
We now replace E with S in eq(13.2) to give
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d2u ( S\ d2u
, , , (13-10)

dt2 {p} dx2

where S=S(£) is a variable. Kolsky [1] outlines von Karman's rigorous solution to eq(13.10).
Taylor's simpHfied solution [11]: xft = *J(Sfp) employs the following boundary conditions:

(i) fortune*atx = 0; « { 0 , t ) - - v0t

(ii) for time t at x = °°, u ("», t) = 0

Since the strain is found from e= dufdx, the displacement u follows as

u = (x edx (13.11a)

Set J3=xft so that the strain e=f(fi) for a given time t = dx/d/?. Equation (13.1 la) becomes

« = * fPf0Hfi (13.11b)

Using conditions (ii) above, the substitution of the lower limit must give zero displacement.
Equation eq(13.1 lb) integrates to

(13.12)

Now if t varies, successive differentiation of eq(13.12) reveals

f i = F(P) + tFXfi)&
dt at

dt2 dt {dt) dt2

where, F'(fi) =J{fl) and F"(ft) =f\P). With j3=xft,ihe following partial derivatives
apply to the right hand side of eq(13.13)

dft/dt=-xft\ (dfildt)2 = x2lt*, 92/?/3f2 = 2x/r3 (13.14a,b,c)

The left side of eq(13.13) is identified with the right side of eq(13.10), so that

In = if = Miil = i
Qx2 dx dx t

Substituting eqs(13.14a,b,c) and (13.15) into (13.13)

—
pt

-ftp)
t

x % \ S

t 2
= 0

1 ( „, S\ (13,16)
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Equation (13.16) is satisfied either by:

s = constant w.r.t. fl

or

(13.17a)

(13.17b)

Figure 13.13 provides a geometrical interpretation to the solutions (13.17a,b) within aregion
of work hardening between the yield strain eo and a plastic strain fij (see Fig. 13.13a). The
derived curve in Fig. 13.13b shows that only the second solution (13.17b) is valid.

(a)

—I I—
(b)

Figure 13.13 Variation in fi within the plastic range

Using an incremental solution enables curve (b) to be approximated with a series of small
steps in which ft is taken to be constant for an increment of inelastic strain. This is
equivalent to approximating the plastic region of the stress-strain curve with linear segments.

13.5.1 Plastic Particle Velocity

Combining condition (i) above with eq(13.11b) gives

o
(13.18a)

The integrand in eq(13.18a) may be replaced by its equivalent strip area s dfl = fi det as
shown in Fig. 13.13b.

(a)

£ ._
P

(b)

Figure 13.14 Bi-linear stress-strain curve
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This transforms eq(13.18a) to
= J fid* (13.18b)

With the simplest bi-linear approximation to a stress-strain curve (see Fig. 13.14a), the
moduli within the elastic and plastic regions remain constant as E and S respectively. Hence
eq(13.18b) may be integrated as follows:

vo = f ,fE/pde + f {Sfpde

(13.19a)

Substituting ea = aJE,«, - eo = (a% - a^/S, ^/(Ep) = pcB and J($p) = pc into eq(13.19a);

v = (13.19b)

in which the first term is the particle velocity arising from an elastic impact at the yield
stress. The second term gives the plastic particle velocity when the stress level exceeds the
yield stress. Here the identity c = J3= ^(S/p) defines the plastic wave propagation velocity,
which appears in an inverse ratio with the elastic propagation velocity cB:

(13.20)
Sip

Figure 13.14b suggests a simple extension for a multi-linear plastic stress-strain curve in
which further plastic terms may be added to eq(13.19b) for each plastic stress increment.

13.5.2 Reflection at a Fixed Boundary

Recall that the stress within an elastic wave retains its sense and mapiitude while the particle
velocity changes direction upon reflection at a fixed boundary. Consequently, the stress in
the material must double at the fixed end of the bar in Fig. 13.15.

(a)

Figure 13,15 Elastic and plastic reflections at a fixed boundary
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It follows that plasticity effects must be considered for fixed boundary reflections of incident
elastic waves with stress magnitudes greater than %&„. Under these conditions both the
elastic and plastic waves, as expressed by respective terms within eq(13.19b), will reflect
to ensure zero displacement. To show this, let the stess within an incident elastic wave be
¥4tro in the material model of Fig. 13.15a. Firstly, we assume that an elastic stress reflection
lAog (Fig. 13.15b) gives a net stress with a magnitude of the yield stress ff0. Let a stress
increment a, beyond the yield stress a0, also exist within a reflected plastic wave in Fig.
13.15b. From eq(13.20), cjc = 4 and setting v = 0 after reflection, gives

from which a = ffoiB. Note that if the incident stress had equalled tro then only a plastic
wave can reflect. As an alternative to a bi-linear model in Fig. 13.15a, let the plastic
gradients in Fig. 13.16a give co/c = 2, 4, 8 and 16 etc, these being separated as far as
possible by stress increments #0/16.

a.

(a)

1 ._

Figure 13.16 Multi-linear apprt»riniatian to plastic region

The slopes dx/dt of the reflected waves in Fig. 13.16b under plastic stress increments a, b
and c are found by factoring the initial elastic slope by the respective ejc values. The zero
velocity condition shows that stress increments beyond c cannot exist and therefore c must
conform to a lesser increment within;

3<7 o o a
— » - _ ! - 2 x — - 4 x - i - B c = 0

4 4 16 16

from which c = oJfA

13.5.3 Unloading Waves

Consider loading a bar at time t = 0 to a plastic stress level av at its left-hand end. At a time
t = tx this stress is released With a bi-linear approximation to the bar's stress-strain curve,
loading is represented by two waves: (i) elastic under the yield stress oa and (ii) plastic under
the stress increment ax - aB (Figs 13.17a,b). The elastic unloading wave is parallel to that
for loading under cra but offset by time tt. Consequently, given its faster particle velocity, the
unloading wave will intersect the plastic increment loading wave at point A in Fig. 13.17b.
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(a) (b)

Figure 13.17 Loading and unloading waves

What happens at A will depend upon the magnitude of the stress increment OJ - aa. While
the stress within the unloading wave will always exceed that in the plastic wave, the
respective particle velocities of the two waves will not necessarily be in the proportion
expressed by eq(13.19b). The plastic wave velocity will depend upon whether both stress
and velocity can be overcome by the interaction. Depending upon the stress increment the
following may occur, further plastic straining, a general elastic unloading into the elastic
region and elastic reloading.

(I) (ff, - q) large

The a- eand thex- t diagrams in Figs 13,18a,b are now interlinked with state points B,C
D etc. The particle velocity within the plastic increment will exceed that within the
unloading wave when (ffj - trl^catc1 > ax . Consequently, a reduced plastic wave under
stress increment b=%- aa will continue to propagate, to give state point E in Fig. 13.18b.

(a) (b)

Figure 13.18 Wave interactions at point A following unloading

This figure also shows that when the left-hand end is unloaded to D, following the wave
interaction at A, a further elastic reloading wave under stress a travels back from A giving
state point F. The stress levels a and b must satisfy both the equilibrium and compatibility
conditions. These conditions are applied to the left and right of the vertical section through
A, using the signs and directions shown;

(oi - aB) - at + a = h

ao)cj c- crl-a = bx

(13.21a)

(13.21b)
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(D) q - a0 small

The particle velocity within a plastic wave of small stress increment may be overcome by
the velocity of the elastic unloading wave. The latter will then have sufficient energy to
continue unloading beyond the interaction point A (i.e. within region B) under a reduced
stress level - b {= aa - (%), as shown in Figs 13.19a,b.

a,--

(a) (b)

Figure 13.19 Interaction at A far a small plastic stress increment

Following the interaction, a re-loading wave under stress a must also travel back to the left
hand end (state F). Both stress levels a and b must preserve equilibrium and compatibility.

- ax + a = - b (13.22a)

(13.22b)

(III) Special case

At a critical stress difference ax - a0, lying between cases I and II above, no further plasticity
can occur and nor can a continued unloading. To find the corresponding stress level alt refer
toFigsl3.20a,b.

D

(a) (b)

Figure 13.20 Interaction at A without plasticity or unloading

Figure 13.20b shows that when a reloading wave returns to the free end, its stress level must
be aa to satisfy equilibrium:

( o i - ffj- oi + oro = 0 (13.23a)

and using eq(13.19b) to ensure velocity compatibility:
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Solving eqs(13.23a,b)
t cjc - oj - ffo = 0

cjc - 1

(13.23b)

(13.23c)

The particle velocities for the elastic unloading and re-loading waves become aj(pco) and
/ i ) respectively.

Example 13.S A bar of model material is compressed at its left end to a stress level 3er/2
before being released at time *j (see Fig, 13.21a). Given that the gradient of the plastic line
is S = Ef&l, determine all the wave fronts when the bar length is: (i) infinite and (ii) chosen
to allow the elastic wave under ag to reach its fixed right end at time tv Show die residual
stress and plastic strain distribution for each case.

(a)

Figure 13.21 Wave interactions and residual stresses for bars (i) and (ii)
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Figure 13.21b gives the a combined wave solution for bars (i) and (ii). For bar (i)
interactions occur at A and B while the waves transmitted beyond these points do not return
(see Figs 13.22a-c). For bar (ii) the wave returns from the fixed end at C resulting in
additional interactions at D and E (see Figs 13.23a-c).

(a)

~c

(c)

Figure 13.22 Possible wave interactions at A and B showing plastic stress levels

To determine the wave stresses levels a and b for point A it is necessary to decide which of
the three cases above applies. First, assume ease I where a weaker plastic wave continues
under stress b and re-loads elastically under stress a (see Fig. 13.22a). The equilibrium and
compatibility requirements are expressed from eqs(13.20) and (13.21a,b);

Vi-
04x9)-

from which a = 6/5 and b = 1/5. Similarly, at B, by the same assumption (see Fig. 13.22b):

(1/5x9) - 6/5 -d = (ex9)

These equations show that the plastic stress increment c is negative, so invalidating case I.
Assuming that case II applies to B (see Fig. 13.22c), the force and velocity balance
eqs(13.22a,b) yield:

l/5-&5 + d=-c
(l/5x9)-fi/5-d=-c

which gives the valid result: c = 1/5 and d = 4/5 and this may be applied to the x -1 diagram
in Fig. 13.21b to reveal that unloading and re-loading waves follow each other along an
infinite length without further interactions. Figure 13.21c shows the stress increment levels
Ao-within the plastic wave OAB. Referring to Fig. 13.17a, Aermay be converted to plastic
strain as follows;

Aep = AofS - Aa/E (13.24)

For bar (ii), the plastic wave reflection at the fixed-end point C (see Fig. 13.23a) occurs with
zero net velocity. From eq(13.19b):

1

PC
O PCo .7 -°

from which a = 1/9 given eje = 9.
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(a) (b)

(c) 16/225 -4/5
16/225

(d)

Figure 13.23 Wave interactions at C, D and E

The interaction at point D in Fig. 13.23b is physically tenable since the force and velocity
balance equations

1/5 - 1/5 + a = 1/9 - h

show that a = 16/225 and b = 1/25 are correctly positive. However, if a similar interaction
is assumed for point E (see Fig. 13.23c):

- 4/5 + 4/5 + a = 16/225 - b

4/5 + 4/5 + (a x 9) = (16/225 x 9) + b

it follows that a is unacceptably negative, since it is impossible to have a tensile plastic
increment beyond a compressive yield stress! Hence it is assumed that at E the plastic
increment is overcome as in Fig. 13.23d. A force and velocity balance then gives:

- 4/5 + a = - b - 1/25 + 16/225

4/5 + a = b - 1/25 + (16/225 x 9)

from which a = 71/225 and b = 116/225 are physically acceptable. All waves that follow
remain elastic. Equation (13.24) again provides the conversion from the stress levels within
plastic wave CDE to residual plastic strain (see Fig, 13.21c).

Example 13.6 A free bar of length I is suddenly subjected to a compressive stress a1 = 4ao

at its left end for a time T = llco and thereafter removed. Taking a bi-linear stress-strain
curve, with S = EI9, draw the x -1 diagram for a period f=Otor=5772s. Indicate the stress
levels and particle velocities within each region of an x-t diagram.
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The x - 1 diagram (Fig. 13.24} may be constructed from assuming that a plastic wave
continues beyond the first interaction point A since o^ - aa = 3 is large. Also intersecting
at this point is the tensile wave following its reflection from the right free end as shown.

2Ve.

t

P

M

l

N

f
K

'o)=3^

/
E BM

J

/

0

Figure 13.24 The x -1 diagram for a ftee-enel bar

Thus, with ca fc = ̂ /(E/S) = 3, and wife the stress signs and velocity directions given, the
force and velocity balance equations for point A become

(3 x 3) - 4 - a = 3b + 1

from which a = b = 1 are acceptable. The re-loading compressive wave a is reflected in
tension at the right free end and meets the transmitted compressive plastic wave b at the right
end at a time 3lfco = 3T. Thereafter, only the the elastic wave reflects. Within the regions
J, K, L etc, for this diagram the net stress and absolute velocities are given in Table 13.4.
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Table 13.4 Normalised wave stresses and velocities for bar in Fig. 13.24

Region

vxpca

J

0
0

K

1
1

L

4
10

M

0
6

N

1
5

0

0
8

P

0
4

13,6 Plastic Stress Levels

In practice it is necessary to know how to determine the impact steesses. When a plastic
impact occurs (i.e. <?i > a0) between a bar with known speed v and a rigid target, we may
assume reflections within the bar shown in Figs 13.25a,b.

(a)

(b)

Figure 13.25 Reflections from an impact between bar and rigid target

The impact stress is split into two compressive wave reflections: an elastic wave under aa

and a plastic increment wave under a = at- (Xo, Within Fig. 13.25b, the velocities balance:

v -
pco

= 0 (13.25)

Hence, from knowing: v,, ao, p, E and S, it follows that a and a can be calculated.
Alternatively, a plastic impact can occur between bars of different sizes. Let the stationary
bar 1 be impacted by a larger bar 2 with an initial velocitiy v. The plastic stress levels upon
impact become ert and <% respectively, as shown in Fig. 13.26a. Both elastic and plastic
waves reflect into each bar from the interface under the stress levels indicated in Fig. 13.26b.
The force equilibrium condition and a common particle velocity at impact ensure:

(13.26a)

v -
PCa

(13.26b)
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(a) i

(b)

Figure 13.26 Plastic impact between bars of different areas

Equations (13.26a,b) allow for the calculation of er, and % as the following example shows.

Example 13.7 A striker of length I, moving with a velocity 20 m/s, strikes a stationary rod
half its diameter and twice its length (see Fig. 13.27a). Both striker and rod are of steel with
a modulus E = 207 GPa and density p = 7900 kg/m3. Using a a bi-linear stress-strain curve
in which ao = 465 MPa and S = Ef 16, draw the x -1 diagram from the moment of impact to
a later time t = lllcB. Plot the distribution of residual stress occurring within this interval.

Since Ax IA2 = {dx fd^i1 = ¥*, it follows from eq( 13.26a) that erz = #j/4. Firstly, assume that
both bars become plastic. Substituting into eq(13.26a,b) leads to

°i i f 6

Using the material constants gives: axlaB = 1.55, from which %laB = 0.387. These show that
bar 2 remains elastic while bar 1 is plastic. Since this contravenes the impact assumption
it is necessary to re-calculate stress ratios under these conditions. Equation (13.26b) is
modified to become

v -
PCa

Re-arranging with eq(13.26a) as before:

3 +

for which ax iaa = 1.115 and ojae — 0.278. Figure 13.27b shows the x -1 diagram based
upon this elastic-plastic impact. The full solution provides the wave stress components at
each intersection between reflections from the ends and from the contacting interface. A
sample of the interactions involved appears within Figs 13.28a-d. Only the physically
possible solutions for each point are given, i.e. no alternative interactions are possible.



 

434 BASIC ENGINEERING PLASTICITY

Ilk,

Figure 13.27 Tte JC - r diagram for an elastic-plastic impact between bare

At A: (see Fig. 13.28a). The reflected tensile wave is split elastically at the interface.
Applying eqs(13.22a,b):

- (0.278 + b)A = - aA/4

from which a = 0.45 and b = - 0.167 (i.e. it becomes tensile).
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At B: We use the condition that vB = 0 in Fig. 13.28b» to give

_L - _5L( HI) = o

from which a = c/ca = 1/4.

At C: Assume mat the elastic wave is overcome, as in Fig. 13.28c:

6 + 0.115-0.450 = - a
- (0.115 x 4) + 0.450 + b = a

from which a = 0.158, b = 0.175.

At D: Let Fig. 13.28d be the wave interaction. This reveals

0.158 + 0.158 + 4a = b + (4 x 1/4)

from which a = 0.187 and b = 0.064.
.a

-a

(b)

0.175 0.105

Ce) CO

Figure 13JM Wave stresies at interaction points A-G within Fig. 13.27

At E: Assume a reflected wave 6 with the same sign (see Fig. 13.28e):

bA = ¥* A (a+ 0.175)
6 = 0.175-a

from which a = 0.105 and 6 = 0.07.

At F: Assume the wave interaction shown in Fig. 13.28f:

a +0.105 = 6 +0.187-0.064
0.105 - 4a = 6 + 0.064 - (4 x 0.187)

from which a = 0.161 and b = 0.143.
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At G: The interaction given in Fig. 13.28f is assumed:

a- 0.267 = 0 . 1 6 1 - *
a + 0.267 = (4 x 0.161) + b

from which a = 0.403 and b = 0.026. This shows that no plastic wave is transmitted beyond
G and only elastic waves will follow after a tune 7VcB. The projection, Fig. 13.27c, shows
the residual plastic stress distribution, derived from the plastic limbs OC and BDFG. The
incremental proportions of the yield stress ao shown are readily converted to strain using
eq( 13.24) with the given modulus.

13.7 Concluding Remarks

We have seen that the approximate solution to the wave equation lends itself to a useful
graphical interpretation of stress waves within impacting model materials. Stress, strain and
velocity, within travelling and intersecting waves, are provided by Ms method. Stress levels
in excess of the elastic limit are contained most conveniently within a single plastic modulus.
More accurately, over a wide plastic stress range, the approach permits a more accurate
multi-linear representation of the flow curve. The worked examples and exercises show the
nature of the solution furnished by this approach when dealing with the longitudinal impact
of a bar with both a rigid solid and another bar of different sectional area and material.

References

1. Kolsky H. Stress Waves in Solids, 1953, Clarendon, Oxford.
2. Goldsmith W. Impact, 1960, Edward Arnold.
3. Batehelor J. and Davies R. Surveys in Mechanics, 1956, Cambridge, pp. 64-138.
4. Abramson J. H., Plass and Ripperger E. A. Advances in Appl Mech, 1958,5, Academic

Press, New York.
5. Cottrell A. H. Chartered Mech Eng, Nov 1957,1. Mech. E., London
6. Rinehart J. S and Pearson J. Behaviour of Metals under Impulsive Loads, 1965, Dover

Pubs, New York.
7. Lee E. H. and Symonds P. S. Plasticity, Proc 2nd Symposium Naval Structural Mechs,

I960, Brown University, Pergamon.
8. Redwood M. Mechanical Waveguides, 1960, Pergamon Press, London.
9. Kolsky H. and Douch J. Jl Mech Phys Sols, 196210,195.
10. Johnson W. Impact Strength of Materials, 1972, Arnold.
11. Taylor G. I. Proc Roy Soc. 1948, A194,289.
12. Bell J. F. The Physics of Large Deformation of Crystalline Solids, 1968, Springer-

Veriag, New York.

Exercises

13.1 A steel bar of length 510 mm and sectional area 645 mm2 travels with a velocity 3.65 m/s to
collide axially with a similar stationary bar of length 127.5 mm. Determine the time at which the
impacting surfaces separate and find the final translational velocity of each bar. Determine the events
subsequent to impact if the bar material is known to fracture under a tensile impact speed of 1 .S3 m/s.
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13.2 An explosive charge is detonated at the free end of a uniform concrete beam. This causes 5 scabs
of lengths 240 mm, 165 mm, 190 mm, 330 mm and 620 mm, to be thrown off at the other end.
Assuming a steep-fronted pulse, construct a curve showing the variation of stress in the applied pulse
against distance travelled within the concrete. What is the possible error in the stress ordinates of the
curve? Take the ultimate strength of concrete as 2.1 MPa.

1 3 3 The compressive stress pulse in Fig. 13.29a is applied at time t = 0 to the left-hand end of the
concrete and steel composite bar, shown in Fig. 13.29b.

10 p, bar

L_

(a)

21 t

Figure 13 3S
(b)

Find the sequence of events during time 0 < t < (2I/c, + 2Mc2) where subscripts 1 and 2 refer to steel
and concrete respectively, ct and c2 are the propagation velocities within these materials. Illustrate
the answer with sketches of the transmitted pulses at specific times within this interval. Take the
maximum allowable tensile stress in the concrete as - p MPa.

134 A tension impact specimen of length I is held by two loading bars, as shown in Fig. 13.30. The
end X is pulled suddenly and maintained at a constant velocity va. The resulting, square-fronted, wave
of tensile stress amplitude aB croses section PP at t - 0. Derive stress-time curves for the sections PP,
QQ and RR from t = 0 to t = 4UcB. Assume both bar materials are similar for which the yield stress
is not exceeded. Take the ends to be sufficiently remote for no reflections to occur during the time
interval stated.

Figure 1330

13.5 Derive all the elastic-plastic wavefronts resulting from the interactions shown in Figs 13.31a-d.
The given numbers/fractions refer to stress ratios o'er,,. Positive and negative signs indicate
compression and tension respectively. Take the velocity ratio eje - 4 in all cases.

Figure 13 J l

13.6 A thin rod of uniform cross-section and length I is rigidly clamped at one end. A tensile stress
25er,/12 is suddenly applied at the other end for an interval UcB and then removed. Given S = 1/16,
plot on an x -1 diagram the resulting stress increments for time t = 0 to t = (5l)/(2co). The yield stress
of the rod is a,.
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13.7 A thin bar of area A and lengfli 3L is fixed to a rigid support at one end. The other end is free
and flanged as shown in Fig. 13.32. A tube of similar material, with section area 2A and length L,
slides freely along the bar to strike the flange with an impact velocity 160 m/s. Draw the x -1 diagram
from t = 0 to r = 62fc0 given the following: E=207 GPa, q, = 275 MPa, § = E/mmip= 7890 kg/mJ.

L

Figure 13.32

13.8 The large diameter end of a light alloy flagpole (see Fig. 13.33) is dropped 2.75m on to a solid
rigid base plate. Construct ttiei-l diagram from the time of impact t = 0 to t = 7Uca. Show that the
residual plastic strain distribution following impact is then completed. Take g = 9.S1 m/s2 with the
following bar properties: E = 124 GPa, S = E/16, att = 198 MPa, and p = 3320 kg/ml

A/2 4/4

X

21

Figure 13 M

13JJ A uniform bar, 255 mm long, travelling at 76.5 m/s, strikes a rigid perpendicular surface. Plot
the x -1 diagram for the period in which plasticity occurs and sketch the residual plastic strain
distribution. Assume abi-linear stress-strain curve for the bar in which aa — 13S MPa, E = 6.9 GPa,
S = EJ64- mdp= 8304 kg/ms.

13.10 A uniform bar 255 mm long is projected axially at constant speed to strike a rigid perpendicular
target. If the initial impact stress within the striking end of the bar is initially 69 MPa, find the striking
velocity and plot the JC -1 diagram, showing the magnitude of each wave front for the duration in
which plasticity occurs. Sketch the residual plastic strain distribution after this period. Assume the
following: E - 13.8 GPa, aB= 55 MPa, S = MOO and />= 7200 kg/ml [Answer: v0 = 19.56 m/s]

13.11 A uniform bar of length I and area A is rigidly clamped at one end, A second bar of the same
material with lengfli IB and area 2A impacts the clamped bar at its free-end with velocity of 14.75 m/s.
Plot the x -1 diagram showing the stress magnitudes in both bars from time t - 0 to t = 5l/ca. Discuss
whether any further plastic wave fronts are generated after this time interval for a material with the
following properties: E = 207 GPa, oa = 345 MPa, S = E/16 and p = 7890 kgte3.

13.12 A stepped circular bar consists of two lengths L and 3L with respective areas 2A and A, The
smaller end strikes a rigid perpendicular target at 12.7 m/s. Plot the location-time diagram showing
the magnitudes and direction of the wavefronts for as long as plasticity continues to occur. Plot the
residual plastic strain distribution. Assume the following: E = 207 GPa, aa = 345 MPa, S = E/16 and

J
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C H A P T E R 14

PRODUCTION PROCESSES

14,1 Introduction

In our earlier work on slip lines and limit loading, analyses were made of the extrusion and
rolling processes. We shall now look at these again among a number of large scale bulk
forming processes where temperature, friction and strain rate are controlling parameters.
These include forging, extrusion, rolling and machining. Alternative analyses of each of
these shaping methods adopted here employ work conservation and slab equilibrium
principles. Within this some previous results from SLF and bounding theory will be
employed. The introductory treatment given will serve to extend the range of methods
available for the analyses of forming and shaping of metals within the plastic range.

14.2 Hot Forging

In the case of hot forging, a billet of material is compressed between flat, parallel dies
successively so that thickness is reduced by the required amount. Uniform bars and rings
may be produced by this method, either by rapid, repeated hammering or by a slower
hydraulic pressure. More complex shapes, e.g. connecting rods and propellor blades, may
be produced by forcing material into die cavities. Working material into such shapes is
inhibited by its loss in temperature and an increase in surface friction, both of which increase
the compressive force required.

14.2.1 Geometrical Constraints

Figure 14.1 shows the process of deforming a volume of material beneath dies that reduce
the thickness from a cogging process. Depending upon the final dimensions required, there
will usually be some degree of spreading and bulging in the width. That is, w, > wB, but for
each cogging step the material preserves its initial volume:

wo&?o=wi2»,f, (14.1a)

in which bt is the formed length of material beneath the die breadth b. Equation (14.1a) is
written as

In {wxt wo) + In (bxl b) + In (txl Q = 0 (14.1b)

A coefficient of spread s is defined as

ln(w,/w )
, = » °l (14.2a)
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Figure 14.1 Foripng between flat dies

A coefficient of elongation follows from eqs(14.1b) and (14.2a) as

The two coefficients in eqs(14.2a,b) give width and breadth ratios:

1 - s

(14.2b)

(14.3a,b)

where $ is regarded as an empirical constant that depends upon the bite ratio bfwa. If b = w0,
eqs(14.2a,b) give s = 0.5. Where wa is large, giving biwa ~ 0, then s = 0 to give no spread
under plane statin. Conversely, if the wo dimension is small then s = 1. A practical formula,
that embodies these three cases, defines s as

s = 11S
(b/wo)

(14.4)

Equations (14.1) - (14.4) apply to a forging pass in which the squeeze ratio tohi is constant.
The following recommendations [1] are made to avoid a central region of unworked
material, excessive distortion and overlapping at the die edges:

— i — and — s —
t 3 w. 2

14.2,2 Die Pressure and Loading

As a first approximation it is assumed that the material beneath the die (see Fig. 14.1)
deforms in plane stain. Thus, when the width w remains unaltered, the die pressure will be
given by the SLF solutions discussed in Section 6.7. These solutions are combined within
Fig. 6.50 to give a normalised die pressure appropriate to the b/t ratio in lubricated dies.
However, in the presence of friction, SLF theory underestimates die pressure. The accuracy
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of the latter is improved when it is assumed that the shear yield stress k of the material has
been reached at the interface, as shown in Fig, 14.2,

Figure 14.2 Foigng of strip showing a material element and the ftidion MU

Plane strain conditions are assumed so that horizontal equilibrium of a strip with a unit width
(w = 1) reveals

<2&x&xl) + (fx<%xl) = 0 (14.5)

Within tie strip, the two eompressive principal stresses p and q conform to the Tresca yield
criterion;

p-q-Y=2k (14.6)

Combining eqs(14.5) and (14.6) leads to the pressure gradient for the die half;

dp/dx = df/dx = -2klt (14.7a)

Integrating gives the die pressure
= - Yxlt+C (14.7b)

in which the constant C=Y+ Ybilt is found from the condition thatp = Yfor x - b/2 at the
die edge. Hence, the die pressure is distributed as;

= Y\ 1 + - - -
' 2t t

(14.8a)

Equation (14.8a) defines a linear pressure distribution over one half of the die face, as shown
in Fig. 14.2. The so-called friction hill estimates the forces required to forge both square
and circular.prisms [2]. The three-dimensional pressure required is distributed within a cone
and a pyramid respectively over the die face. To describe a simple cogging operation, with
bit > 1, the mean pressure is adequate. Equation (14.8a) gives this as

p = Y{l*b/At) (14.8b)

The following empirical expressions [1] provide a closer estimate for each range of die
breadth to thickness ratio:

p = Y ( 0.797 + 0.203^) for bit < 1

p = Y (0.750 + 0.250blt) for bit > 1

(14.9a)

(14.9b)
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Example 14.1 A block, 60 mm square and 300 mm long, is to be hot foiled into a thinner
itrip, 20 mm thick, 60 mm wide by 900 mm long, by repeated cogging steps between a die
whose breadth 6 is to minimise the plastic work required. Given mat the bit ratios involved
with the reduction in thickness from 60 mm to 20 mm involve die pressures expressed by
both eqs(14.9a,b), find the required value of b. Neglect work hardening and spread.

Since 60 < b < 20 mm, eq( 14.9a) applies initially with ta = 60 mm for a reduction to t = b
(i.e. bit < 1). Thereafter, eq{ 14.9b) will apply for ta = b for final reductions to tt = 20 mm
(i.e. bit i 1). The work done by each die is the product of the force F applied and the
displacement y it produces. This work may be referred to a current strip thickness t with an
appropriate change to the limits of integration. Hence, the work done by the die pair per step
becomes:

W = 2 J Fdy = J Fdt

Substituting from eqs(14.9a,b), with F = pwb and multiplying by the number of cogging
steps IJb (4 is the initial length), gives the total work done:

= Ywla

= Ywl

b

0.797 + 0 . 2 0 3 - j d i + f f 0.750 + 0 . 2 5 0 - j i t

G.797(*o - b) 0.203
2b

- b2) + 0.75 (* - t.) + 0.25iln —

The die breadth which minimises the total work follows from:

db

0.203 r
= 0 = - 0.797 - + 0.75 + 0.25

Substituting r0 = 60 mm and tt = 20 mm, provides the required die width: b = 37.56 mm.

14.3 Cold Forging

Small parts may be cold forged to improve their surface finish and hardness. The process
is usually conducted at rapid rates under a drop hammer using dies to produce the
complicated shapes required, e.g. in crankshaft and coin production. Forging may be
employed for non-ferrous alloys and carbon steels when the interface frictional stress is less
than the shear yield stress k in the contact zone. Assuming Coulomb friction x— pp & k
implies mat the material beneath the dies slides under a constant frictional coefficient fi. The
strip equilibrium equation (14.7a) becomes



 

dx
Integrating eq(14.10a) leads to

= -2fix/t+C
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(14.10a)

(14.10b)

Along the edges of the die (x-± W2) friction is absent and p = 2k is reached. This gives
C= pbtt + In 2k and eq(14.10b) becomes

p = 2ke ' *> * ' (14.10c)

Equation (14.10c) describes the friction hill distribution shown in Fig. 14.3a.

(a) 2t
P

P

bl2 £ x bll

Figure 143 Mellon Mils for cold forging

From Ms, the mean pressure p in Fig. 14.3a may be found:

(c)

6/2 A/2

p x - = j pdx = 2k j e ' ^ * dx

(14.11)

2k

The peak pressure for the hill in Fig. 14.3a is restricted to where (ip = k, and so, with a
widening of the die, the pressure in the central region becomes p =• Uji. If n remains
constant in this region the friction hill is modified with a flat plateau. Figure 14.3b shows
a more likely pressure distribution under a varying y,. Eq(14.10b) gives the corresponding
position x = x' at which edge sliding under r = lip becomes central sticking under t = fc

x' = - 1 - —-In —-
2 | ^fe \ 2pt

(14.12)

If x" is to lie within the die's half-width (0 < x' < bI2), it follows that ln(l/2/i) < ptbt, from
eq(14.12). When x' < bl2, the pressure within the central zone (0 & x s x") is found from
integrating eq(14.7a) ,

p = C - ^ S

where C follows from setting p to eq(14.10b) with z = x' from eq(14.12). This leads to
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2k( b
t{2

(14.13)

At the friction limit n = ¥i and eq(14,12) gives x" = b/2. Correspondingly, eq(14.13) shows
that the pressure then becomes linearly distributed over the half-width (see Fig. 14.3c) as

p = — t + x
t[ 2

P _ ! + A
for which the mean value is

2* 4f

In the case of Fig. 14.3b, the mean pressure is

2*

where ar= fibtt - In [l/(2p)]. The present theory is regarded as acceptable where bit < 3 and
H < 0.3. Slip-line field solutions (see Section 6.7) will provide more reliable estimates of die
pressure in the case of bit > 3, particularly where ft is high.

14,4 Extrusion

We have discussed SLF solutions to various extrusion geometries and friction conditions
earlier. Making an assumption of plane strain restricts the application to rectangular dies
and billets. Consequently, the axi-symmetric extrusion of bars and tubes remains to be
analysed. These products may be produced by direct and indirect methods. In conventional
hot extrusion (see Fig. 6.24) the ram must exert a force of several hundred tonnes to
overcome friction at the container walls. This method is favoured for the production of
various bar sections in non-ferrous alloys where glass has been used as a lubricant. With
even higher temperatures required to extrude steels, the molten glass solidifies upon the
surface of the extrudate. A less convenient, inverted extrusion process (Fig. 14.4a), reduces
the forces required, since the billet remains stationary in the container under a moving die.

77///
extrudent

Figure 14.4 Extrusion processes

Direct exlxusion with a ram and mandrel is used for tube production by either method shown
in Figs 14.4b,c. In the preferred design, the mandrel remains fixed in position by webbing
to the port hole die (see Fig. 14.4c). This provides for better support of the extruded tube
and thereby impoves the concentricity between tube diameters.

Taking an annular strip between mandel and container wall in Fig. 14.5 allows a similar
analysis for each process.
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D/2

X/// / / / / / /III

a

HA

i

1 \

f

Figure 14.S Analysis of extruded tube half-section

At the distance I from the die face, the equilibrium of this strip element is expressed as

— (D2 - dz) x dp, = ?r(£> + d) dl x pp. (14.14)
4

Separating the variables p and I within eq(14.14) allows an integration to

EL
P - 4

where p is taken as a mean extrusion pressure, revealed by SLF analyses:

(14.16)

where R = Hlh is the extrusion ratio and a and b are constants, which have been found [3]
for this process as a = 0.47 and b = 1.2. Combining eqs(14.15) and (14.16) gives

— = (0.47 + 1.21n/J)exp
F [D-d

(14.17)

When the mean extrusion pressure is found for two billets of lengths lx and lj, eq(14.17) may
be re-arranged to provide the friction coefficient

* • . (° " d\ '° — (141S)

A numerical value p « 0.03 was found from eq( 14.18) for a range of extruded lengths [3].
The work done for an incremental displacement is

SW=p,xAxSl

Substituting pt from eq(14.17) and integrating for the total work done:

W = AF (0.47 + 1.2 In R)

l.2lnR)

0

(D-

dl

D-d
(14.19)
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In eq(14.19), a mean yield stress Ym is introduced to allow for the influence of a temperature
rise from the work required to overcome friction. This is

W=mC(T-T0) (14.20)

where m is the mass of the unextruded billet, C is its specific heat and Te is its initial, pre-
heated temperature. Equating (14.19) and (14.20) gives the temperature rise AT= 7* - Ta;

AT =
pAW

(0.47 + 1.2 mi?)
(D- d) exp D-d

- 1 (14.21)

where p is the material density and I is the unextruded length. Equation (14.21) allows the
maximum extrusion ratio R » D/d to be found. To determine Ym, the mean strain rate at the
extrusion temperature must be estimated. For example in a conventional extrusion, assume
that a ring of dead metal exists in the corner of the vessel. The deformation then becomes
confined to the shaded conical volume in Fig. 14.6a.

(a) (b)

Y///////

I1///////

FIY

Figure 14.6 Deforming volume m conventional extrusion

Let the ram force a solid cylindrical billet of diameter Dl into the 45° cone at a velocity of
a. The time t for this to occur is found from

Taking the mean strain in the cone as em = In R, where R =
t may be approximated from eq(14.22a):

e = Ini? • mi?

(14.22a)

, the mean strain rate in time

(14.22b)

Equation (14.17) may be used to minimise the extrusion pressure and force wim respect to
the container diameter Dx [3]. For a solid circular extrusion the minimum force and pressure
are not coincident (see Fig. 14.6b). The curves show that it would be advisable to select a
value of Z?i lying between these minima. When the above theory is applied to an extrusion
within conical dies some modifications are necessary. Firstly, for an inverted extrusion
process the coefficients a and b in eq(14.16) depend upon the semi-cone angle

and b = b" + b"cot ee (14.23a,b)
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where a*, a", b* and b" are constants. Secondly, for direct extrusion through conical dies
the mean pressure is further raised to overcome additional wall frictions

£ _ (a + blnR)
Y (1 - 4^/Dj)

where a and b are given by eqs(14.23a,b).

Example 14.2 Show that for a simple homogenous, cylindrical extrusion the force acting
upon the ram is given by: F = YAr\n (Ar/Ae) where Ar is the area of the ram, Ae the area of
the extruded bar and Y is yield stress for rigid-plastic material. In a two-stage, extrusion
process a 20 mm billet is first produced from a 10% reduction to its original area.
Thereafter, the billet is extruded to 18 mm. Given that the true stress-natural strain law for
the annealed material is expressed by a Hollomon law: a= 98Q£019, determine the force
necessary for extrusion accounting for work hardening. How is the force expression altered
in the case of a Ludwick description of the flow curve?

Let the ram force F = YAr move through an incremental distance $ to give the work
increment ._,

3W = YArSl = — 31 (i)

where V is the volume displaced in a length I. With a homogenous deformation of rigid
plastic material, occurring between an initial length lr and a final length lt, the work/unit
volume becomes

'- / \ / \

where Arlr = Ae le provides the reduction in area ratio. On the ram side, the specific work is

W FK F
V Aflr Ar

Equating (ii) and (iii) gives the ram force;

(iii)

(A\
F = FA In — (iv)1AJ

In the first stage, the area reduction is

A - A, A
_£ L = 0.1 =*• -2- = 1.11

and from this, the true strain is

= In J.1 = m _ d = In (1.11) = 0.105

From the Hollomon law, the corresponding flow stress is a= 638,6 MPa. In the second
stage the strain increment is similarly found,"

= m f ^ l =o.2ii
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The total strain after stage 2 is e= 0.105 + 0.211 = 0.316, for which the stress is 787.3 MPa.
The average stress for stage 2 is am = 712.97 MPa and from this the extrusion force in eq(iv)
may be modified to account for work hardening:

( A \ i \ "%

— = 712.97 x — (20)2 ln[— 1 =47.2kN
Using Ludwick's hardening law (9.43a), the extrusion force follows from eq(iii) F = Arw,
in which the specific work w = W/V in eq(i) becomes:

w = fade = f

B + l

= Ye
n + 1

= Kin f ^ l .
n + 1

In

14.5 Hot Rolling

This continuous cogging process may be performed hot or cold between rolling mills
arranged as 2-high, 4-high, clustered, planetary and pendulum (see Figs 14.7a-e).

Figure 14.7 Rolling processes

The aim of all rolling is to reduce sheet thickness in a continuous process while maintaining
uniform thickness and width throughout [4]. The roll force and torque will dictate the
reduction, which may be increased with more sophisticated mills, involving a number of
smaller rollers in contact with the sheet.

14.5.1 Wide Sheet

The theory of hot rolling assumes plane strain in which no spread occurs, i.e. transverse
cross-sections remain plane and no roll deformation occurs. Hence the theory is similar to
that for cold rolling strip (p. 230). In Fig. 14.8a, a 2-high mill transmits the roll radii R to
the sheet within an arc of contact. At the entry and exit planes the thicknesses are fej and ht

and axial stresses on these planes are zero when front and back tensions are absent.
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*<<Z,kR6$

sRSfp

Figure 14.8 Geometry ami forces within simple hot rolling

The volume rate remains constant, so for sections at entry, exit and at one between these:

bxhlvl = bhv = b2 ft2 v2

where v,, v2 and v are the respective velocities at these positions. Since 61 * b = 1%, it follows
that VJ/VJ = hilhz > 1. The tangential roll velocity vR=aM lies between Vj and vz, i.e. vR> v1

at entry and vR < v2 at exit. Where vR equals the strip speed there is no relative motion and
at this neutral point, the frictional force between contacting surfaces changes direction. In
a hot rolling process the shear yield stress it is attained by the friction present The direction
of k at the intermediate position shown applies to where the roll speed is greater than the
strip. This is coupled with a normal pressure s along the arc interface and a distribution in
the axial compression fromp to p + 4>- The forces acting upon the elemental strip, distance
x from the vertical symmetry line, are shown in Fig. 14.8b. The balance between horizontal
forces from pressure (f = ph) and those from the roll is expressed for a unit of width as:

(p A) + 2kRd<f>ms<p=ph

Expanding (14.24a) and neglecting the product («|» x A) leads to

— ( p h ) = 2R(s sin # ± k cos # )
dfi

(14.24a)

(14.24b)

in which - k cos$ applies to the horizontal friction force component at the entry side of the
neutral point and + k eos$ applies to the exit side of this point. Strictly, eq(14.24b) requires
a numerical solution top but a good approximate closed solution follows from assuming a
rolling reduction between flat, parallel dies. This gives $ = 0, ht = fej and «& = RS<p and
eq( 14.24b) becomes

hldp/dx-±2k (14.25a)

Both p and s are compressive and assuming s ** q for the strip element shown, the plane
strain yield criterion (14.6) is simply

s - p = 2k (14.25b)
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Combining eqs(14.25a,b) gives

Integrating eq(14.2Sc) for the exit side:

dx

2kv

(14.25c)

(14.26a)

where sz applies to the exit plane (x = 0) where p = 0. Hence eq( 14.25b) gives st = 2k and
eq( 14.26a) becomes / \

s « 2* \C + — (14.26b)

From experiment, C is taken as ^ 4 » 0.8 and not unity [5]. Equation (14.26b) defines the
friction hill for hot rolling shown in Fig. 14.9.

Figure 14S Friction hill for hot rolling

Equation (14.26b) gives the gradient, tan « = H/(nL), of the hill as

ii - M
d* h,

(14.26c)

in which the neutral point is assumed to bisect the projected arc length L. The area beneath
the hill gives the roll force/unit width

in

P = fsdx = 2 x 2 * = 2feL C (14.27a)

which is comparable with eqs(14.9a,b) for a cogging operation. Each roll torque/unit width
may be approximated from eq( 14.27a) as

T=PxLf2

Now, from the geometry in Fig. 14.8

L a R$i and x * R<f>

(14.27b)

(14.28a)

(14.28b)

(14.28c)

and setting the' draft' 3=hx- h^, eqs( 14.28a,b) give the geometry of the contact arc:

and L = \fW$ (14.28d,e)



 

PRODUCTION PROCESSES 451

Thus, knowing /?, 3, fe^ and k, the roll force and torque follow from eqs(14.27a,b). Sims [6]
modified the yield criterion (14.25b) to correspond with C s 0.8:

p =s- ~{2k)
4

(14.29)

and set sin<^ » ^ and cos^ « 1 in eq(14.24b) for rolling mills with a small arc of contact.
Substituting from eqs(14.28c) and (14.29), the equilibrium eq(14.24b) becomes

d f S R
4) 2(h2+R<f>2)

(14.30)

Equation (14.30) may be integrated, using the appropriate limits for $ between exit and
entry (where s = (nf4)(2k) at each position), to give respective closed solutions

JF, { h I n I R
In + +

s JF, { h I n I R . - i | I R . i , ...
— = — In — + — + — tan ' — a>\ (exit)
2* 4 I h I 4

s~ n. \ h \ n I R , . i | I R . I \ R
— = — In — + — + — tan M — m. - —
T L A I T - I A * i J L A Z . 7 ^ ! ! * I .2ft 4 1 A, J 4 \ fc,

(14.31a)

(14.31b)

The neutral point # = (ft, is found from equating (14.31a,b) for h = htt =

—tan"1 R_
h,

— tan'1 (14.32)

The roll force, acting normal to a unit width of roll, is found from eq( 14.32) as follows:

P == R f sd# = R f
0

= 2*R n
2^ ¥

0

an~ X

\

(14.33)

where Vt(fej- A^/^J = ̂ (R/h^fa. Simms [6] interpretated eq(14.33) graphically by writing
P = 2kLQP in which QP depends upon R/hz and J i ^ . The total roll torque/unit width may
also be estimated from eq( 14.27b) simply as T= PL or, more accurately, from k as:

T == 2 j 2JfcR2(#j/2- #n) (14.34a)

The limits of integration apply to the range of 0 over which the direction of k is not opposed
within the adjacent region. Since $n appears in eq(14.32) and $ i = v [̂(fti - hj/R],
eq(14.34a) may be re-written as

T=2kR2QT (14.34b)

The dependence of QT upon R/hj and hjh^ has appeared in graphical form [6]. The shear
yield stress k in eqs( 14.33) and (14.34b) must apply to the mean strain rate for the process.
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We may take 2k to be the mean value of the plane strain yield stress for rolling. For this a
stress-strain curve is required at the mean stain rate for rolling (see p. 453). The curve
allows a mean stress 21 to be read or, where work-hardening is evident (e.g. see Fig. 14.10),
as the ordinate of a rectangle with an equal enclosed area:

2k sm = f 2k de (14.34c)

where em = \a(h1 l
(seep. 287).

is the exit strain simulated, say, from a plane strain compression test

Figure 14,10 Mean stores and strain in plane strain

Example 143 Estimate the roll force and torque required to roll a 300 mm wide, annealed
sheet from 4 mm to 3.5 mm thick between two rolls each of radius 175 mm. How is the
force altered when the original area had been attained by a previous reduction of 10%? The
plane strain, true stress versus natural strain curve is given by a Swift law (9.44b) in which
oB = 2k = 200 MPa, so = 0.05 and n = 0.25.

The compressive sfrain involved in a reduction from 4 to 3.5 mm is

^ - l n f - l =m(-i- l =0.134
{ h l*J Us)

Applying eq(14.34c)» gives a mean flow stress 21 for the strain range 0 & e £ 0.134

0.134

(compression implied) as

2k~ x 0.134 =200 f (1 + 2Qs)a2Sde » 32.78
o

from which 2k = 244.6 MPa. Equation (14.28e) gives the arc length as

L = , - h2) = T/175(4 - 3.5) = 9.35mm

from which eqs(14.27a,b) supply each roll force and the torque as:

P = 2kLwI — + — I =244.6 x 9.35 x 300x 10~31 0.7854 + 9 J 5 | = 997.1 kN
I 4 4ft, 4 x 3.5

T = PL/2 = 997.1 x (9.35 x 10" 3 ) /2 = 4.66 kNm

In the case of a 10% pre-reduetion in area {AJAt = yiB = 1.11), the lower limit of integration
in eq(14.34c) is: ln(l . l l) = 0.105 and the upper limit is: 0.105 + 0.134 = 0.239.
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14.5.2 Narrow Strip

Rolling narrow strip modifies the friction hill (Fig. 14.9) between the planes of entry and
exit. The hill top slopes at fi to sheet edges but extends toward the centre of the rolls
retaining its flat plateau, to give the friction raof'm Fig. 14 11.

Roll

Entry

Figure 14.11 Friction roof for rolling narrow strip

The total roll force is found from the volume beneath the roof [7]:

PT = 2kb L\ (14.35)

where g ~ IMhz when the neutral point is central. The mean thickness and breadth, h and b
respectively, are based upon a parabola describing the shape of the contact arc and the
spread between entry and exit. These give:

1h - i
= i £ , h = -(2h2

h 3

i

and b = -(2b2 + bj
3

As with hot forging, a spread factor S and a coefficient of spread $ (see eq(14.4)) can be
defined for strip rolling:

5 = — and s =
Llbx

«j 1 + L/fej i +

In a two-roll mill, eqs(14.27b) and (14.28e) approximate the total roll torque as:

T =

14.5.3 Strain Rate in Hot Rolling

A consideration of the strain rate in rolling becomes important when estimating the
appropriate shear yield stress k in eqs(14.27a) and (14.35). For a wide strip, the through-
thickness strain increment is de = fihfh, giving its rate as

h dt

where, from the geometry in Fig, 14.8,

dx dt
(14.36)
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x = R$in$ =»• — = i?eos^

h =h2 + 2R(l- cos #) ^ " ^ =

dx _ _ = __F_
dt bh

(14.37a)

(14.37b)

(14.37c)

where V= bhv is the volume of material rolled per second. Substituting eqs{14.37a-c) into
eq(14.36) gives

bh2
tan#

Equation (14.28c) approximates the thickness at the jc-plane to

h = h% + 2R(l- eos0) » fcj + Rip2

from which we may write an approximation

h - h2

R

Substituting eq(14.39b) into (14.38) gives

E = -
2V

bh2\

h - fu 2¥

R M R

- 1

(14.38)

(14.39a)

(14.39b)

(14.40)

Equation (14.40) allows the strain rate distribution within the pass to be determined. This
shows a near maximum rate at the entry plane h = hlt falling to zero at the exit plane h = h2.
A mean strain rate em may be identified with the ordinate of a rectangle with the same area
as that beneath the curve of e versus h:

1

Under plane strain conditions, the flow in the transverse direction is zero. Hence em applies
to the mean rate of thinning, this equalling the mean rate of axial extension beneath the roEs.

14.6 Cold Rolling

Dimensional stability, hardness and improved surface finish may be achieved with a final
cold rolling of pre-tensioned sheet. This ensures that the yield stress for the sheet material
is far greater than that for all previous hot passes. Cold rolling raises the normal pressure
s in Fig. 14.8 and elastieally flattens the roll itself by altering its radius from R to R'. As
with cold forging, the interfacial shear stress is lowered to (is and this cannot exceed the
shear yield stress k for the material. Thus, the horizontal force equilibrium condition for a
wide sheet modifies eq( 14.24a) to

—iph) = 2R'${$hi(f>± p
dcp - miry

(14.41)
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Bland and Ford's [8] simplifying assumptions, s » q, sin$ « $ and cos# « 1, allowed the
plane strain yield criterion: q - p = 2k, to be applied to a plastic hardening material. Here,
the plane strain yield stress 2k depends upon the plastic strain level, and eq(14.41) becomes

-^-[(s - 2k)h] = 2R's( # ± M) - fL

C14.42)

With the exception of cold rolling an annealed material [8], the second term on the left-hand
side of eq(14.42) is negligible, i,e. the product kh is almost a constant and the bracket term
is small. Thus, with the substitution from eq(14,39a), the integration follows as

2k(k, + R'(f>2)—( — I = 2R's(<fr ± M
d$\ 2k)

f d(s/2k) = f 2fi'^d# + I* 2i?^d#
i (s!2k) I h2 + R'<p2 ± J h2 + « ' #

K tan"
R' # + inC

In
2khC

= ± fiQ

(14-43>

in which Q = 2^(R7tQ tan"1 [V(l?7Jy <fr]. Constant C is found from the boundary conditions
for a pre-tensioned strip. Let these be f, (= - pt) and 12 (= - ft) at entry and exit, where $
- # i and ^ = 0 respectively. Applying the plane strain yield criterion to each position
gives, correspondingly, st= 2kx - tx and s%= 2 ^ - t2. With these substitutions into eq(14.43),
the roll pressures become

2*J
,(0,-8)

(14.44a)

(14.44b)

where Qj applies to the entry condition ^ = ^ . The exponential terms in eqs(14.44a,b)
describe friction hills with both front and back tensions, t% and tt respectively, in Fig. 14.12.
In the absence off, and t2, the friction hill (shaded) is superimposed upon the plane strain
yield stress, the latter increasing from 2kx to 2fej in the contact zone.
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back tension present back tension absent

Figure 14.12 Roll pressure showing the influence of strip tensions

The yield stress variation may be replaced with a mean value, found from eq(14.34c). When
present, pre-tensions reduce both the roll presure and the roll force for a given reduction.
When fj > tj these tensions shift the neutral point $, toward the exit plane and, conversely,
toward the entty plane when t2>tt. The position $, follows from equating (14.44a,b):

-7
R'

where

h2[l - <*,«*,)]J

The roll force/unit width of strip is given by the enclosed area in Fig. 14.12:

P = i (14.45)

where s+ and s~ are given by eqs(14.44a,b). Each roll torque/unit width may be found [9]
from the sum of the torques due to s, I, and t •£.

2
(14.46)

and this may be written as T = Fie. Taking the eentroid x for the pressure distribution as
approximately one half the contact length, i.e. x ~ 112. in Fig. 14.12, gives a reasonable
estimate of the torque opon a single roll. The deformed roll radius in eqs(14.45) and (14.46)
may be estimated by replacing the friction ME with an elliptical distribution of pressure
along the arc of contact [10]:

R' = R 1 +
KP (14.47)

where, typically, K = 10.8 x 10"6 m2/MN for hardened steel rolls. The error involved in
estimating R" from eq( 14.47) is likely to be less than the error arising from neglecting elastic
strain when cold rolling thin, hard strip [9].
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14,7 Wire and Strip Drawing

14.7.1 Frictkmless Drawing

The simplest analysis of cold drawing a wire through frictionless dies assumes an
homogenous deformation of rigid, perfectly-plastic, incompressible material. For example,
Fig, 14.13a shows the reduction in cross-sectional area from Aa to At for drawing wire in
conical dies. TMs method can be used to achieve successive reductions from a 10-12 mm
stock diameter, usually at the maximum reduction possible (about 60%) in a single pass.
Multiple passes are employed to obtain greater reductions and, with an intermediate anneal,
wire as fine as 0.02 mm diameter may be cold drawn.

Figure 14.13 Wire drawing showing (a) conical dies and (b) the reduction limit

The drawing force within a given reduction is found from the specific work done:

ardep = Yf dep (14.48a)W/V = f ardep = Yf d

where F is the constant flow stress and V is a given volume of material for which the
corresponding lengths before and after reduction are 4 and I,. As V = AJO=A% llt eq(14.48a)
gives

W/V = Y[hdl/l = Yln^/Q = Fln^yAj) (14.48b)

Also, the work done in drawing a length lt under a force FisW=Fll. Hence

W/V = (F/,)/CA,/i) = F/Al (14.49)

Equating (14.48b) and (14.49) gives the wire drawing force:

F = Aj F In(A0/Aj) (14.50a)

The drawing stress follows from eq( 14.50a) as

aw = F/Ax = y In (A./A,) = Yln^/Q (14.50b)

Now, av should be less than F if the wire is not to break. Setting trw = Y in eq( 14.50b) gives
AJAt = 2.718, from which the maximum percentage reduction in area is 63.2%. For a
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hardening material a= oC^) in eq(14,48a), giving the drawing stress as trw= la{ep)&Ep.
Since the latter defines the area beneath the flow curve, it permits the geometrical
interpretation of the failure condition shown in Fig. 14.13b. The point of intersection gives
the maximum possible reduction. For example, using Swift's law (9.44b), with intersection
co-ordinates {d, d), gives:

o-J 1+ — . "f 1
H + 1

- 1 (14.51a)

Setting tf/aa = (1 + e/ej1 in eq(14.Sla) provides an equation in the normalised stress dfaa:

^ | - 1 = 0 (14.51b)

which depends upon the hardening exponent n and, more strongly, upon the strain history
term sB. Alternatively, we may use an average yield stress for the process within eq( 14.50a)
to account more simply for a history of hardening, as the following example shows.

Example 14.4 The true stress-strain relationship for an annealed material is given by the
Swift law: a = 75(1 + "iQe )0J5, Determine the draw force required to reduce a 3 mm
diameter wire to 2.75 mm, given that the 3 mm wire was produced originally from a 20%
area reduction. What is the greatest reduction from 3 mm in a single pass?

Let the sequence of processes be 0-1-2 where 0 is for the annealed material, 1 applies
to 3 mm wire with a previous 20% area reduction on entry to the die and 2 applies to the
wire at exit, following a further area reduction of 100(32 - 2.752)/32 = 15.9%. The natural
strains associated with the 20% and 15.9% reductions are:

j) = ln(l/0.80) = 0.223

2) = ln(l/0,84) = 0.174et_2 = ln(£j/I,) =

Thus, the natural strains at entry to and exit from the die are 0.223 and 0.397. The Swift law
gives the corresponding stresses as 282.4 MFa and 395.5 MPa. Using a mean yield stress
Ym = 339 MPa for the draw process, eq( 14.50a) is written as

F = A j ^ l n ^ / A , } = 5.94 x 339 x In (7.069/5.94) = 350.4N

The greatest reduction, based upon the flow stress in the drawn material, is found from

350.4 = 395.51n(A,/A2)

giving AYIAt = 2.425 and d^ = 1.926 mm.

14.7,2 Friction and Die Angle

There have been many refinements to the simple wire drawing analysis, notable among these
are the accounts of friction, geometry and redundant work, reviewed in [11]. A theoretical
account of the first two takes a disc of perfectly-plastic material within the contact zone (see
Fig. 14.13a) to reveal the normal pressure p and friction stress ftp around the conical
interface. These are equilibrated by a change to the axial stress da^ over thickness &. Let
the position z increase with D, as shown in Fig. 14.14a.
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lip P

D+SD
a.+Sa.

D

— Z

(a) W P UP P

Figure 14.14 Stress state in contact region tor (a) wire and (b) strip chawing

Horizontal forces will remain balanced when:

(b)

nD6i\ . Q ( u.pnDdz\
) \ COSP ) (14.52a)

Setting & = SD/(2tan&) in eq(14,52a) and ignoring small products upon expansion:

D6at + 2aJD + 2p(l +p)SD = 0 (14.52b)

where ft= /j/tanft The radial and circumferential strain increments within the cone are the
same since 6eB

p = {ndD)l(nD) = Ser
p. Substituting this condition into the Levy-Mises

eqs(6.1a-c) show that &#= &r for a cylindrical reduction. As a consequence both the Tresca
and von Mises yield criteria reduce to az - ar=Y when the fractional stress up is ignored.
Moreover, with a small semi-cone angle 0, we can set or« - p to give

P=Y-at

Combining eqs( 14.52b) and (14.53) gives

2 SD Sa,

D J3ot - (1 + p)Y

Integrating eq( 14.54a) between exit position 1 and entry position 0 leads to

(14.53)

(14.54a)

p

ftot-
I

- d +

(1 +

P)Y

P)Y (14.54b)
Do

Re-arranging eq( 14.54b) gives a wire draw stress aw = aa in the presence of back tension a^.

&... =
Y(l + P)

P
1 - -i + a.

D
(14.54c)
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In the absence of aa the drawing stress and force required to give a reduction in area ratio

r = (4, - At)IAa = 1 - (ZVA,)2 (14.55a)
are, respectively:

ffw = F(l + l / ^ ) [ l - (1 - r)fi] , F = A, <rw (14J5b,c)

The greatest reduction ratio r = rmm applies when aw = Y in eq(14.55b):

(14.56)

Equation (14.53) shows that &t = Y - p and Saz = - dp. Substituting into eq(14.54a), the
pressure distribution follows with an integration from the exit position 1;

2 f i £ = f d P
J D J Y + ftp

from which
p = (Pl + F / ^ ) ( D / D 1 ) ^ - Y//3 (14.57)

where p, = F - o, and o; = av is given by the draw stress eq( 14.55b).
In the case of a strip drawing analysis (see Fig. 14.14b) the strip thickness h replaces

the wire diameter D. The horizontal force equilibrium equation becomes

(a +Ser)(h + dh)w - a hw + | 2 |JW<fe Ising + \2llpw<k)cos0 = 0 (14.58a)
\ eos# ; { GQS# /

where w is the strip width. With & = <$i/(2tan$), eq(14.58a) simplifies to

= 0 (14.58b)

where /?= p/tanfi As me width strain is zero, eq(6.1c) gives the width stress as {at - p)I2,
Both Tresca and von Mises give a plane strain yield criterion az + p = F. Hence, the
integration of eq(14.58b) leads to a draw stress without back pull and a maximum reduction
identical to eqs(14.55b) and (14.56). With a reduction in thickness from ha to hu the
reduction ratio is r = 1 - hjho.

An alternative, semi-empirical account [12] of work lost to friction and shear employs
the mean radial pressure upon the conical interface. This is determined when friction and
back pull are absent. Thus, in Fig. 14.15a, a horizontal force balance reveals

It is assumed that the same pm exists when friction of low /* is present. As the draw stress
is altered to 0W (see Fig. 14.15b), the new equilibrium equation becomes:

4 ^ h [^ha-A' <14-59b)
in which the bracket term is the sloping surface area. Combining eqs(14.59a,b) leads to

ffw = aj (1+ft cot 6) (14.60a)
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When a^ is defined by eq( 14.50b) and a redundant shear work factor
the drawing stress eq( 14,60a) is modified to

> 1 is introduced,

(14.60b)

where, for a hardening material, Ym is the mean flow stress in the given reduction. As 0
increases with increasing die angle 0, the term (1 + ft cot$ in eq(14.60b) decreases when
H is constant This agrees with experimental data [12] showing that an optimum die angle

minimises tx,

^

(a) (b)
Figure 14,15 Conical contact area (a) without and (b) with friction

14,8 Orthogonal Machining

In a simplified analysis of machining, the cutting edge of the tool face is taken to lie
perpendicular to the tool axis and this axis lies at right angles to the workpiece surface.
After setting the depth of cut b, the rake face of the hardened tool removes workpiece
material under a constant tool velocity, i.e. the/fieri v. The workpiece remains stationary
during planing, but it rotates at a constant rotational speed when turning. The rake angle a
is crucial to the type of chip produced and the clearance angle 3 avoids excessive rubbing.
Depending upon the material and tool geometry, the chip formation may be discontinuous
or continuous, both of with can form a built-up edge upon the tool (see Figs 14.16a-c). In
brittle workpiece materials, a periodic rupture occurs ahead of the tool to produce the
discontinuous segments in Fig. 14.16a. In ductile materials the continuous chip occurs by
shear whilst the building of an edge between chemically similar materials in contact is due
to friction welding (see Figs 14.16b,c).

(c)

Figure 14.16 Chip types: (a) discontinuous, (b) continuous and (c) built-up edge

Under a very rapid shear strain rate (« 10* s'1) the edge breaks away beyond a critical size.
Its fragmented particles embed in the workpiece so imparing surface finish and geometry.
The scheme of orthogonal machining along a shear plane AB is shown in Fig. 14.17.
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B

Figure 14,17 Orthogonal cutting geometry

The orientation $ of the shear plane to the cutting direction is found from applying a
constant volume condition to material removal;

(14.61a)
Plane strain involves no side flow and so w = w". This allows the chip length and thickness
ratios to be equated:

(14.61b)

The length of the shear plane AB is found from the geometry shown in Fig. 14.17:

AB = -±- = £ (14.62)
sm$ cos($ - a)

Combining eqs(14.61b) and (14.62) gives
r. cos a
' ( 1 4 . 6 3 a )

1 - rf staff

The most accurate way to find r, is from chip weight measurement. From eqs(14.61a,b)

plbw pbw , , j ^<n_ v
r = •£- = c (14.63b)

plbw chip weight/unit length

where p is the workpiece density, b defines the depth of cut and w is the tool width.

14.8.1 Stress, Strain and Work

During machining an equilibrium condition is maintained between the tool force and the
workpiece reaction R. Following Merchant [13], these forces are taken to be co-linear so
that the resolved components of R form the three force systems shown in Figs 14.18.

(a) parallel and perpendicular to the rake face;

F = Rsinfl (14.64a)
(14.64b)

(b) parallel and perpendicular to the shear plane:

Fs = R cos (tp+p - a) (14.65a)
FN = R sin ( # + ft - ex) (14.65b)
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Figure 14.18 Resolved reaction forces stowing Merchant's circle

(c) parallel and perpendicular to the tool motion:

- a) (14.66a)
(14.66b)

Forces in eqs(14.66a,b) are measurable with a dynanometer and may be used to determine
R and the other force components in eqs(14.64a»b) and (14.65a,b). Since R is common to
each expression it is identified with the diameter of a Merchant's circle that superimposes
the three force systems (a), (b) and (c), as shown in Fig. 14,18. The conversion of Fs and
FN to shear plane stress components r, and ers respectively, requires the division of these
forces by the surface area of the shear plane, i.e. wfe/sin$. This gives

JFf J3

~77T—I = —wo/smf wo
F

—-see(/? - ff)
wb

- « ) s in^

ff. =
R

wb
F

—~
wb

fi-

(14.67a)

(14.67b)

in which R was elimirrated from eqs(14.66a,b). At the tool tip, the shear zone has a finite
thickness, i.e. length FG, within the enlarged scale of Fig. 14.19. Let a particle displace
from F to F1 with shear distortion as it crosses this plane. This defines the shear strain y as

BF ' BG GF' , , » . . .= + = tan(© - a) + cot®
FG FG FG

(14.68)
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Figure 14.19 Shear zone displacement

The product of eqs(14,67a) and (14,68) provides the work done/unit volume of sheared
material. With a cutting tool velocity v (m/s), the rate of shear work becomes

W = T y x wbv = — y x wbv = F.yvsinm (14.69a)
s s (wi/sin# sf

In addition, work is done to overcome friction along the rake face. In force system (a)
above, frictional work is the product of the force F and the chip velocity v';

' = F x rtv (14.69b)

where r, in eq(14.61b) also expresses the ratio of cut to uncut lengths in a given time, i.e. the
velocity ratio r, = h/b' = v'lv (Fig. 14.17). Adding eqs(14.69a,b), gives the total work rate:

W = Ws + Wf = Frt)v (14.70)

14.8.2 Orientation of the Shear Plane

(a) Maximum Shear Stress

The previous analyses assume that the shear angle $ is known. Equations (14.63a,b) allow
$ to be found experimentally. Alternatively, a purely theoretical estimate for $ may be
found from assuming that Ts is the maximum shear stess within the shear band. From
eq( 14.67a), the condition that TS is a maximum is given by

d r

+ J3 - ee) =tan
[ 2

ft - «)sin# = 0

ft -

$ = a/4 - (fi - ar)/2 (14.71a)

So, for a given fl, the effect of increasing « and $ will lower both y and Ws. Conversely,
for a given ee and increasing /?, <f> is lowered while both y and Ws are raised. Equation
(14.71a) implies: (i) the shear plane is not material dependent and (ii) a friction coefficient
fi applies to the force system (a) above, as follows:

N
B = tan~V = tan "1—

N
(14.71b)
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Equation (14.71a) describes a line with a gradient - VI and an intercept of nf4 in axes of
versus^- a (see Fig. 14.20).

Merchant [13]

Ernst and Merchant [13,14]

Lee and Schaffer [IS]

Symbol

+
O
&

o
•

a"

20
25
30
35
40

0 n/4 fi- a

Figure 14.20 Theoretical predictions to shear angle $>. Data from Bggleston et al [IS]

Because experiment has not confirmed the prediction of $ from eq(14.71a), the theory has
been modified in various ways. Merchant [13) and Ernst [14] postulated that Ts and os within
eqs(14,67a,b) were linearly dependent:

T = r. + Ka (14.72a)

where K is a constant and v, = % for as = 0 within eqs(14.67a,b). Substituting this condition
into eq( 14.72a) and differentiating for a maximum shear stress as before, leads to a modified
straight-line relationship;

= icot"11ST - - O S - a) (14.72b)

from which the intercept Mcot"1^ can match any observed value different from s/4. Data
for machining brass with a range of rake angles from 20" to 40° [15] is given as an example
in Fig. 14.20. These conform quite well to eq( 14.72b) when K=37°. However, experiment
[16] has shown that the shear yield stress is not as sensitive to a superimposed hydrostatic
stress as implied by eqs(14.72a,b). Pugh [17] preferred to express observed data empirically
through a linear equation

$ + s (P - a) = c

where s and c were found to be dependent upon the workpiece material, e.g. for an
aluminium alloy s = 1.5 and c = 25° were found.

(b) Minimum Work

An alternative approach to locating $ minimises the total work done in machining. This
requires that the two work rate components in eq( 14.70) appear in terms of #. Thus, forces
F and Fs are written in terms of F, from eqs(14.64a) and (14.66a) then substituted with rt and
yfrom eqs( 14.63a) and (14.68). This leads to a normalised work expression:
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W if

F*v . (14.73a)

- «)
- a)

In this purely geometric approach the two terms on the right-hand side of eq( 14.73a) sum
to unity for any combination of s, p and y. Hence w = I and a minimum W (= Fxv)
corresponds to minimising Fx with respect to <fi. From eqs( 14.65a) and (14.66a):

F.castft - a) rwbeos(ft - a)
17 - $ ^ - s v> (14.73b)x cos($ + ft - &) sin$cos($ + ft - ce)

Taking t, to be the constant shear yield strength of the material, the differentiation of
eq(14.73b), i.e. &FJd$ = 0, again leads to eq(14.71a). In practice, there are non-uniform
shear and normal sfress distributions upon the flank face, due to a combination of sliding and
sticking. The minimum work condition then yields a different $ value (see Example 14.5).

14.8.3 Slip-Line Field

Making the usual assumptions of a rigid plastic workpieee, the existence of a shear plane and
a stress-free chip, Lee and Schaffer [18] produced two possible slip line fields for orthogonal
machining, given in Figs 14.21a»b.

(fa)

B p

Figure 14.21 Slip-line fields far machining

In the the simpler of these (Fig. 14.21a), the stress free line AC limits the field so that the
slip plane AB is one of a number of orthogonal slip lines within the deformation zone that
all meet AC at 45°. The zone between AB and AC moves as a rigid block, providing the
shear plane orientation*:

$ = £ - {ft - a) (14.74a)
4

Equation (14.74a) describes the line in Fig. 14.20 with a similar intercept to Merchant but
with a gradient of - 1 , this often being in better agreement with experimental data. The shear
and normal stress on AB are each k, this corresponding to force components, from
eqs(14.65a,b) and (14.66a,b), as follows:

* Revealed from a Mote's circle construction fa the stress state at point B (sec Fig. 14.28b).
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If - t? -
s s

(14.74b)

(14.74c)

where k is the shear yield stress. Equations (14.74b,c) become invalid when ft - a= id A
(since cot 0 = ») , a condition associated with the formation of a built-up edge. In the
corresponding slip line field solution (see Fig. 14.21b) two shear planes AB and AF contain
a continuous deformation zone ABF ahead of the rigid motion of block ABC. While this
field matches conditions for an edge to form, strictly it is not an appropriate field for
materials that violate perfect plastic behaviour under very rapid rates of machining.

14.8.4 Work Hardening

Palmer and Oxley [19] added further integral tems [{dkldffyda&nd j(dk/Ba)dftrespectively
to Heneky's equations (6.8a,b), to allow for the influence of hardening along an orthogonal
pair of a, fi slip lines. These modified Hmchy equations confirm a fan of slip lines within
the shear zone and a consequent chip curvature. To simplify the analysis they extended the
single shear zone either side of AB using parallel lines CD and EF, as shown in Fig. 14.22a.

(a)

Figure 14.22 Simple approximation to a shear zone

Across an element <St x <SS2 within this zone (Fig. 14.22b), the shear and hydrostatic stress
increase by amounts & and dp. The following equilibrium equation applies along AB:

(p + (k - 3k/2)SS2 = pdSx + (* + 3k/2)3S2

dk

SS,
= f dk

J BS,as.
dS2 * C.

(14.75a,b)

This hydrostatic pressure p also lies normal to AB. Cs is an integration constant pertaining
to a known pressure along Sa. Taking the partial derivative to be constant between parallel
lines CD and EF, eq(14.75b) shows, for an integration with respect to S2, thatp increases in
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proportion to the length of AB. Since the area of shear plane AB is bwf$hi$, the average
normal and shear forces follow from stresses p and k:

F • n ;
„ kbw
Fs = -r-; (14.76b)

sm$

The inclination #of the resultant force i? to the shear plane is found from eqs(14.76a,b):

EjL £ l l f * (14.77a)0
F a 2*

where $and ^ are related to or and /Jin Fig. 14.18:

0=$+fi-a (14.77b)

Further relationships involving ft or and $are required (e.g. eq( 14.76b)) to enable each of
these orientations to be separated.

The Lee and Schaffer solution [18] corresponds to setting pA = pa with 8= 45°. This
implies that AB lies in the direction of maximum shear so that R aligns with the maximum
principal stress direction. Otherwise, the pressure at B is known from applying the modified
Heneky equations to the rotation idA - $ at point C. Knowing that one principal stress is
zero at C, the shear stress must meet the free surface at 45° (see Fig. 14.23). This gives

pA =k I 1 + llj- #] (14.78a)

Applying eq(14.75a), the pressure at B bf-romes

and, since dkfdSy is a constant between parallel lines CD and EF, the variation inj» between
A and B becomes linear. Figure 14.23 shows that two hydrostatic pressure distributions
along AB are possible when the pressure ordinates at A and B are defined by eqs(14.78a,b).

Figure 14.23 Hydrostatic pressure distribution along AB
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At B, the pressure may become tensile if the rate of hardening dkfdSi across the strip is
sufficiently large. Here, a discontinuous chip is likely when 6 and <f) are low within
eq(14.77b), given that/?- iris reasonably constant. The amount of hardening will depend
upon the material, the shear rate and the temperature arising from interface friction.

14.8.5 Shear Stmin and Strain Rate

The shear strain across a narrow deformation band for machining has been previously
defined in eq(14.68). Figure 14.24 shows a hodograph for orthogonal machining. The
orientations a and $ appear in the physical plane (Fig. 14.24a) for which v is the cutting
speed and v' is the chip velocity.

Figure 14.24 Hodograpli for orthogonal machining

In the hodograph (Fig. 14.24b), v, is the velocity along the shear plane AB. This velocity
is found by ensuring continuity of normal and tangential velocities across the rake face;

v eosflf = vscos (^ - d) (14.79a)

v sin#=v" cos (4 - ff) (14.79b)

Equations (14.79a,b) supply the chip velocity and shear strain. Figure 14.24b provides the
latter in terms of the velocities within eq( 14.79a) as

y = -A_ = 52i£ (14.80a)
i ^ sin$cos($- a)

The reader should confirm, from the previous derivation of shear strain for machining, that
eqs(14.80a) and (14.6E) are indeed identical. The mean shear strain rate along AB is
defined as „

f = _Z*_ = _JL x
 c o s g

 (i4.80b)
SSl SS^ cos($ -a)

where dtSi is the perpendicular distance between EF and CD (see Fig. 14.22a).

Example 14.4 The conditions for cutting a work hardening material are: rake angle a= 33°,
cutting speed v = 3.75 m/s, depth of cut b = 0.1 mm and widm of cut w = 4.3 mm. Assume
an experimental value for the shear angle $=25,5° for a rectangular shear zone of aspect
ratio 10:1. Calculate the shear sixain, the shear strain rate, the friction angle ft and the
cutting forces Fx and Fy . The initial shear yield stress k and the linear hardening gradient
m = dkfdy depend upon the mean shear strain rate in the manner of Fig. 14,25.
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Figure 1425 How rate dependent properties k and m

Firstly, the shear zone thickness is estimated from Fig. 14.22a as

b = 10, 0.2
t»'jSin$» 10sin$ 10 sin 25.5°

Equations (14.80a,b) supply the shear strain and shear strain rate:

= 0.023 mm

COSff cos 33°

sin#cos{# - ar) sin 25.5° cos(25.5° - 33°)

vcosg s (3.75 x 103) cos33° =

<JSjCOs(# - a) 0.023 cos(25.5° - 33°)

= 1.965

From Fig. 14.25, the initial yield stress on plane CD (Fig. 14.22b) and the work hardening
gradient are

- — = 435.4 MPa and m = 25.2 MPa
2

Since & = my, the shear stress k upon plane AB is found from

IL my . „ - . , ,,-c , (25.2 x 1.965) .£nr, ..mk - — - = 435.4 =* k = 435.4 + = 460.2 MPa
2 2

The normal pressures upon the slip plane at end points A and B follow from eqs(14.78a,b):

EL = i + 2 [ * -
{

2f * - (25-5 x n) | = i.6si
{ 4 180 J

Pa PA 8k_

T ~ T ~k
= _

10 x 49.6
460.2
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Then, from eqs(14J7a,b),

Un0=PA+PB = 1 M l + O m =1.142 H. 0 = 48.79°
24 2

0 - a = 0 - $ = 48.79 - 25.50 = 23.29°

from which the friction angle fi = 56.29s and the shear angle $ = 25.5° is confirmed.
Finally, the cutting forces Fx and Fy follow from eliminating R within Merchant's two force
systems (14.65a) and (14.66a,b). Setting Fs = khwhm$, these give

F - kwbcosjfi- a) = 460.2 x 4.3 x 0.1 cos(56.29°- 33°) = mQ g N
x ' sin$eos(# + / ? - a) ~ sin 25.5° cos (25.5° +56.29° - 330)

p =
y

a) = 460.2 x 4.3 x 0.1 sin (56.29°- 33°) = 2 7 S 9 N

5 6 2 9 ° 3 ° )y s in#cos(# + P- a) sin25.5°cos(25.5°+56.29°-33°)

Note, from this example, that if b is reduced so too is hSt. Consequently, f a nd k are raised
and with t h e m ^ and pB are increased. This implies that a size-effect exists in machining.

14.S.6 Friction

In an account of friction upon the rake face, eq(14.71b) shows that we may either employ
the friction coefficient /* = F/N, i.e. the ratio between shear and normal forces, or the friction
angle fl= tan"1 (F/N). It is assumed that fi, or fi, is independent of (i) the contacting area
between the rake face and the chip and (ii) the chip speed v*. Both forces F and N are the
resultant of the respective shear and normal stress distributions (r, <7) along the rake face.

(a) Empirical Approach

The normal stress trreaehes a maximum at B and falls to zero at the free surface. Between
these Zorev [20] assumed a parabolic a distribution. The shear force was assumed to be
spread over two zones: (i) sticking, where t— fB = constant, within the nose region and (ii)
sliding, where n is constant but rdecreases to zero at the free surface (see Fig. 14.26).

Figure 14.26 Rake face normal and shear stress distributions
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With the x-co-ordinate as shown, the following ^relationships hold for I <. x s 0 :

ik-pi'- — H ft (14.81a,b,c)

where p and q are constants. For 0 s x & (I - fj), the sliding shear stress becomes

(14.82a)

For (1 - Ij )s x s i, the constant, sticking shear stress at B is given from eq(14J2a):

r = Tfl = 0 « J I _ A J (M.82b)
where p. in eqs(14.82a,b) is the constant friction coefficient for the sliding zone. Integrating
eqs(14.81c) and (14.82a,b) with respect to flank area w&, gives N and F :

N = w f,
o

i

F = w f
o

= raw

(14.83a)

(14.83b)

Setting rs = ^, where A is the shear yield strength, and dividing eqs(14J3a,b) leads to the
simplified friction angle:

= tan- i

a I
(14.84a)

With no sliding set J, = I'm eq(14.84a) and assume k remains constant in sticking to give:

= tan- l = tan (14.84b)

where, from eq(14.83a), the mean normal stress is am = N/(wt). Under these conditions
eq(14.84b) shows that the friction angle depends solely upon the mean normal stress.

Example 14.5 Using Zorev's analysis of the flank face stresses, determine the orientation
of the shear plane, based upon a minimum work condition in a non-hardening material,
when: ce= 5°, yi = 1/2, q = 2 for lib = 1,2,3 .... 6.

Let subscript s refer to the shear plane and/to the flank face. The total work rate is simply:

^ = Fsvs + F,v, (i)

To find the forces Fs and Ff, it is assumed that the shear yield stress it remains constant all
along the shear plane and along a portion of the flank face defined by lx in Fig. 14.26. The
two velocity components v, and vt= v are found from the hodograph in Fig. 14.24b. Thus,
the two work terms in eq(i) appear as
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„ kwb
s s i $

r, » i kw , , , . vsin$

I ( 1 + 9 ) I cos($ - a)

(ii)

(in)

Substituting eqs(ii) and (iii) into eq(i) leads to the normalised work rate expression

W. COSff I

kwbv sin$cos($ - a) b *q) - el)
(iv)

Setting a= 5° and q = 2 with Zj/Z = Ifi fiar ffl> = 1,2,3 ... 6 , we may plot eq(iv) as a function
of $, as shown in Fig. 14.27.

14

kwbv 12

10

8

6

4

2

0 30 60 90
Figure 14.27 Minimum work condition

With an increasing orientation $ of the shear plane the work rate decreases within the first
term but increases for the flank face in the second term. The result is that their sum, i.e. the
normalised total work rate, attains a minimum value under these cutting conditions. As the
chip length to thickness ratio increases from 1 to 6 the shear angle $, corresponding to the
minimum work condition, diminishes successively from 40° to 25° as shown. This analysis
is in qualitative agreement with the many factors known to influence the work rate under
practical cutting conditions [21].

(b) Analytical Approach

Following [19], the stress states (a,ti) for the rake face and the shear plane are related by the
equations of stress transformation at the tool tip. Figure 14.28a shows the rake face stress
state at point B as fffl and rB. Correspondingly, upon the shear plane AB, the normal
pressure is pB wad the shear stress is k.
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(a)

Figure 14.28 Mohr's circle for point B at tool tip

For orientations a and ^of the two planes shown in Fig. 14.28a, the Mohr's circle is given
in Fig. 14.28b. The geometry of this circle reveals

[ pg + k sin 2 (^ - a) ]tan 0B = k cos 2($ - ar) (14.85a)

Combining eqs( 14.77a) and (14.78a) and eliminating pB from eq( 14.85a) gives the
orientation $of the resultant force RB at B relative to the shear plane AB (see Fig. 14.28a)."

ff =
2tan/0

(14.85b)

where 0 applies to point B only. Equation (14.85b) needs a modification to include the
mean values0m and ftm across the whole shear plane AB. We take the distributions in «rand
r along the rake face to be similar to those shown in Fig. 14.26. These provide the average
normal and shear forces:

N = aJw/2

Dividing eqs(14.86a,b) reveals a mean friction angle for the flank face:

N aA I H.

(14.86a)

(14.86b)

(14.87a)

Substituting tan/?from eq(14.87a) into eq(14.85b) gives the orientation 8m of the resultant
force R = ̂ (N1 + F1) as:

0_ = tan - i
- m) - ei)

2 tan B
(14.87b)

where F and N are measured forces. Taken with eq(14.77b), me shear angle <fi may be
calculated from eq( 14.87b) for a given rake angle a and an assumed ratio IJl < 1.
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14.9 Concluding Remarks

Various analyses of metal shaping processes are available. The simplest work conservation
formulae, as used for extrusion and wire drawing, apply only to homogenous deformation.
They ignore contributions to work done from friction and redundant shearing.
Consequently, the applied forces required to extrude and draw are underestimated. The strip
equilibrium method assumes a constant friction coefficient in non-hardening material. This
theory allows corrections based upon mean rates and stresses to be made when a process
work hardens a material. The convenient closed-form solutions afforded by these analyses
allow rapid estimates of the forces involved compared, say, to the slip line field method.
The latter is exact in the case of plane strain plasticity involving a plastic rigid material. The
library of SLF solutions (seeChapter 6) applies mainly to forming by extrusion and cogging
(repeated indentation). Orthogonal machining is predominantly a plastic shearing process
but is complicated by rapidly varying strain rates and temperature gradients. Simplifying
assumptions allow for estimates of the cutting forces, the shear angle, work hardening and
friction. In practice these measures are used to offset adverse cutting conditions that lead
to unacceptable rates of wear and poor surface finish.

References

1. Wistreich J. G. and Shutt A. Jl Iron and Steel Inst, 1959,6,132.
2. Bishop J. F. W. Jl Mech Phys and Solids, 1958,6,132-144.
3. Hirst S. and Ursell D. H, Proceedings: Technology of Engineering Manufacture, 195 8,

p. 58,1. Mech. E, London,
4. Larke E. C. The Rolling of Strip, Sheet and Plate, 1957, Chapman and Hall, London.
5. Qrowan E. Proc. I Mech. E, 1943,150,140.
6. Sims R. B. Proc. I. Mech. E. 1954,168,191.
7. Orowan E. and Pascoe K. I. Iron and Steel Inst Rpt, 1946,34,124.
8. Bland D. R. and Ford H. Proc. J. Mech. E, 1948,159,144.
9. Bland D. R. and Ford H. Jl Iron and Steel Inst, 1952,171,245.
10. Hitchcock J. Roll Neck Bearings, 1935, ASME Res Pubs.
11. Avitzur B. Metal Forming: Processes and Analysis, 1968, McGraw-Hill.
12. Wistreich J. G. Proc. I Mech. E, 1955,169,659.
13. Merchant M. E. Jl Appl Physics, 1945,16,267.
14. Ernst H. Annals New YorkAcad. Sci, 1951,53,936.
15. Eggleston D.M., Herzog R. P. and Thomsen E. G. Trans ASME (B), 1959,81,263.
16. Grassland B. Proc. I Meek E, 1954,168,935.
17. Pugh H. LI. D. Jl Mech. Eng. Sci, 1964,6,4.
18. Lee E. H. and Schaffer B. W. Jl Appl. Mech, 1951,18,405.
19. Palmer W. B. and CMey P. L. B. Proc. I. Mech. E, 1959,173,623,
20. Zorev N. N. Proc; Int. Conf. Prod. Eng. Res, 1963, p. 43, Pittsburg.
21. Rowe G. W. and Spick P. T. Trans ASME, 1967,89B, 530.

Exercises

14.1 A piece of lead 25 mm x 25 mm x 150 mm, with a yield stress 7 MPa, is forged between flat dies
to a final aproximate size: 6 mm x 104 mm x 150 mm. Assume that a friction coefficient p = 0.25
prevails with sliding between the lead and the full width of the dies in the contact region. Determine
the pressure distribution that the dies exert upon the lead and the total fbrpng force required.
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14.2 Confirm that the mean pressure for the friction hill shown in Fig. 14.3b is

2k
where a= \iblt -

143 Compare the work required to hot forge a 0.75 m long billet, with 150 mm square cross-section,
into a strip 50 mm thick, 150 mm wide and 2.25 m long, using dies of breadth (a) 50 mm, (b) 100 mm
and (c) 150 mm. Hence show that the minimum work is done when the die breadth lies between (a)
and (b). Neglect work hardening and spread and assume that small reductions are made so that the
existence of the transitional shape at the edges of the die may be neglected. Take the load L at any
thickness to be given by L = YAC in which Y is the yield stress. The contact area is A = wb, where b
is the die width and w the billet width. For this cogging process take constant C = 0.797 + 0.203t/b
for bit < 1 and C = 0.75 + 0.25M for blt>l,

14.4 In forging the ring shown in Fig. 14.29 a plastic hinge is formed opposite the forging platens.
If the shear yield stress of the ring is constant at k, its mean radius is R and the other dimensions are
as shown, prove that the additional pressure on the platens required to form the plastic hinge is
approximately p" = MI4R, given that the plastic hinge moment is kwt 2/2. If the final dimensions of the
ring are to be t = 125 mm, R = 1.075 m and w = 175 mm for k = 40 MPa and a maximum available
force of 1,5 MN, determine the maximum internal diameter of the ring at which forging can begin.
Assume plane strain conditions and take the total pressure upon the platens to be p = 2k[C + tl(8R)]
where C = 0.797 + 0.203*.

C

Figure 14.29

145 A cylindrical component of original height ha = 50 nun is forged between flat platens to a height
ht = 40 mm. The lower platen is rigid whilst the upper one descends with a velocity va = 3 m/s. Show
that the true mean strain rate for the process is given by the following expression and from this
calculate its magnitude. v m (h lh \

e - - " ' ° ^'

14.6 Determine the pressure on a ram required to reduce a billet from 40 mm diameter to 37 mm
diameter in a homogenous extrusion process. Assume mat the 40 mm diameter billet is the result of
a previous process where the sectional area was reduced by 15% for material in an annealed state,
obeying a Hollomon flow law: a= 67Oe0J.

14.7 What drawing stress is required to reduce a rod from 100 mm to 70 mm in a conical die with 30°
included angle? Assume that tire friction coefficient is 0.05 and that the material is rigid-perfectly
plastic with a tensile yield stress of 160 MPa. What is the maximum reduction that can be achieved
under these conditions? [Answer: 127 MPa]
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14.8 Show tot the maximum possible change in section area for wire drawing a rigid, perfectly plastic
material is 63%. If 3 mm diameter wire is to be drawn at maximum reduction in each of three
sequential processes, what is the smallest diameter possible after the mird process? Examine whether
an optimum die angle exists from a consideration of faction and contact length assuming an
homogenous deformation within the tapered die.

14.9 In a homogenous wire drawing operation upon hardening material, the drawing force F may be
estimated as: \

where AB is the original cross-sectional area, A, is area of the drawn wire and Ym is the average yield
stress for material hardened by the process. Using an average yield stress between entry and exit,
determine the drawing force required to reduce a wire from 3 mm to 2.75 mm, given that a 20%
reduction in area had previously been applied in reaching the 3 mm wire size. These reductions
should be referred to the annealed state for which the Hollomon flow law is: a= 622e0W.

14.10 What drawing stress is required to draw a 500 mm wide, annealed steel strip from 2.5 to 2.4 mm
thick in dies with 15° included angle and a friction coefficient 0.1? What is the influence of a
previous 20% reduction in area arising from rolling the annealed material given that it conforms to
a Ludwik law: a= 200 + 100eM 1

14.11 What drawing stress is required to draw a 150 mm wide x 6 mm thick strip with a 20%
reduction in area? This strip had been reduced in thickness by 30% in a previous process from its
annealed condition. What drawing force would be required for a further 20% reduction in area? The
die angle is 15° and the friction coefficient is 0.05. The true stress-strain behaviour of annealed strip
material shows natural (logarithmic) strains of 0.356,0.580 and 0,803 for stress levels 350,430 and
490 MPa respectively. [Answer; 73 kN, 69 kN ]

14.12 Orowan [5] proposed a solution to the problem of hot rolling narrow flat strip with a
width/thickness ratio at which the decrease in roll pressure at the edges is not negligible. Assuming
that the neutral point lies midway between exit and entry, show that the total roll force is given by:

P = kbL 0.8 + — *• - i - - 0.2
4fe_ 3M. 2h

where k is the plane strain yield stress, b is the mean strip width, h is the mean thickness of strip within
the roll gap, ho is the final thickness of the strip and £, is the projected length over the arc of contact.

1413 What do you understand by the term friction Mil in forging and rolling operations? Outline the
various frictional conditions which can occur in hot and cold working and sketch the associated
friction hills. Describe the geometrical factors which affect the friction hill in such operations,
particularly spread. Define the term plane strain and explain the phrase 'plane sections remain plane'.
Prove, when plane strain forging a strip of thickness t, with the breadth b of the flat platens less than

fe=^ln|^|

the frictional shear stress between the strip and platens will never attain the shear yield stress of the
strip material. The coefficient of friction in the contact zone is fi.

14.14 Consider simple cold rolling of a thin strip when both rolls and strip remain elastic. The
distribution of roll pressure is approximately parabolic, being given by

where a is the half-length of the constant arc, E, and v, are the strip's elastic constants, R' is the
deformed roll radius and * is the distance from the axis of symmetry. The value of R' may be derived
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from Hitchcock's analysis [10], namely

J_ _ ]_ 4(1 - y f V

** " R Erwaz

where R is the undefarmed roll radius, P is the total roll force, Er and vr are the elastic constants for
the roll material. It may be assumed that at the centre of the strip, on the axis of symmetry, a
longitudinal compressive stress p is induced due to the combined effect of Mctional stresses acting
on the surface of the strip and the mean of the back and front strip tensions t from:

where ju is the Coloumb friction coefficient Assumung a yield criterion: s - p = mY where F is the
tensile yield stress and m is a factor lying between 1 and 2/V3, show that the rmnknum thickness which
could be roEed plastically is approximately:

14.22

14.15 Metal cutting is basically a process of plastic deformation. Discuss an orthogonal cutting
operation on a practical work material emphasising the role of the important geometrical, physical and
metallurgical factors involved and their inter-relationships. What are the parameters of particular
importance to the conduct and control of machining?

14.16 Explain the unconstrained geometry of plastic deformation in orthogonal machining. Discuss
the limitations of the friction angle expression: tan 0 = F/N when appEed to work/tool interface
friction in machining. Given that the shear strain ^depends upon the shear angle 4> and the rake angle
a in the form: y- cot$+ tan($ - a), show that there will be a greater tendency for the chip to break
away when the rake angle is negative rather than positive.

14.17 Discuss briefly the formulation and implementation of two shear plane models of the orthogonal
metal cutting process indicating their Hmitations. Explain how a model which admits work hardening
of the workpiece provides a more realistic explanation of machining behaviour in practice.

14.18 The conditions when orthogonal machining a work hardening material are: rake angle «• = 10°,
cutting speed v = 0.S m/s and depth of cut b = 0.2 mm. Assume an experimental value # = 25° for the
shear angle with a rectangular shear zone of aspect ratio 10:1. Calculate the shear strain, the shear
strain rate, and the inclinations of the resultant force R to the flank face and to the shear plane. Use
the flow properties for the material given in Fig. 14.25.

14.19 A work hardening material is machined with rake angle 8°, cutting speed 1.8 m/s, depth of cut
0.25 mm, width of cut 6.5 mm and chip thickness 0.4 mm. Assume a rectangular shear zone of aspect
ratio 10:1. Calculate the shear strain y, the shear strain rate f, the friction angle /?and the two cutting
forces F, and Fr The dependence of the initial shear yield stress k and the work hardening gradient
m = oWdyupon the shear strain rate are as given in Fig. 14.25.
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CHAPTER 15

APPLICATIONS OF FINITE ELEMENTS

15.1 Introduction

Up to now the analyses given of plasticity theory together with its applications have resulted,
largely, in closed solutions across a wide range of topics. The reader will no doubt be aware
of the availability of commercial finite element (FE) packages that provide numerical
solutions to many of these topics involving bulk plasticity and sheet metal forming.
Consequently it is pertinent to end this book with an overview and a few applications of the
FE technique. Firstly, we shall describe the essence of the FE method as it applied to
elasticity. This is intended to aid an understanding of how the linear elastic theory is
extended incrementally to the elastic-plastic regime. Specific details can be found in many
of the more dedicated FE texts [1-4]. The theory upon which FE depends: the yield criterion,
constitutive relations, the flow and hardening rules, can all be found in our earlier chapters
on classical plasticity. We shall show how these are transcribed into their matrix forms for
efficient programming. Various FE codes are applied here to sheet metal forming problems.
The particular package employed is described and its outputs are selected for comparison
with available experimental date. In the first application, an example is given of hydrostatic
bulge forming within circular and elliptical dies. This particular test provides FE users with
a validation check in which the predicted plot between pressure and displacement is overlaid
with experimental data. The agreement found between the two plots inspires a tiust in an FE
simulation of how the deformation evolves in forming more complex shapes. In the second
application, the Erichsen test is simulated in order to provide strain distributions under a ball
indentation - where an analytical solution does not exist. Again, the predictions are overlaid
with experimental data from this test. Finally, it is shown how FE is used as a tool for
preserving the integrity of a pressed sheet metal product at the die try-out stage of
manufacture. Among the more sophisticated outputs that FE can provide here are strain
contours and signatures, these showing the proximity of the strain state at any position in the
pressing to the sheet material's forming limit.

15.2 Elastic Stiffness Matrix

Elastic FE applies the theory of elasticity within the sub-division of a body into smaller
elements inter-connected throughout at nodal points. This technique of discretisation enables
an assembly of elements to describe the initial unstrained shape of the body. Thus, the
behaviour of the entire body under stress may be computed from the known elastic behaviour
of its elements. When FE does this for a frame lying within the continuum, it must provide
for equilibrium and compatibility of its internal stress and strain distributions and match
external boundary conditions, usually of known force and displacement

In the stijfiiess or displacement method of finite elements, the displacements at the nodal
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points are the unknowns. These displacements are solved numerically from their relation to
the nodal forces. This relation is established by assembling a stiffness matrix to connect the
* vectors' of nodal point forces and displacements for each element. An overall stiffness
matrix K is men assembled, where for a given mesh f = K fi, in which f and 6 represent
forces and displacements at its many nodes as column matrices. The displacements are found
numerically from a matrix inversion fi = K"' f. Strains follows from a strain-displacement
relation and the stress from its stress-strain (constitutive) relation. While such relations are
well established for elasticity, the procedure must assume a function expressing the
displacements of a node upon its co-ordinates. Thus, from applying the displacement function
across all elements, the stiffness method provides numerical solutions to the stress and strain
distributions within a loaded body. In the force or flexibility method of finite elements, the
displacements are found from an assumed stress distribution. Though less popular, this
method has proven a better choice for statically indeterminate framed structures [1], but it
will not be expounded here.

In essence, the stiffness FE method aims to compile and invert the matrix, connecting
force to displacement, for an assembly of elements in a computationally efficient manner.
There are many different finite elements, both plane and with axial symmetry, including
triangular, rectangular, bar, shell and volume types. These elements appear within many well
documented application of FE including beam and plate bending, torsion of prismatic bars,
plates and bars under plane stress and strain, pressure vessels and rotating discs.

In static FE codes, the common approach is to derive the element stiffness matrix Ke,
connecting its nodal point force and displacement vectors, f and 6 e , respectively:

fe = K e 6 e (15.1)

The method for doing this will be shown briefly in selected examples that follow: simple
tension, torsion and bending, before considering an element used for plane stress and strain
in more detail. Bold, upper-case Roman letters A, B, C, K, denote matrices and bold, lower
case Roman and Greek symbols f, a, E, 8, o, denote column matrices or column vectors. The
word 'vector' is reserved for quantities that take on a physical meaning, as with force f and
displacement 8. We begin with a summary of the matrices Ke in eq(15.1) for simple bar
elements in tension, torsion and bending.

15.2.1 Tension

Consider, for simple tension of a bar element of length L, with uniform cross-sectional area
At connecting nodal points 1 and 2, as shown in Fig. 15.1.

Figure 15.1 Tension bar element

The axis of the bar is aligned with the ̂ -direction, The nodal forcesXi a n d ^ are taken to act
at nodes 1 and node 2 respectively in the positive x-direction. These forces produce nodal
displacements u, and u2, aligned with positive x. Here, the stiffness matrix Ke is obvious from
the uni-axial relationship between force and displacement:/= {AElL)u. When written in the
matrix form of eq(15.1) this becomes



 

APPLICATIONS OF FINITE ELEMENTS 481

AE
L

1 - 1

- 1 1

(15.2)

where fe = [fxl fx2 ]
T {in which.,4 = -fxl) and 8 e = [ M, M2 f are force and displacement

vectors. Equation (15.2) reveals a symmetrical, 2 x 2 element stiffiiess matrix Ke, as would
be expected when each of the two nodes has a single degree of freedom. The element's
stresses and strains follow applying the relationships a=Ee = EuJL and B= du/dx = OlE,
given a displacement function u = u(x).

15,2,2 Torsion

In Fig. 15.2 the uniform, solid circular shaft element of length L and radius r is subjected to
nodal torques tx and tz, as shown, which twist nodes 1 and 2 by the amounts 0, and 82.

Figure 15.2 Circular bar element under axial torque

The components of the torsional stiffness matrix are defined from &/b 0= JG/L, in which J
= Kr4l2 is the polar second moment of area and G is the rigidity modulus. As with a tension
bar element, we may deduce that the element stiffiiess matrix for a torsion bar element is 2
x 2; there being two nodes with a single degree of freedom at each node. Thus, Ke follows
directly from the stiffness relation as

JG
L

1 - 1

- 1 1
(15.3a)

Comparing eqs(15.3a) with ineq(15.1), we identify fe = [f, fj]Tand8e = [0i <?2]
Tasthe

torque and twist vectors respectively. Once the nodal twists have been found from a function
6= 6{z), the element's nodal shear strains ye = [ y{ y2 f and stresses Te = [ r, r2 ]

T follow
proportionately from the elastic relation y= r/G = r&L as

(15.3b,c)
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15.2.3 Beam Bending

The element shown in Fig. 15.3a is used to determine the displacements, strains and stresses
for a beam under bending. Shear force q must accompany bending moment m, each of which
are taken to differ between nodes 1 and 2. Such actions produce both a vertical deflection
v and a rotation 0, in the positive directions shown.

Figure 1SJ Bam element, showing arbitraty emss-ieetion

&\

NA

(b)

The respective nodal force and displacement vectors now become: f= [qx w, §2 »%]Tand
6 = [ S &= [ v, Sy v2 ]T. The beam cross-section, which may be of any shape, is uniform along the
length. Co-ordinate axes, x and v in the section and z in the length, pass through the centroid
ofthe section (see Fig. 15.3b). Under bending, the longitudinal axis z becomes the neutral
axis; tMs deflects to a radius of curvature R but suffers no stress or strain. With two degrees
of freedom existing at each node the stiffness matrix Ke, connecting f to 6, has a dimension
4 x 4 with the following symmetry [5]:

M.

El

L3

12

6L

-12

61

62,

4L2

-61

2X2

-12

- 6 1

12

-6L

61

2L2

-61

4 1 2

(15.4)

Once the nodal displacements v and rotations 0= dv/dz have been found from a displacement
function v = v(z), the element's strain ee =[£[ ^ ] T and stress O e= [ff, ff2]

T follow from
bending theory: S=yfR = XdVdz2) and a= Ee.

15.3 Energy Methods

The foregoing review has shown that the FE stiffness method is resolved into finding the
stiffness matrix W for a given element. Clearly, bar and beam elements allow their stiffness
matrices, eqs(15,2) - (15.4), to be expressed quite simply. However, a derivation of each
stiffness component Kff of Ke is required for most other elements. The basis for this is to
employ a convenient energy method; either the principle of virtual work (PVW) or the
principal of stationary potential energy (SPE) maybe used [5]. These principles show that
Kqe can be expressed in terms ofthe product of matrices in the nodal point co-ordinates and
the elastic constants for the element material.
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15.3.1 Principle of Virtual Work

The stiffness method of FE imposes virtual displacements at the nodes of a deformable
element where real forces are applied. Conversely, virtual forces and real displacements are
used with the flexibility method of FE. For the former method, the system of real forces, ft

(k = I, 2, 3 ... ) is in equilibrium with its internal stress state ffy. When the real forces
experience virtual, in-line displacements dk

r, the corresponding virtual strains are etj.
Superscript v denotes that displacements and strains are virtual. The principal of virtual work
states that no net work can be done by imposing a displacement upon an equilibrium force
system. When displacement due to self-weight is neglected, we can express this principle in
two useful, equivalent ways:

9££dV = 0 =» (fe)Tfiw- j oTEvdF=0 (15.5a,b)

41/* - j Q?avdV = Q =» (8w)Tfe- J (Ev)TodF=0 (15.6a,b)

In the matrix notation, eq(15.5b) expresses f, 6 ,0 and e as column matrices. The reversal to
the order of their multiplication within eq(15.6b) governs which matrix to transpose. The
resulting scalar products remain the same: fT 8 = 6 T f and e T 0 = 0 T e. The additional
superscript (e) is used when applying the principle specifically to an element's nodal forces
and displacements. Thus, components of the nodal force vector f and the internal stress
matrix o are real and in equilibrium. Components of the nodal displacements vector Sev and
the internal strain matrix ev are compatible and virtual, i.e. independent of the real force-stress
system. Hence we can integrate the strain independently of stress over a volume V, within
which the stress and strain can vary. Actually, eq(15.6b) is more convenient for deriving Ke

in the FE analysis that follows. Here, (om)T is the transpose of the element's virtual, nodal
displacement vector 6"". The generic word' displacement' refers to deflection, rotation and
twist at the nodal points. Moreover, the generic' force' vector fe will contain the real nodal
forces, moments and torques. Should forces be distributed, the virtual work principle allows
fc to be compiled from an equivalent system of concentrated nodal forces [6].

15.3.2 Stationary Potential Energy

With both stress and strain being real, a stationary value of the total potential energy P will
apply to an equilibrium condition. Now P is the sum of the internal strain energy stored U
within a deformable element and the negative work of its external forces - V. Hence, a
stationary P will lie in the condition:

[J J 0T
(15.6a)

With proportionality between stress and strain, the first integration over strain, reduces
eq(15.6a) to

0 T e d F - ( f B ) T 8 e ] = 0 (15.6b)

Equation (15.6b) is applied as a partial differentiation with respect to the element's
displacement vector 6e. Using the relationship 0T E = eT 0, the stationary PE gives
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V4 J v [ oT (3e /afi6) + E T (8o/86e)] dV - (fe)T = 0 (15.6c)

15,4 Plane Triangular Element

Let us illustrate the application of each energy method (PVW and SPE) to find the stiffness
matrix for a plane triangular element in Fig. 15.4a. This element applies to bodies in plane
stress and plane strain, i.e. those loaded in the plane x-y, where, respectively, the z-dimension
can be both small (through a plate's thickness) and large (along a bar's axis).

(a) (b)

Figure 15.4 Forces and emplacements at the nodes of a plane triangular element

15,4.1 Nodal Displacements

Firstly, the displacements (w, v) for any point (x, y) in the element are assumed to obey the
linear displacement functions:

(15.7a)

(15.7b)v(x,y)=a4+asx+

where coefficients flf,, «2 . . . flf6 are to be found. In matrix form, eqs(15.7a,b) appear as a
displacement vector 6 = [u v]T:

l x y O O O

0 0 0 1 x y 6 = A a (15.7c,d)
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where « = [al a2 tt} a4 flf5 % ]T is a column matrix of six components, matching the
number of degrees of freedom and A is a 6 * 2 matrix in co-ordinates (x, y). The
displacements for nodes 1,2 and 3 may be found from substituting the co-ordinates (X(, j , ) ,
fe > yiian^ txi i y$) mto eq(15.7a,b). This gives the three nodal point displacement vectors:
8, = [ M, v, ]T, 82 = [ M2 v2 ]

T and 83 = [ M3 V3 ]
T, which re-appear in the element's nodal

point displacement vector 8 e :

1 x, y t 0 0 0

0 0 0 1 xx yx

fi ^ 1 % % 0 0 0

* 0 0 0 1 jEj y% «, 8e = A e a (15Ja,b)

1 x, y3 0 0 0

0 0 0 1 xa v,

where 6e = £ Sj 82 83 ]
T and Ae is a 6 x 6 matrix of nodal co-ordinates. It now follows that

the coefficients <?,, ^ 2 . . . ^ 6 , are found from inverting matrix A* in eq(15.8b);

(15.9a)

where, the inversion of Ae in eq(15.8a) gives

l
2A

x.~x,

(15.9b)

A square matrix relation A" (A*)"' = I applies to eq(15.9b), where I is a unit matrix and A
gives the area of the element as A = '/a [(x, - x2) (yz - j 3 ) - (x2 ~ xs) (y, - j 2 ) ]. Combining
eqs(15.7b) and (15.9a) expresses the element's general displacement vector 8 = [u i>]T in
terms of its three nodal displacement vectors 8 e = [ 8 j 82 8, ] T :

8 = A ( A c r ' 8 e = N 8 e (15.10)

where the matrix product A (Ae)~' provides the element's shapefunction (see Exercise 15.1).

15.4,2 Strain-Displacement Matrix

Taking the displacement derivatives from eqs(15.6a,b) provides compatible, infinitesimal
strains in the x, y plane;

ex = dufdx = a2, e^ = dv/By = <x6 and j ^ = duldy + dv/dx = tt3 + a$ (15.1 la-c)
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Writing eqs(15.1 la-c) in matrix form:

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 1 0
r*)>l

(15.1 ld,e)

The symbolic notation used in eq( 15.11 e), shows that the 6 x 3 matrix C conneets the column
matrices E = [ ex ev yxy ¥

 a n c ' a = la\ &! °h an a$ at f- Substituting eq(15.9a) into
eq(15.11e) gives strains E = [e x ey y^ ]T at any point (x, y) from the nodal point
displacements 6 e :

E = C ( A e ) ' 6 e = B 6 e (15.12a)

where the matrix multiplication B = C (Aey l employs eqs(15.9b) and (15,1 Id):

B
2A *r*»0 xt-x2 0

L**-** y*-y$ *r*t y*-y\

Xm~a * i

yry2

(15.12b)

We see that B in eq(15.12b) appears only in terms of the nodal point co-ordinates, thereby
revealing a * constant strain' triangle. This arises from the linear displacement functions
assumed in eqs(15.6a,b), which leads to matrix B (and C) being independent of x and y.

15.4.3 Constitutive Relations

Plane stress-strain relations may be expressed in symbolic notation as, £ = P o where P is a
(3 x 3) elasticity matrix, connecting column matrices of stress O = [ at ffv T^ and strain
e = \et By yX7 ]

T. Alternatively, since O = P"' E, we may write from eq(i5.12a):

(15.13a)

where D = P ' 1 i s a 3 ' < 3 inverse elasticity matrix, whose plane stress components are:

D = E
( 1 - v 2 )

1 v
V 1

0 0

0

0

- v)

(15.13b)

and whose plane strain components are:
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(1 +

vf(l-v) 0

1 0

0

(15.13c)

As with the stain components, the three stress components 0x,ay, t^ are also constant
throughout a triangular element for given nodal displacement vector 6 c . When plotting a
triangular element's stress and strain distributions their magnitudes would normally be
assigned to the triangle's centroid or to the mid-position of one side.

15.4.4 Element Stiffness Matrix

Finally, the element stifmess matrix Ke maybe derived. This is a square matrix of dimension
6 ^ 6 , connecting the nodal point force and displacement vectors:

(15.14a)

The element's force vector fe = [fx { fyl fx2 fyz fx$ ^ 3 ] T may be shortened to

r = [ f , f2 r 3 ] T (15.14b)

in which the nodal forces are: f, = [fxl fyl ]
T, f2 = [fx2 fy2 ]

T and f3 = [fxi fyi ]T (see Fig. 15.4b).

Correspondingly, the element's displacement vector fie is shortened:

8 e = [ 6 , 62 8 j ] T (15.14c)

in which the nodal displacements are: 6, = [M, V, ]T, 62 = [«2 v2 ]
T and 53 = [a3 v3 ]

T (see
Fig, 15,4a). Now fie follows from inverting Ke in eq(15,14a):

b'^ocy^r (is.i4d)

The components Kg of Ke in eq( 15.14a) follow from nodal point co-ordinates (x,, ys, for i =
1,2,3) and the elastic constants E and V, i.e. these appear within the components of matrices
D andB, given in eqs(15.12b) and (15.13b,c). To find the relation between KE, D and B the
principal of virtual work or stationary potential energy is used,

(a) Virtual Work

On substituting eqs(15.12a) and (15.13a) into eq(15.5b)5 the PVW gives

(6ev)TfB= J(B6B V )T (DB6 c )dF=(6w )T (BTDB6 e ) J dF (15.15a)

where neither B nor D depend upon x and y. Note that (B8 W ) T = (8 W ) T B T, this allowing
(8 W)T to be cancelled:

f = B T D B § e F (15.15b)
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where JdF= F= At, where A and t are, respectively, the area and thickness of the triangle.
It follows from eqs(15.14a) and (15.15b) that this element's stiffiiess matrix becomes

Ke = B T DBF (15,15c)

where K* is a (6 * 6) symmetrical matrix.

(b) Stationary Potential Energy

Alternatively, eq(15.15c) may be derived from substituting eqs(15.12a) and (15.13a) into
eq(15.6c):

- J | (DE) T -—-(Bf i*) + E T — ( D B 5 e ) J d F - ( f « = ) T = 0
2 J v d o do

~ f [(De)TB + ETDB]dF-(fe)T = 0

Using the relation D = DT:

(fe)T=J eTDBdV=J (BSe)TDBdF

this can be written as

(fe)T = (6 e ) T (B T DB)F

Taking the transpose of both sides:

fe = [(fie)T (BTD B)]T F= (BTD B)T 6 e ¥= (D B)TB 8 e F= (BTDTB V) 6 e

when again, eq(15.15c) follows.
Either of these stiffiiess matrix derivations allow expressions for the components K{J of Ke

to be found from the matrix multiplication: BTD B. For example, the first of the diagonal and
off-diagonal matrix components become

jr,,e = [t /(4A)][Ai(yz- J3)2 + Asfe~ %>2]

Kn
e = ̂ 2ie= [t /(4A)][£»12(x3 - x2)(y2 - y3) + D3i (r, - x2)(y2 - yj\

where Dn, D33 and Dn
 = D2l depend upon the plane problem, as defined in eqs(15.13b,c).

15.4.5 Overall Stiffiiess Matrix

Finally, the overall stiffness matrix K is assembled from the individual element stiffness
matrices Kc. The dimension ofK may be established in advance. To illustrate the assembly,
consider the four element, plane stress cantilever, shown in Fig. 15.5. With 6 nodes, each
with 2 degrees of freedom, K becomes a 12 * 12 matrix.
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Figure 15,5 Pkne stress cantilever composed of four triangular elements

The dimension of K can be reduced to (6 x 6) using sub-matrices M^ with the shortened
force and displacement notation adopted within eqs{15.14b,e). Writing the element number
e = I, II, III and IV, the sub-matrices express K more compactly as:

K
1 msÎ Siri i f l . u l . u n

Mo

V
a MM

(15.16)

Here individual stiffiiess components appear within the sub-matrix addition. For example,
the diagonal element M3j' + MM" + M, / 1 in eq(15.16) represents

+ M^ + MjJ = 33
I

* * » + * 3 3

43 J

* * * 11 12

The final step is to ensure that nodes 1 and 2 provide zero displacement at supporto, i.e. at the
cantilever fixing points w, = v, = u2 = v2 = 0. Numerically, this is achieved by multiplying
the appropriate stiffness components by a large number, such that upon matrix inversion the
deflection is eliminated at the required position.

Following this assembly of elements, the resulting stress, strain and displacement
relations are applied in the same sense as the element's node numbering. The nodal
displacement vector can then be found from the following inversion process:

f=K§ r'f (15.17a,b)

Thus, knowing fie, the three, constant strain and stress components are referred to the
centroid of each element. They follow from the matrix multiplications:
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e e = B«6 e (15.18a)

o^DB'S^H'S" (15.18b)

In eqs (15.18a,b) Be = B (from eq 15.12b) as it depends only upon the nodal point co-
ordinates and ff = DB e (from eq 15.13a) depends upon the elastic constants, according to
the plane condition. The assembly of an overall stiffiiess matrix for several hundred elements
requires a computer. With efficient node-numbering, we see from the cantilever example that
the symmetrical matrix K is formed with its non-zero elements lying within a narrow diagonal
band. Both the nodal ordering and the partitioning of K into sub-matrices, as indicated,
serve to the reduce the computer memory required [7]. Such features would be incorporated
within modern automated meshing practice.

15.S Elastk-PIastie Mffnes§ Matrix

15.5.1 Vector Representation

The matrix form of the Prandtl-Reuss eq(4.3b) appears as;

Itr(dT)+ — dT' (15.19)
1G

Itr(dT)
3E 1G

where E and T* are, respectively, (3 *• 3) matrices of total strain and deviatorie stress and I
is a unit matrix. Alternatively, column matrices (vectors) of stress and strain are often more
convenient to use within the application of finite elements to incremental plasticity.
Correspondingly, in a vector representation of eq(15.19), column matrices of the deviatorie
stress and plastic strain increment tensor components are used:

& = [ < < < 2̂ aa' /2 an' >/20a']
r (15.20a)

deF=[d£u
F d e / d e / / 2 d ^ / v ^ d e / / 2 d « / ] T (15.20b)

where d£l2
p, de^ and dSyf tensor shear strains. If engineering shear strain components are

preferred, then re-writing eq(15.20b) with: deu
p-dyl2

Ff2, d%p= dyl3
p12 etc, gives:

d e c i d e / de , / d f i / dyt/f<J2 dy2i
p/</2 d f / / s / 2 ] T (15.20c)

Others [8] make use of column matrices of engineering sfress and strain components, as in
eq(15.13), but these do not always convert correctly into the quantities we have met earlier
in our tensor notation of plasticity. For example, it follows from eqs(15.20a,b) that the
corresponding expressions, given in Sections 9.2 and 9.9, for equivalent stress, equivalent
plastic strain increment and the plastic work increment, appear correctly as

1 (de * }TdE p (15.21b)
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r,J = ardnp = (&epfa
(15.21c5d)

In particular, writing eq(15,21a) in full, the matrix multiplication gives the correct scalar
quantity for equivalent stress:

'22

'33

•/2s (15.22a)

Z5.5.2 Deviatoric Stress

The conversion from absolute stress to deviatoric stress in this notation will appear as;

»11

<

^2<

^20I3 '

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

ffll

on

°33

^/2O.n

J2*a

1
3

1

1
1

0

0

0

- I [1 1 1 0 0 0]

'11

'22

'33

12

13

(15.23a)

Matrix multiplication in eq(15.23a) gives: <JU' = ou - %h((7u + <722 + o3i) etc and ffi2' = (Tl2

etc, consistent with our usual tensor notation ffy = Oy - % ^ «7tt. It is seen that eq(15,23a)
may be re-written as:

o ' = I a - % a a T a = [I - % a aT] a = ji o (15.23b)

where a = [l 1 10 0 0 ] T . Also, the matrix ]i follows from eqs(15.23a,b) as:

jt = I - 1 / a a a T (15.24a)
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I* =

2/3 -1/3 -1/3 0 0 0

-1/3 2/3 - 1 / 3 0 0 0

-1/3 -1/3 2/3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(15,24b)

Since u = j * , the following relationships hold:

The product uu also appears from eq(15.24a) as:

(15.25a)

= [I - 1/3 a aT] [I - % a aT]

= I [I - % a aT] - % a aT [I - % a aT ]

= [I - 1/a a aT] - % a aT + 1/a a (1/a aTa) aT

(15.25b)

which employs the fact that aTa = 3.

15.5.3 Constitutive Relations

In converting the Prandtl-Reuss theory to this vector notation, use is made of the fact that the
sum of the final two terms in eq(15.19) make up the elastic increment of strain. More
commonly, this sum expresses the incremental, elastic constitutive relations (see p. 327):

v(dan

v{dau

where E, G and V are the elastic constants. The latter appear within an elastic flexibility
matrix, Unking the column matrices of strain and stress increments, as follows:

<!*£

HE
-v

- V

0

0

0

- v
l/E

- v

0

0

0

- v
- v
VE

0

0

0

0
0

0

1/C2G)

0 1
0

0
0

0

0

l/(2G)
0

0
0

0

0

0

l/f2

(15.26a)
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which is simply written as

de* = P*do (15.26b)

The incremental plastic component of strain is written from eqs(10.14) and (10.18) as

» 3ffdaaJ
isf = 'L (15.27a)

" 2 £ p 2

where E p = dcF/de has now replaced if as the plastic modulus, i.e. the gradient to the flow
curve, where the latter has had the elastic components of strain removed. If we employ a
Ludwik or a Swift law to describe the plastic flow curve from a tension teit, then E1" becomes
the derivative of eq(9.43a) or (9.44a). Alternatively, using total strain, the gradient 1? of the
tangent to a uni-axial stress-strain curve may be written as

E* = i f = —-if (15.27b)
d' p

Substituting de = do/Ep and de* = do IE into eq(15.27b) provides a relationship
between the elastic, plastic and the tangent moduli:

Ep = — (15.27c)
I - E'/E

The product ff"dffineq(15.27a) is found from eq(15.21) as

o do — —o,, do,, — —o d o (15.28a)
2 1/ ti *\z

The matrix form of eq(15.27a) follows from eqs(15.20), (15.21a) and (15.28a):

2Ep(o'Ta')

Since o ' T do ' is scalar, the product term in the numerator ofeq(15.28b) may be written as

( o ' T d o ' ) o ' = o ' (o ' T do ' ) = ( o ' o ' T ) d o '

Substituting from eq(15.23b) gives the absolute stress form:

(fio) (fio)Td (fio) = (i0aT(jiT(t)do = psff^da = (ju,o)(no)Tda = a'a'Tdo

from which eq(l 5.27c) is written as
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Equation (15.28c) maybe combined witheq(15.26b) to give title total incremental strain from
Prandtl-Reuss theory, in a simplified matrix form:

dE* = [V* + P' ldo (15.28d)

The symmetrical plasticity matrix Pp in eq(15.28c) is formed from a matrix product a'a'1:

"is "a
t _ / ./«* _ t _, /

(15.29a)

Alternatively, an absolute stress form for V1" follows from eq(l 5.28c) as

(15.29b)

Matrix multiplication within eq(15.28e) leads to the plastic strain increments, typically:

1(2 »u -

to whieh are added the incremental elastic strain components from matrix ¥e, in eq( 15.26a).
p = dff?dffSetting Ep = dff?dff and substituting from eqs(15.22b) and (15.28a), the incremental

plastic strains, according to the Levy-Mises theory, are recovered (see Section 10.3.1):

"

etc

which confirm the particular combination of eqs(10.18a) and (10.19a).
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1S.S.4 Virtual Work

If eq(15.28d) is now inverted to give do = D^de', where D* = ( F + V)'1, then the PVW
may be applied in ite incremental form to provide a tangential stiffness matrix for elastic-
plastic deformation, Omiting superscript e (for element) the principle becomes

(Aft*)1" Af - J (Aev)T Ao dV= 0 (15.30a)

where
A0 = ( r + F ) 1 A e ' = De'>Ae* (15.30b)

giving
A f = K A 5 (15.30c)

in which K is a variable stiffness, corresponding to the variable Ep. Combining eqs( 15.30a,b)
witheq{15.12a):

(A6 V)T Af - J (B A8 V)T (W B Afi) dF= 0

Cancelling (A8 ¥)T and removing Afi from the integrand:

Af= { J BTDe/>Bdr}A8 (15.31a)

Comparing eq(15.31a) with eq(15.30c) provides the tangent stiffness matrix:

= f (15.31b)

In general, for most plane and axi-symmetrie elements, the co-ordinates x, y appear within
matrix B and so the matrix product in eq(15.3 lb) must be integrated over the volume. The
fact that the elemente Ky must be updated continually to form a tangent stiffness matrix for
each increment of plastic strain, is the essential difference to the constant Ky components for
the linear-elastic matrix, as previously described.

15.5.5 FE Codes

The analysis above shows that the elastic-plastic and elastic FE program structures are
essentially the same, but solving A6 = KT ' Af, with each non-linear strain increment, is
equivalent to a complete linear analysis, repeatedly applied. Consequently, the cost of
running an elastic-plastic FE analysis will be greater, given that the stiffness matrix needs to
be inverted and convergence criteria applied to each new increment of strain. Such
repetitions, administered within static codes (as described above), tend to be slow, though
alternative, fester FE simulations of sheet metal forming are now available commercially. For
example, the matrix inversion is avoided within an incremental, explicit dynamic code. In
offsetting the need to invert K, the more recent dynamic codes reduce storage and avoid the
often slow, convergent-dependent solutions found with implicit static codes [9].
Alternatively, incremental procedures would be avoided altogether when using an
approximate, one-step FE method, based upon Hencky's total strain, constitutive relations
(see p. 95). The user needs to choose between these codes when using brick or shell elements
to simulate the required shape. Mesh refinement in regions of high strain is now automated
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and the option to choose between alternative yield criteria for orthotropic sheet metals
obviates die need to write specific user subroutines. Though developed for plasticity under
dynamic impacts, the dynamic codes are also efficient for analyses of non-linear quasi-static
processes, including sheet metal forming, extrusion and rolling. The explicit code requires
an increase to the real speeds of each process followed by a check that the outputs have
remained unaffected, i.e. they remain within the steady state solution pertaining to a range of
speeds. In particular, the accuracy of spring-back predictions in sheet metal is especially
important to monitor, where it may be necessary to revert to the static code [10]. A rigid
punch/die combination is usually assumed, and with a geometry that is often axi-symmetric,
the meshing need only be applied to one quadrant of an initially flat sheet This imposes
certain boundary conditions that must be met, i.e. the constraining of points that do not
displace during the forming operation. Where the sheet makes contact with its punch/die, a
friction coefficient is required to attest the interfeeial shear arising from forming forces. In
the region of metal-to-metal contact, the punch/die geometry is also required. The latter are
normally taken to be rigid as the sheet deforms in an elastic-plastic manner between them.
Plastic incompressibility limits the element choice. Solid elements will require fewer nodes
to enforce volume constancy; say at each corner node when simulating forging with brick
elements. Shell elements, which define the full thickness, require fewer integration points.
Inputs include the sheet's elastic constants and its flow curve. The latter may be expressed
in co-ordinates of true stress and natural strain to allow for a piecewise linear approximation,
or an exact fit to this curve. Codes which admit anisotropy require the r and n values, the
strength coefficient and the pre-strain, as in Swift's law,eq(9.44a,b).

There are essentially three incremental FE formulations for non-linear plasticity,
depending upon the severity of deformation [4]: (i) small displacements and small stains, (ii)
large displacements with moderate strains and (iii) large displacements with finite strains.
Within (i), the elastic and plastic strains are of similar magnitudes and analysis used is that
described above. In (ii) and (iii), more generally, the appropriate stress and strain definitions
replace engineering measures. In (ii) the true stress and natural strain are adequate to provide
for the deformation found, typically, in the plane of sheets formed with large displacements.
Here, the natural strain is continually converted to engineering strain when applying the FLD.
The particular finite measures chosen for combination (iii) are the second Piola-Kirchoff
stress and the Lagrangian (Green's) strain, which were defined in Chapter 1. Other elements
such as the yield criterion and the hardening rule remain the same. Outputs from FE are
usually displayed as contours of equivalent stress and strain and the displacements found
provide an image of the distortion. In sheet metal forming, the safeness of forming zones is
assessed within coloured contour maps and by the superimposition of strain states and strain
signatures upon the FLD, some of which are now described.

15.6 FE Simulations

In the three applications of FE that follow we shall consider stretching of thin sheet provided
by hydraulic bulging, ball indentation and the pressing of a panel into the shape of a flanged
box. Three different, available FE codes are applied to provide the simulations: the first two
are incremental, implicit codes, as described above, and the third is a rapid, one-step solution
used for the die try-out stage of new product designs. The elements employed are
respectively: shell, 2-layered brick and single-layered rectangles with 8-nodes. In every
simulation of sheet metal forming a criterion of fracture is essential to limit the strains in the
sheet to safe working levels. Invariably, the forming limit diagram (FLD) is employed for
this purpose (see Fig. 12.25). The simulated in-plane strains are placed at their appropriate
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positions within the FLD's principal, engineering strain axes. This locates the proximity of
the forming strains to each branch of the FLD. The branches are usually taken as the lower
lines in a band of scatter to provide the required margin of safety all for working strain levels.
Points for strain combinations lying beneath the FLD are safe while points found to lie on or
above the FLD are unsafe. The FE simulation thus locates the most likely site of failure,
providing the critical load and displacement correspondingly. The many different strain
combinations that arise during a forming operation produce a spread in points across the two
quadrants of strain that continually changes. Consequently, the monitoring of strains in this
way is integrated within the simulation, given that the FLD for the sheet material is available.
Normally, a FLD is found from laboratory tests to ensure representative strain paths.

15,6.1 Bulging of Sheet Metal

The bulge test has the advantage of eliminating contact friction; where oil under pressure is
applied to the underside of a clamped and sealed disc, forcing it to bulge into a top die (see
Fig. 9.18). Consequently, bulging in a circular die may be used as a convenient check upon
FE simulations of stretch forming processes. Given that an analytical bulge theory is
available for both isotropic and amsotropic sheet (see Sections 9.7 and 12.6), the theoretical
relation between the pressure and pole displacement provides the required check upon an FE
prediction. The theoretical plot (see Fig. 15.6a) between these two parameters showsarising
curve that reaches a pressure maximum at the inception of a diffuse strain, pole instability.
That such a behaviour is confirmed by experiment and reproduced quite well by FE indicates
that other outputs from the simulation can be believed.

(a)

[0 » JO <W 50 0

«, nun

Figure 1S.6 Pressure-height plots for spherical and ellipsoidal bulge forming

Actually, an experimentally measured pressure-height plot provides a better check upon an
FE prediction because the theory assumes that bulge sections are circular ares and that pole
deformation is equi-biaxial. In practice, some drawing of rim material occurs over the
locking bead [11] with the sharp bending of the sheet at this position. Moreover, for a
severely rolled sheet, the pole may become oblated [12, 13]. In this FE simulation of the
bulge test, shell elements were used within an implicit, static code. The simulation also
included bulging with an elliptical die in which rim failures are known to occur [14]. Not
surprisingly here, the pressure-height plot is reproduced better by FE than the pole failure theory
(see Fig. 15.6b),
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The Ml field strain predictions (see Figs. 15.7a and 15.8a) reveal the most highly
strained regions and their proximity to the forming limit. They show that, while a pole failure
is expected for a circular bulge, a rim failure will occur in a narrow ellipsoidal bulge with an
axis ratio of 0.42. The accompanying FLD's (see Figs 15.7b and 15.8b) reveal that these
failures correspond to the equi-biaxial and plane strain positions respectively. The latter
correspond to a point lying at the base of the V in the FLD. A constraining of the minor
strain is the plane strain condition, known to be responsible for many service failures.

-0.2 -0.1 0

Figure 15,7 FE simulation of circular bulge strains

0.1 0.J

Such predictions have been confirmed by experiment [14] in the case of a 1.22 mm
aluminium alloy (6016). Strains for circular bulging he within the first quadrant of the FLD
at positions dependent upon the site in the bulge wall. The pole of a circular bulge
approximates to a state of high, equi-biaxial strain. Here we see, from Fig. 15.7b, that a pole
failure is predicted when, of all the strains at different locations from rim to pole, the pole's
equi-biaxial strain path is the first to meet the FLD. On the other hand, for the narrow
ellipsoidal bulge, shown in Fig. 15.8, it is the plane strain path at the indicated position on the
rim that first reaches the FLD; the simulation thus locating this position as the failure site.

(b)
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Figure 15.8 FE simuktioa of ellipsoidal bulge stains
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The strain predicted in the bulge wall can offer an alternative basis for the confirmation of
FE output, provided strains can be measured accurately (see Figs 15.9a,b). These strains are
calculated from after-test optical measurements of the distortions to a small circular grid
pattern etched to the sheet surface. Typically, the hoop eg and meridional natural strain er

distributions along principal axes, from rim to pole of a bulge, provide one basis for the
comparison. Modern methods employ full-field, digital imaging of the deforming grid to
assess the accuracy of strain maps provided by an FE simulation [11].
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Figure 15.9 FE predictions (open symbols) to principal, ellipsoidal bulge strains along (a) major, (h) minor axes

15,6.2 Indentation Test

In the Erichsen test (see Fig. 15.10) no die is used as this allows the material in contact with
the punch to stretch and thin under a tensile, biaxial stress state. The Erichsen number is
simply the maximum height of the indentation at the initiation of failure. The comparative
ductility measure provided by this number is particularly useful when assessing the suitability
of different sheet metals for stretch forming, a fact universally recognised with their now
being many international standards for conducting the test [15 -19].

ballindaiter

Figure 15.10 Erichsen indentation test geometry



 

500 BASIC ENGINEERING PLASTICITY

In the simulation of an Eriehsen test, as the punch velocity does not increase beyond 10 mm/s,
the slower, static code is adequate. This test provides its measure of formability from test
conditions (applied here) in which a 20 mm ball indents the centre of a 65 mm dia disc,
clamped at 15.3 bar around its periphery. Witti an axial symmetry present, only one quarter
of the initially flat disc need be meshed. An implicit Lagrangian code is used to provide for
in-plane natural strains (< 80 %) from large punch displacements. This code employs two
layers of 8-noded, solid elements to build the sheet thickness [20]. The in-plane, principal
strain distributions, as predicted for the indented disc, will apply to any meridional line drawn
from pole to rim if the sheet is initially isotropie. However, with the rolled steel sheet tested
here (1.24 mm thick, En 3B steel), the principal stains can vary with direction to the roll; this
being a consequence of the different r values within the plane of the sheet. The FE predictions
allow for plastic anisotropy by adopting Hill's 1948 yield criterion (see eq 11.2). This
criterion requires three r values (0,95,1.1 and 1.28) with their respective flow curves for me 0°,
45* and 90* directions. The flow curves for the rolled steel sheet were expressed with Swift's
law (9.44b) in which a0, n and ea connect true stress to natural strain (average values used
were: 245 MPa, 0.17 and 0.0057 respectively). Elastic anisotropy is negligible by
comparison, this allowing averaged elastic moduli E and v(200 GPa and 0.27 respectively)
to be taken from tensile tests in the three directions. The Coloumb friction coefficient for
either lubricated or dry contact between sheet mid punch is also required. Here, respective
values of 0.05 and 0.2 were used in which the former value applies to lubrication with a thin
film of polyethylene. The natural, radial and hoop strains were calculated from after-test
radial displacements Ar between concentric circles, whose diameters had changed by &d;

sr = hi (1 + Ar/r), eg = m(l + Ldld)

Figure 15.11a shows these principal strains at position s from the pole along the roll meridion
for a lubricated test. The comparisons show that measured strain distributions are predicted
reasonably well by FE. Inevitably, errors arise in the measurements of indentation distortion
to a grid of initially concentric circles applied to the small flat discs.

02 -

Figure 1S.11 FE predictions {open symbols) to Eriehsen principal strains (a) lubricated, (b) dry

Within the lubricated contact zone (s < 10 mm) strains are approximately equi-biaxial,
reaching their maxima at the pole. Greater differences occur in these strains for unlubrieated
contact (see Fig. 15.1 lb). In the non-contact region (s > 10 mm), the smaller stains differ,
falling toward zero at the clamp end. Unsupported material, lying beyond the point of
tangency with the ball to the edge of the rim clamp, is formed into a conical shape. In this
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region, friction is absent and a near plane strain condition prevails in which the clamp
constrains the circumferential strain. In the annular region of flat material lying under the rim
clamp (s > 18 mm), the contact friction under the normal clamping pressure opposes the sheet
sliding motion. Some drawing-mis evident where eg has become compressive. While these
three distinct regions may be analysed separately [21], it is essential that they should many
properly in transition. Here, an FE simulation of the Erichsen test can assist, given that the
simulation has been validated for certain test parameters, of which the most obvious is the
force versus displacement relation.

15.6.3 Pressed Panel

In simulating the deformation within a pressed panel, say for a car body, the FE analysis often
begins with the final shape required. The 8-noded rectangular mesh is applied to the panel
design and an edge tension introduced to avoid wrinkling [22]. The approximate, one-step
FE solution simply flattens the panel to ascertain its strains and the sheet size required. Of
course, as the one-step method does not track strain history, it is prone to error for positions
in the panel that underwent non-radial sttmin paths. There has been much debate upon the
influence of non-radial paths upon the FLD, including experimental work that shows a
translation in the position of this diagram [23]. The strains from simpler radial paths may be
superimposed upon a fixed FLD to examine their spread and safety. Ideally, all the material
should be strained without violating the FLD. If the true FLD is not available use may be
made of a construction, in which geometrically similar FLDs are assumed. Each plane strain
intercept is derived from the known influences of the strain hardening exponent and thickness
of the material [24, 25], as is shown in Fig. 15.12.

(b)
30

Figure 15.12 FLD dependencies upon thickness and «-¥alue

The rapid, one-step simulation assists with die try-out, the selection of a material grade, blank
sizing and assessing the feasibility of manufacturing new panel shapes. To achieve a properly
worked sheet, a change to the panel design, tooling and material choice can be made at the
try-out stage. To facilitate a re-design, the FE outputs consist of contour plots showing
forming zones, safety zones, equivalent strains and principal strain signatures.
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Figure 15.13 gives an example of a forming zone display in which all in-plane strain
combinations for a box-shaped panel design He safely beneath the lower FLD band.

Figure 15,13 Predictions to principal strains in a pre»ed panel

Also shown in Fig. 5.13 is a contour line ABC running from the flat top, down the vertical
wall and along the flanged rim. Shown inset is this contour's strain signature, formed from
connecting the principal, engineering strain combinations from point to point along it. This
reveals that the full gamut of strain paths arise when forming a corner; from biaxial tension
at the top, though plane strain and pure shear in the wall, to a simple compression at the rim.
The signature maybe verified with an economical circle grid analysis, i.e. by applying a grid
only to selected regions known to suffer high strain levels.

15.7 Concluding Remarks

It has been shown how FE is applied incrementally to the regime of elastic-plastic
deformation. The examples cited have applied various static FE codes to quasi-static sheet
metal forming processes. Commercial FE codes adopt both implicit and explicit
formulations, depending upon the nature of the plasticity. For gradual rates of loading the
implicit (static) method fulfills equilibrium requirements in meeting its convergence criteria
with each numerical time step. The latter implies a new strain increment for a quasi-static
process and this increment may be made large to reduce the computing time, say, where
hardening is relatively linear. On the other hand, implicit codes involve a far greater
computation time to attain large strain with non-linear hardening, where accuracy demands
smaller increments. In this case the use of an explicit code obviates the need for matrix
inversion at each time step, through its use of the central difference solution to the equation
of motion. Where the straining process is rapid, the time step in a simulation becomes
physically meaningful. Here the explicit codes can match dynamic plastic processes
including slower metal forming processes. If the time step is to be increased to reduce
computation time it should not exceed a stability limit. In the absence of an instability the
forming process time can be reduced, say from simulating an increase in punch speed,
provided this is known not to alter the material response.
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Exercises

15.1 Using the principle of superposition between the two stiffness matrices (15.2) and (15.3a), find
the stiffness matrix for a circular bar element subjected to combined axial tension and torsion.

15.2 Using eq(15.4), construct the stiffness matrix for two adjacent beam elements when each of their
three nodes has two degrees of freedom.

15 J The load applied to a single beam element is distributed uniformly from node 1 to node 2 at q/unit
area of the top surface of length / and width w. Examine ways in which to construct the element's
equivalent nodal force vector. Note, that the exact method, based upon the shape factor, gives the
equivalent nodal force vector (i.e. including both shear forces and bending moments) as:

/ 6 - / ] T .

15.4 Assemble the overall stiffness matrix for the 4-element cantilever beam shown in Fig. 15.5, for
F — 10 kN. Hence show that the vertical deflection beneath the load is 0.127 mm. Take dimensions
b = 120 mm, h ~ 80 mm and t = 10 mm respectively, with elastic moduli E = 200 GPa and V= 0.3.

15.5 Show that, for a plane triangular element, the displacements u and v may be expressed as

+ i¥s itj and v = Nt v,- = Nlvl+ Nt
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in which N, — at + b,x + c(y (i = 1, 2, 3) represent the shape functions:

iV, = O| + b^x + c, y, Nt = o2+ fejjt + c%y and A?3 =

Using the nodal displacements u = uu v=v{ forjc=jri andj= iy l etc, show that coefficients a,, fe,and
c, appear in terms of nodal point co-ordinates and the element's area A = lA{xx - x2)(yj - J>J) - '/4(JT2 -

» c, = (x, -
= (y," J, V(2A), c2 = (x, - x,

b} = (F, - J'a y(2A), c, = (x2 - x,

a, =

15.6 When a uniformly distributed normal pressure is applied to the side 2-3 of the triangular element
in Fig. 15, the principle of virtual displacements gives an equivalent nodal force vector as:

t* = tiA-1)"1 jATpdl
where p = [ px p , ]T and f \ A* and A are given in eqs(15.14b), (15.8a) and (15.7c) respectively.
Show, from the matrix multiplication and integration, that the equivalent nodal force components
satisfy equilibrium: fxl +fa +fa ~pxlst widf}li +frl +ffi =pflX!lt. Take d/= lKdxf{x2 - x,), in which
the side length 4, = -/[fe - x,)2 + (y, - yj1 ]

15.7 Examine other ways of expressing the elastic-plastic matrix W in Ao = DePAe from eqs( 15.28)
and (15.29). Hint, see references [2, 8].

15.8 Show that if real, nodal body farces exist (vector b) in addition to real, nodal external forces then
the principal of virtual elastic displacements modifies eqg(15.5) and (15.6) into the following forms:

Jv

J r

) T 6 " - I* {ofes'dF=0
J r

15.9 Show that the principal of virtual displacements can be modified as follows in the case of
incremental plasticity with body forces distributed as a self weight/unit volume.

f [(A6*)Tb-(Ae¥fo]dF=0

15.10 At the die try-out stage, the strain signature, taken across the comer ABCD of a pressed steel box,
is found to lie in the danger region of the FLD (see Fig, 15.14). List the most likely modifications that
could be made to make the pressing safe. Given that the original sheet thickness is 1.5 mm and the «-
value is 0.2, employ the construction in Fig. 15.12 to recommend possible material changes.

0.6 -0.4 -0.2 0 0.2'

Figure 1S.14
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Extruded:

bar, 447
tube, 357

Extrusion:
dead zone, 116
force, 185, 197
friction, 195,444
lower bound, 225
plastic work, 184,189,447
ratio, 186,195
upper bound, 227

Face centred cubic, 246,249
Finite elements:

bending 482
codes 495,502
tension 480
torsion 481
triangle 484

Finite strain tensors, 42,47, 52
Flexural stiffness, 378
Flow curve:

descriptions, 269,294
equivalence, 343,356

Flow rale, 255,310
Force resolution, 9
Forging, 439,442
Forming limit diagram, 404,408,498,501
Frame collapse, 218
Friction:

angle, 458,464
coefficient, 204,458
Coulomb, 199,500
hill, 233,441,450,456
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Frictioniess extrusion:
inclined dies, 191
parallel dies, 180

Front and back tensions, 455
Fully plastic:

beam, 129
pressured cylinder, 147
pressured disc, 157
rotating disc, 157
torsion bars, 138,142

Geiringer equations, 170
Grain boundary, 257
Greatest shear stress, 23,66,464
Green's strain, 42,46
Groove formation, 405
Guest, 66

Haigh, 74
Hardening:

combined 336,339
isotropie, 262,313
kinematic, 265
plastic, 135,248,309
strain, 299, 324
work, 300,325

Heterogenous deformation, 258
Hencky:

equations, 165
-Ilyushin deformation theory, 95
modified equations, 467
theorems, 164
yield criterion, 67

Hexagonal close packed, 247,249
Hill yield criteria, 83, 339,365,500
Hodograph, 171,185, 193, 199,206,228
Hollomon equation, 295
Homogoneous deformation, 447
Hookean material, 196
Hooke's law, 326,412
Hot rolling, 448
Huber, 67
Hydrostatic:

pressure, 468
stress, 6 i , 79,163

Hysterisis, 335

Impact:
bars, 415
bar-target, 416,432
composite bars, 420

Inclination of principal axes, 17
Inclined dies, 191,458
Incompressibility, 83,96,102
Incremental:

flow theory, 95, 310

plastic strain 310,316,491
Indicial notation, 1
Indentation, 199
Inelastic buckling:

plates, 311
struts, 371

Inelastic deformation, 95,241,315
Infinitesimal strain, 31, 52,486
Instability:

bulging, 333,335
pressure vessels, 391, 392
struts, 371,377
tension, 276,285
torsion, 281

Invariants:
strain, 37,272
stress, 15, 80,272

Isotropic hardening, 90, 121,262,313
Isotropy, 269

Jacobean determinant, 28
Johnson's parabola, 374

Kinematic hardening, 77,265,331
Kinematic velocity field, 213,234
Kronecker delta, 69,315

Lagrangian:
co-ordinates, 47,60,496
tensors, 51,62

Lame stresses, 144, 148,152,155
Large strains, 40
Latent hardening, 249
Lattice slip, 246
Left stretch tensor, 52,58
Levy-Mises:

compliance, 315
equations, 161,288
flow rale, 311,494

Limit:
forming strains, 396,404
load, 114
of proportionality, 72

Limit analysis, 213
Load factor, 129
Loading function, 309
Local buckling, 384
Local instability, 401
Lode's parameters, 320,321
Logarithmic (natural) strain, 40
Lower bound:

beams, 213,214
die indentation, 221
extrusion, 225
yielding, 251
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Lubricated:
dies, 207
indenters, 213

Ludwik law, 296

Machining:
friction, 471
hodograph, 469
shear strain, 463,469
shear zone, 464,470
work rate, 472

Material co-ordinates, 48,54
Matrix notation, 2
Matrix of transformation:

strain, 36
stress, 15,21

Maximum:
shear stress, 23,464
work principle, 251,254

Maxwell, 67
Merchant's circle, 463
Miller indeces, 246,247
Minimum:

shear principle, 253
surface, 263
weight, 219
work, 465,473

Modulus:
elasticity, 128, 302
rigidity, 138,302
secant 381
tangent 371,493

Mohr"s circle:
fracture, 82
local necking, 403
machining, 474
strain, 162
stress, 25, 162

Moment:
curvature, 134
of area, 128,137
of resistance, 129

Nadai:
construction, 281
parameters, 149
plasticity theory, 95, 120

Natural (logarithmic) strain, 40
Necking, 276
Neutral:

axis, 136
loading, 105,310
point, 449

Node points 414
Non-

associated flow rule, 96,325
hardening, 95
uniform stress, 111

Normal anisotropy, 349
Normality rule, 263
Notched:

beam, 215
tension bar, 197

Oblique plane stress, 9
Octahedral:

plane, 24
shear strain, 273
shear stress, 24, 69, 273

Off-axis tension, 351
Offset strain, 71,88
Open section, 384
Optimum:

die angle, 461
frame weight, 220

Orientation:
flow stress, 356
grain, 250,254
r-values, 354
yield strength, 342

Orthogonal machining, 461
Orthotropic sheet:

plastic buckling, 3S9, 395
sub-tangent, 391

Orthotropy:
equivalent strain, 342, 355
equivalent stress, 340
flow potential, 339
flow rule, 341
incremental strains, 342
plasticity, 351
principal axes, 340
yield criteria, 365

Particle velocity:
elastic, 412
plastic, 423

Petch equation, 250
Pinned-end strut, 371
Piola-Kirchoff tensors, 29,496
Planar isotropy, 348
Plane strain:

analysis, 38,62
compression, 287, 302
element 487
extrusion, 448
forging, 440
indentation, 200
machining, 462
rolling, 230,448
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Plane stress, 20, 26,487
Plastic:

collapse, 130,215
flow curve, 269
hinge, 130,216
modulus, 428,493
penetration, 115
potential, 225
reduction factor, 382, 387
wave, 421
work, 190,311,491

Plastic strain paths:
anisotropic, 353,360,363
isotropic, 318

Plate stretching, 399
Poisson's ratio, 96,337
Polar decomposition, 58
Polar moment of area, 138,142
Polycrystal, 250
Portal frames, 218
Post buckling of plates, 385
Prager:

cycloid construction, 167
stress-strain law, 296
translation, 332

Prandtl-Reuss theory, 326,490,494
Pressure vessels, 391, 392
Principal:

co-ordinates, 17,21
stress, 15,26,67
stress cubic, 16, 37,43
stretch tensors, 59

Proof stress, 71
Propped cantilever, 216
Pure shear, 387

rvalues, 90, 343,351,500
Radial:

loading, 112,318, 322
stress path, 318

Radius of curvature, 128
Rake angle, 461,465
Ramberg-Osgood law, 295
Rankine-Gordon formula, 374
Rate of:

hardening, 248, 297
strain, 446,452,454
work, 472

Reduction:
factor, 387
ratio, 460

Residual:
bending stress, 122,132
curvature, 133
pressure stress, 148,153

rotation stress, 158
strain distributions, 133,428
torsional stress, 138,143

Resolved shear:
strain, 243
stress, 242,248

Restraint coefficient, 380
Reversed flow, 334
Right stretch tensor, 50,58
Rigid body motion, 173
Rigid boundary, 424
Roll:

flattening, 454
force, 451,456
torque, 451,456
upper bound, 233

Rolled:
sheet, 448
strip, 230,453

Rotation:
matrix, 2,12,35
tensor, 35

Rotating disc, 154

Safety factor, 130
Sandhill analogy, 144
Scabbing, 411
Schmidt:

law, 256
orientation factor, 244,248

Self-consistency, 259
Shaft loadings, 112,121
Shape:

factor, 129, 138
function 486

Shear:
angle, 3
displacement, 3
finite, 54
modulus, 71,327
plane, 462,464
strain, 3,37,43,404
strain energy, 68
stress, 3
yield stress, 76
zone, 464

Simple:
compression, 278
supports, 386
tension, 274

Single:
crystal, 248
shear, 3

Slendemess ratio, 371
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Slip;
planes, 243
systems, 245,260

Slip line field:
dry extrusion, 195,196
frictionless extrusion, 181, 184,188
inclined die extrusion, 191,193
indentation, 200,201
machining, 466
notched tensile bar, 198
rough indentation, 204,205
smooth indentation, 207, 208
theory, 161

Spacial:
co-ordinates, 48, 54
deformation gradient, 48
displacement gradient, 49

Specific work, 457
Spread factor, 453
Stassi-D'Alia locus, 81, 86
Stationary potential energy 483,488
Stiffness matrix:

elastic 479,488
elastic-plastic 490
overall 489

Stepped:
impact bars, 433
loading, 121, 327, 330

Straight line formula, 374
Strain:

definitions, 61
energy, 68
finite, 42
hardening hypothesis, 298,324
hardening rule, 299, 303
invariants, 37,43
matrix and tensor, 35
ratio, 342,358
signature 501
transformation, 36

Strength:
proof, 71
ultimate, 82
yield, 71

Stress:
definitions, 27
discontinuity, 168,226
intensity, 4
invariants, 16, 70,324
state, 6
-strain curves, 294,361
-strain relations, 96, 316
symmetry, 7
tensor, 7,243
transformation, 11

waves, 411
Stretch ratio, 53
Strip rolling, 230
Strut buckling theory:

Engesser, 371,376
Euler, 373
parabola, 374,376
Rankine-Gordon, 374, 376
straight line, 374

Subsequent yield surface, 262
Sub-tangent, 391,397,401
Summation convention, 17
Symmettic sections, 385
Symmetry axis, 177
Swift law, 297, 500

Tangent modulus, 371
Taylor:

hardening, 261
wave equation, 422

T-beam, 136
Temperature effects:

cylindrical bodies, 85
extrusion, 446

Tensile instability, 388
Tension test, 66, 283
Tension-torsion, 318,327,358
Tensor:

notation, 327
shear strain, 34, 37

Tensor transformations:
strain, 36, 245
stress, 15,244

Texture, 254
Theory of bending, 128
Theory of torsion, 137
Thick-walled:

cylinder, 144
disc, 148

Thin-walled:
bulge, 290
cylinder, 98
pressure vessels, 391

Torque-twist diagram, 140, 281
Torsion:

bar, 281
buckling, 318
solid bar, 281,283
tube, 280,285

Total strain, 96
Traction vector, 4
Transverse isotropy, 350
Transformation of:

strain, 36
stress, 15
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Translation rules, 332
Tresea:

flow rule, 326
yield criterion, 66,149, 157,271,441

Triaxial stress, 67,144
True strain, 279
True stress, 275
Twinning, 247

Ultimate:
load, 129,134
plastic moment, 130
tensile strength, 2
torque, 138

Uniaxial tests, 274, 302
Uniform stress state, 98,124
Uniformly distributed loading, 216
Unit normal, 9
Upper bound;

circular plates, 235
die indentation, 224
extrusion, 227
strip rolling, 233
yielding, 251

Vector:
co-ordinate direction, 11
displacement 481,485
force 481,487
normal, 8
strain 486,491
stress 487,490
unit, 8,12

Velocity:
angular, 235
discontinuity, 172,196,227,229
particle, 412

Virtual work principal, 215,483,495
Voee law, 298

Volume averages, 257, 258
Volumetric strain, 43
von Karman, 422
von Mises:

equivalent plastic strain, 273
equivalent stress, 270
flow potential, 270
yield criterion, 67, 70,145,157

Wave:
equations, 411,422
interactions, 426,428
propagation velocity, 412,414
reflections, 413,417,424
unloading, 425

Weight function, 220
Wide strut, 377
Wire drawing, 457
Work:

done, 245
frictional, 460,464
hardening, 298,300,303
hypothesis, 298, 325,343
principle, 251
specific, 457
violation, 190
virtual, 215

Workpiece, 461

Yield:
criteria, 65
functions, 70,76, 84, 355
point definition, 71
stress, 66, 71
surface, 71,86,251

Young's modulus, 71,327

Ziegler translation, 332
Zorov, 471
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