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Preface

The operational properties of the road vehicle are the result of the dynamic
interaction of the various components of the vehicle structure possibly including
modern control elements. A major role is played by the pneumatic tyre.

“The complexity of the structure and behaviour of the tyre are such that no
complete and satisfactory theory has yet been propounded. The characteristics
of the tyre still presents a challenge to the natural philosopher to devise a theory
which shall coordinate the vast mass of empirical data and give some guidance
to the manufacturer and user. This is an inviting field for the application of
mathematics to the physical world”.

In this way, Temple formulated his view on the situation almost 50 years
ago (Endeavor, October 1956). Since that time, in numerous institutes and
laboratories, the work of the early investigators has been continued. Considerable
progress in the development of the theory of tyre mechanics has been made
during the past decades. This has led to better understanding of tyre behaviour
and in its role as a vehicle component. Thanks to new and more refined
experimental techniques and to the introduction of the electronic computer, the
goal of formulating and using more realistic mathematical models of the tyre in
a wide range of operational conditions has been achieved.

From the point of view of the vehicle dynamicist, the mechanical behaviour
of the tyre needs to be investigated systematically in terms of its reaction to
various inputs associated with wheel motions and road conditions. It is
convenient to distinguish between symmetric and anti-symmetric (in-plane and
out-of-plane) modes of operation. In the first type of mode, the tyre supports the
load and cushions the vehicle against road irregularities while longitudinal
driving or braking forces are transmitted from the road to the wheel. In the
second mode of operation, the tyre generates lateral, cornering or camber, forces
to provide the necessary directional control of the vehicle. In more complex
situations, e.g. braking in a turn, combinations of these pure modes of operation
occur. Moreover, one may distinguish between steady-state performance and
transient or oscillatory behaviour of the rolling tyre. The contents of the book
have been subdivided according to these categories. The development of
theoretical models has always been substantiated through experimental evidence.

Possibly one of the more difficult aspects of tyre dynamic behaviour to
describe mathematically is the generation of forces and moments when the tyre
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rolls over rough roads with short obstacles while being braked and steered in a
time varying fashion. In the book, tyre modelling is discussed while gradually
increasing its complexity, thereby allowing the modelling range of operation to
become wider in terms of slip intensity, wavelength of wheel motion and
frequency. Formulae based on empirical observations and relatively simple
approximate physical models have been used to describe tyre mechanical
behaviour. Rolling over obstacles has been modelled by making use of effective
road inputs. This approach forms a contrast to the derivation of complex models
which are based on more or less refined physical descriptions of the tyre.

Throughout the book the influence of tyre mechanical properties on vehicle
dynamic behaviour has been discussed. For example, handling diagrams are
introduced both for cars and motorcycles to clearly illustrate and explain the role
of the tyre non-linear steady-state side force characteristics in achieving certain
understeer and oversteer handling characteristics of the vehicle. The wheel
shimmy phenomenon is discussed in detail in connection with the non-steady-
state description of the out-of-plane behaviour of the tyre and the deterioration
of ABS braking performance when running over uneven roads is examined with
the use of an in-plane tyre dynamic model. The complete scope of the book may
be judged best from the table of contents.

The material covered in the book represents a field of automotive
engineering practice that is attractive to the student to deepen his or her
experience in the application of basic mechanical engineering knowledge. For
that purpose a number of problems have been added. These exercises have been
listed at the end of the table of contents. 

Much of the work described in this book has been carried out at the Vehicle
Research Laboratory of the Delft University of Technology, Delft, The
Netherlands. This laboratory was established in the late 1950s through the
efforts of professor Van Eldik Thieme. With its unique testing facilities realistic
tyre steady-state (over the road), transient and obstacle traversing (on flat plank)
and dynamic (on rotating drum) characteristics could be assessed. I wish to
express my appreciation to the staff of this laboratory and to the Ph.D. students
who have given their valuable efforts to further develop knowledge in tyre
mechanics and its application in vehicle dynamics. The collaboration with TNO
Automotive (Delft) in the field of tyre research opened the way to produce
professional software and render services to the automotive and tyre industry,
especially for the Delft-Tyre product range that includes the Magic Formula and
SWIFT models described in Chapters 4, 9 and 10. I am indebted to the Vehicle
Dynamics group for their much appreciated help in the preparation of the book.

Professors Peter Lugner (Vienna University of Technology) and Robin
Sharp (Cranfield University) have carefully reviewed major parts of the book
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(Chapters 1 to 6 and Chapter 11 respectively). Igo Besselink and Sven Jansen
of TNO Automotive reviewed the Chapters 5-10. I am most grateful for their
valuable suggestions to correct and improve the text. Finally, I thank the editorial
and production staff of Butterworth-Heinemann for their assistance and
cooperation.

Hans B. Pacejka
Rotterdam,
May, 2002

Note on the third revised impression

In this new edition, many small and larger corrections and improvements have
been introduced. Recent developments on tyre modelling have been added. These
concern mainly camber dynamics (Chapter 7) and running over three-
dimensional uneven road surfaces (Chapter 10). Section 10.2 has been added to
outline the structure of three advanced dynamic tyre models that are  important
for detailed computer simulation studies of vehicle dynamic performance. In the
new Chapter 12 an overview has been given of tyre testing facilities that are
designed to measure tyre steady-state characteristics both in the laboratory and
over the road, and to investigate the dynamic performance of the tyre subjected
to wheel vibrations and road unevennesses. 

Hans B. Pacejka
Rotterdam,
September, 2005
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Fig. 1.1. Characteristic shape factors (indicated by points and shaded areas) of tyre or axle
characteristics that may influence vehicle handling and stability properties. Slip angle
and force and moment positive directions, cf. App.1.

Chapter 1

TYRE CHARACTERISTICS AND
VEHICLE HANDLING AND STABILITY

1.1.  Introduction

This chapter is meant to serve as an introduction to vehicle dynamics with
emphasis on the influence of tyre properties. Steady-state cornering behaviour
of simple automobile models and the transient motion after small and large
steering inputs and other disturbances will be discussed. The effects of various
shape factors of tyre characteristics (cf. Fig.1.1) on vehicle handling properties
will be analysed. The slope of the side force Fy vs slip angle α near the origin (the
cornering or side slip stiffness) is the determining parameter for the basic linear
handling and stability behaviour of automobiles. The possible offset of the  tyre
characteristics with respect to their origins may be responsible for the occurrence
of the so-called tyre-pull phenomenon. The further non-linear shape of the side
(or cornering) force characteristic governs the handling and stability properties
of the vehicle at higher lateral accelerations. The load dependency of the curves,
notably the non-linear relationship of cornering stiffness with tyre normal load
has a considerable effect on the handling characteristic of the car. For the (quasi)
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steady-state handling analysis simple single track (two-wheel) vehicle models
will be used. Front and rear axle effective side force characteristics are
introduced to represent effects that result from suspension and steering system
design factors such as steering compliance, roll steer and lateral load transfer.
Also the effect of possibly applied (moderate) braking and driving forces may be
incorporated in the effective characteristics. Large braking forces may result in
wheel lock and possibly large deviations from the undisturbed path. The motion
resulting from wheel lock will be dealt with in an application of the theory of a
simple physical tyre model in Chapter 3 (the brush model). The application of
the handling and stability theory to the dynamics of heavy trucks will also be
briefly dealt with in the present chapter. Special attention will be given to the
phenomenon of oscillatory instability that may show up with the car trailer
combination.

When the wavelength of an oscillatory motion of the vehicle that may arise
from road unevenness, brake torque fluctuations, wheel unbalance or instability
(shimmy), is smaller than say 5m, a non-steady-state or transient description of
tyre response is needed to properly analyse the phenomenon. In Chapters 5-8
these matters will be addressed. Applications demonstrate the use of transient
and oscillatory tyre models and provide insight into the vehicle dynamics
involved. Chapter 11 is specially devoted to the analysis of motorcycle cornering
behaviour and stability.

1.2.  Tyre and Axle Characteristics

Tyre characteristics are of crucial importance for the dynamic behaviour of the
road vehicle. In this section an introduction is given to the basic aspects of the
force and moment generating properties of the pneumatic tyre. Both the pure and
combined slip characteristics of the tyre are discussed and typical features
presented. Finally, the  so-called effective axle characteristics are derived from
the individual tyre characteristics and the relevant properties of the suspension
and steering system. 

1.2.1.  Introduction to Tyre Characteristics

The upright wheel rolling freely, that is without applying a driving torque, over
a flat level road surface along a straight line at zero side slip, may be defined as
the starting situation with all components of slip equal to zero. A relatively small
pulling force is needed to overcome the tyre rolling resistance and a side force
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and (self) aligning torque may occur as a result of the not completely symmetric
structure of the tyre. When the wheel motion deviates from this by definition zero
slip condition, wheel slip occurs that is accompanied by a build-up of additional
tyre deformation and possibly partial sliding in the contact patch. As a result,
(additional) horizontal forces and the aligning torque are generated. The
mechanism responsible for this is treated in detail in the subsequent chapters. For
now, we will suffice with some important experimental observations and define
the various slip quantities that serve as inputs into the tyre system and the
moment and forces that are the output quantities (positive directions according
to Fig.1.1). Several alternative definitions are in use as well. In Appendix 1
various sign conventions of slip, camber and output forces and moments together
with relevant characteristics have been presented.

For the freely rolling wheel the forward speed Vx (longitudinal component of
the total velocity vector V of the wheel centre) and the angular speed of
revolution Ωo can be taken from measurements. By dividing these two quantities
the so-called effective rolling radius re is obtained:

 (1.1)

Although the effective radius may be defined also for a braked or driven wheel,
we restrict the definition to the case of free rolling. When a torque is applied
about the wheel spin axis a longitudinal slip arises that is defined as follows:

(1.2)

The sign is taken such that for a positive κ a positive longitudinal force Fx arises,
that is: a driving force. In that case, the wheel angular velocity Ω is increased
with respect to Ωo and consequently Ω >Ωo =Vx/re. During braking, the fore and
aft slip becomes negative. At wheel lock, obviously, κ = !1. At driving on
slippery roads, κ may attain very large values. To limit the slip to a maximum
equal to one, in some texts the longitudinal slip is defined differently in the
driving range of slip: in the denominator of (1.2) Ωo is replaced by Ω. This will
not be done in the present text.

Lateral wheel slip is defined as the ratio of the lateral and the forward
velocity of the wheel. This corresponds to minus the tangent of the slip angle α
(Fig.1.1). Again, the sign of α has been chosen such that the side force becomes
positive at positive slip angle.

(1.3)
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Fig. 1.2.  Combined side force and brake force characteristics. 

The third and last slip quantity is the so-called spin which is due to rotation of
the wheel about an axis normal to the road. Both the yaw rate resulting in path
curvature when α remains zero, and the wheel camber or inclination angle γ of
the wheel plane about the x axis contribute to the spin. The camber angle is
defined positive when looking from behind the wheel is tilted to the right. In
Chapter 2 more precise definitions of the three components of wheel slip will be
given. The forces Fx and Fy and the aligning torque Mz are results of the input
slip. They are functions of the slip components and the wheel load. For steady-
state rectilinear motions we have in general:

(1.4)Fx'Fx (κ,α, γ,Fz ) , Fy'Fy (κ,α,γ, Fz ) , Mz'Mz (κ,α,γ, Fz )

The vertical load Fz may be considered as a given quantity that results from the
normal deflection of the tyre. The functions can be obtained from measurements
for a given speed of travel and road and environmental conditions.

Figure 1.1 shows the adopted system of axes (x, y, z) with associated positive
directions of velocities and forces and moments. The exception is the vertical
force Fz acting from road to tyre. For practical reasons, this force is defined to
be positive in the upward direction and thus equal to the normal load of the tyre.
Also Ω (not provided with a y subscript) is defined positive with respect to the
negative y axis. Note, that the axes system is in accordance with SAE standards
(SAE J670e 1976). The sign of the slip angle, however, is chosen opposite with
respect to the SAE definition, cf. Appendix 1.

In Fig.1.2 typical pure lateral (κ =0) and longitudinal (α =0) slip character-
istics have been depicted together with a number of combined slip curves. The
camber angle γ  was kept equal to zero. We define pure slip to be the situation
when either longitudinal or lateral slip occurs in isolation. The figure indicates
that a drop in force arises when the other slip component is added. The  resulting
situation is designated as combined slip. The decrease in force can be simply
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force vs normalised vertical load and slip angle respectively. Fzo is the rated load.

explained by realising that the total horizontal frictional force F cannot exceed
the maximum value (radius of ‘friction circle’) which is dictated by the current
friction coefficient and  normal load. Later, in Chapter 3 this becomes clear when
considering the behaviour of a simple physical tyre model. The diagrams include
the situation when the brake slip ratio has finally attained the value 100% (κ =
!1) which corresponds to wheel lock.

The slopes of the pure slip curves at vanishing slip are defined as the
longitudinal and lateral slip stiffnesses respectively. The longitudinal slip
stiffness is designated as CFκ. The lateral slip or cornering stiffness of the tyre,
denoted with CFα , is one of the most important property parameters of the tyre
and is crucial for the vehicle’s handling and stability performance. The slope of
minus the aligning torque versus slip angle curve (Fig.1.1) at zero slip angle is
termed as the aligning stiffness and is denoted with CMα

. The ratio of minus the
aligning torque and the side force is the pneumatic trail t (if we neglect the so-
called residual torque to be dealt with in Chapter 4). This length is the distance
behind the contact centre (projection of wheel centre onto the ground in wheel
plane direction) to the point where the resulting lateral force acts. The linearised
force and moment characteristics (valid at small levels of slip) can be represented
by the following expressions in which the effect of camber has been included:

(1.5)
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These equations have been arranged in such a way that all the coefficients (the
force and moment slip and camber stiffnesses) become positive quantities.

It is of interest to note that the order of magnitude of the tyre cornering
stiffness ranges from about 6 to about 30 times the vertical wheel load when the
cornering stiffness is expressed as force per radian. The lower value holds for the
older bias-ply tyre construction and the larger value for modern racing tyres. The
longitudinal slip stiffness has been typically found to be about 50% larger than
the cornering stiffness. The pneumatic trail is approximately equal to a quarter
of the contact patch length. The dry friction coefficient usually equals ca.0.9, on
very sharp surfaces and on clean glass ca. 1.6; racing tyres may reach 1.5 to 2.

For the side force which is the more important quantity in connection with
automobile handling properties, a number of interesting diagrams have been
presented in Fig.1.3. These characteristics are typical for truck and car tyres and
are based on experiments conducted at the University of Michigan Transporta-
tion Research Institute (UMTRI, formerly HSRI), cf. Ref. (Segel et al. 1981).
The car tyre cornering stiffness data stems from newer findings. It is seen that
the cornering stiffness changes in a less than proportional fashion with the
normal wheel load. The maximum normalised side force Fy,peak /Fz appears to
decrease with increasing wheel load. Marked differences in level and slope occur
for the car and truck tyre curves also when normalised with respect to the rated
or nominal load. The cornering force vs slip angle characteristic shown at
different speeds and road conditions indicate that the slope at zero slip angle is
not or hardly affected by the level of speed and by the condition wet or dry. The
peak force level shows only little variation if the road is dry. On a wet road a
more pronounced peak occurs and the peak level drops significantly with
increasing speed.

Curves which exhibit a shape like the side force characteristics of Fig.1.3
can be represented by a mathematical formula that has become known by the
name ‘Magic Formula’. A full treatment of the empirical tyre model associated
with this formula is given in Chapter 4. For now we can suffice with showing the
basic expressions for the side force and the cornering stiffness:

Fy = D sin[C arctan{Bα !E(Bα ! arctan(Bα))}]           

with stiffness factor

B =CFα /(CD)

peak factor (1.6)

D =µFz   (= Fy,peak)

and cornering stiffness 

CFα (= BCD) = c1 sin{2 arctan(Fz /c2)} 



7TYRE CHARACTERISTICS AND VEHICLE HANDLING AND STABILITY

The shape factors C and E as well as the parameters c1 and c2 and the friction
coefficient µ  (possibly depending on the vertical load and speed) may be
estimated or determined through regression techniques.

1.2.2.  Effective Axle Cornering Characteristics

For the basic analysis of (quasi) steady-state turning behaviour a simple two-
wheel vehicle model may be used successfully. Effects of suspension and steering
system kinematics and compliances such as steer compliance, body roll and also
load transfer may be taken into account by using effective axle characteristics.
The restriction to (quasi) steady state becomes clear when we realise that for
transient or oscillatory motions, exhibiting yaw and roll accelerations and
differences in phase, variables like roll angle and load transfer can no longer be
written as direct algebraic functions of one of the lateral axle forces (front or
rear). Consequently, we should drop the simple method of incorporating the
effects of a finite centre of gravity height if the frequency of input signals such
as the steering wheel angle cannot be considered small relative to the body roll
natural frequency. Since the natural frequency of the wheel suspension and
steering systems are relatively high, the restriction to steady-state motions
becomes less critical in case of the inclusion of e.g. steering compliance in the
effective characteristic. Chiesa and Rinonapoli (1967) were among the first to
employ effective axle characteristics or ‘working curves’ as these were referred
to by them. Vågstedt (1995) determined these curves experimentally.  

Before assessing the complete non-linear effective axle characteristics we
will first direct our attention to the derivation of the effective cornering
stiffnesses which are used in the simple linear two-wheel model. For these to be
determined, a more comprehensive vehicle model has to be defined.

Figure 1.4 depicts a vehicle model with three degrees of freedom. The
forward velocity u may be kept constant. As motion variables we define the
lateral velocity v of reference point A, the yaw velocity r and the roll angle φ. A
moving axes system (A,x,y,z) has been introduced.  The x axis points forwards
and lies both in the ground plane and in the plane normal to the ground that
passes through the so-called roll axis. The y axis points to the right and the z axis
points downwards. This latter axis passes through the centre of gravity when the
the roll angle is equal to zero. In this way the location of the point of reference
A has been defined. The longitudinal distance to the front axle is a and the
distance to the rear axle is b. The sum of the two distances is the wheel base l.
For convenience we may write: a=a1 and b=a2.

In a curve, the vehicle body rolls about the roll axis. The location and
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Fig. 1.4. Vehicle model showing three degrees of freedom: lateral, yaw and roll.

attitude of this virtual axis is defined by the heights h1,2 of the front and rear roll
centres. The roll axis is assessed by considering the body motion with respect to
the four contact centres of the wheels on the ground under the action of an
external lateral force that acts on the centre of gravity. Due to the symmetry of
the vehicle configuration and the linearisation of the model these locations can
be considered as fixed. The roll centre locations are governed by suspension
kinematics and possibly suspension lateral compliances. The torsional springs
depicted in the figure represent the front and rear roll stiffnesses cφ1,2 which result
from suspension springs and anti-roll bars. 

The fore and aft position of the centre of gravity of the body is defined by a
and b; its height follows from the distance hN  to the roll axis. The body mass is
denoted by m and the moments of inertia with respect to the centre of mass and
horizontal and vertical axes by Ix, Iz and Ixz. These latter quantities will be needed
in a later phase when the differential equations of motion are established. The
unsprung masses will be neglected or they may be included as point masses
attached to the roll axis and thus make them part of the sprung mass, that is, the
vehicle body.

Furthermore, the model features torsional springs around the steering axes.
The king-pin is positioned at a small caster angle that gives rise to the caster
length e as indicated in the drawing. The total steering torsional stiffness, left
plus right, is denoted by cψ1.
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CFα ' CFαo%ζα ∆Fz

CFγ ' CFγo%ζγ ∆Fz

φ '
&may hN

c
φ1%c

φ2&mghN

∆Fzi ' σi may

σi '
1

2si

c
φ i

c
φ1%c

φ2&mghN

hN%

l&ai

l
hi

Effective Axle Cornering Stiffness

Linear analysis, valid for relatively small levels of lateral accelerations allows
the use of approximate tyre characteristics represented by just the slopes at zero
slip. We will first derive the effective axle cornering stiffness that may be used
under these conditions. The effects of load transfer, body roll, steer compliance,
side force steer and initial camber and toe angles will be included in the ultimate
expression for the effective axle cornering stiffness.  

The linear expressions for the side force and the aligning torque acting on a
tyre have been given by Eqs.(1.5). The coefficients appearing in these expres-
sions are functions of the vertical load. For small variations with respect to the
average value (designated with subscript o) we write for the cornering and
camber force stiffnesses the linearised expressions:

(1.7)

where the increment of the wheel vertical load is denoted by ∆Fz and the slopes
of the coefficient versus load curves at Fz = Fzo are represented by ζ

α,γ.
When the vehicle moves steadily around a circular path a centripetal

acceleration ay occurs and a centrifugal force K = may can be said to act on the
vehicle body at the centre of gravity in the opposite direction. The body roll angle
φ, that is assumed to be small, is calculated by dividing the moment about the
roll axis by the apparent roll stiffness which is reduced with the term mgh’due
to the additional moment mgh’φ :

(1.8)

The total moment about the roll axis is distributed over the front and rear axles
in proportion to the front and rear roll stiffnesses. The load transfer ∆Fzi  from
the inner to the outer wheels  that occurs at axle i (= 1 or 2) in a steady-state
cornering motion with centripetal acceleration ay follows from the formula:

(1.9)

with the load transfer coefficient of axle i

(1.10)

The attitude angle of the roll axis with respect to the horizontal is considered
small. In the formula, si denotes half the track width, h  ́is the distance from the
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∆FziL ' ∆Fzi , ∆FziR ' &∆Fzi

FziL ' ½Fzi%∆Fzi , FziR ' ½Fzi&∆Fzi

δ '
δstw

nst

ψri ' εiφ

γri ' τiφ

ψsfi ' csfi Fyi

centre of gravity to the roll axis and a1=a and a2=b. The resulting vertical loads
at axle i for the left (L) and right (R) wheels become after considering the left and
right increments in load:

(1.11)

The wheels at the front axle are steered about the king-pins with the angle δ. This
angle relates directly to the imposed steering wheel angle δstw through the steering
ratio nst.

(1.12)

In addition to this imposed steer angle the wheels may show a steer angle and a
camber angle induced by body roll through suspension kinematics. The
functional relationships with the roll angle may be linearised. For axle i we
define:

(1.13)

Steer compliance gives rise to an additional steer angle due to the external torque
that acts about the king-pin (steering axis). For the pair of front wheels this
torque results from the side force (of course also from the here not considered
driving or braking forces) that exerts a moment about the king-pin through the
moment arm which is composed of the caster length e and the pneumatic trail t1.
With the total steering stiffness cψ1 felt about the king-pins with the steering
wheel held fixed, the additional steer angle becomes when for simplicity the
influence of camber on the pneumatic trail is disregarded:

(1.14)ψc1 ' &

Fy1 (e% t1)

c
ψ

In addition, the side force (but also the fore and aft force) may induce a steer
angle due to suspension compliance. The so-called side force steer reads:

(1.15)

For the front axle, we should separate the influences of moment steer and side
force steer. For this reason, side force steer at the front is defined to occur as a
result of the side force acting in a point on the king-pin axis. 

Beside the wheel angles indicated above, the wheels may have been given
initial angles that already exist at straight ahead running. These are the toe angle
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ψiLo ' &ψio , ψiRo ' ψio

γiLo ' &γio , γiRo ' γio

Ceff,i '
Fyi

αai

Fyi '
l&ai

l
may

FyiL ' (½CFαi%ζαi∆Fzi) (αi&ψio)% (½CFγi%ζγi∆Fzi) (γi&γio)
FyiR ' (½CFαi&ζαi∆Fzi) (αi%ψio)% (½CFγi&ζγi∆Fzi) (γi%γio)

αi ' αai%ψi

ψi ' ψri%ψci%ψsfi

γi ' γri

ψo (positive pointing outwards) and the initial camber angle γo (positive: leaning
outwards). For the left and right wheels we have the initial angles:

(1.16)

Adding all relevant contributions (1.12) to (1.16) together yields the total steer
angle for each of the wheels.

The effective cornering stiffness of an axle Ceff,i is now defined as the ratio
of the axle side force and the virtual slip angle. This angle is defined as the angle
between the direction of motion of the centre of the axle i (actually at road level)
when the vehicle velocity would be very low and approaches zero (then also Fyi

÷0) and the direction of motion at the actual speed considered. The virtual slip
angle of the front axle has been indicated in Fig.1.4 and is designated as αa1. We
have in general:

(1.17)

The axle side forces in the steady-state turn can be derived by considering the
lateral force and moment equilibrium of the vehicle:

(1.18)

The axle side force is the sum of the left and right individual tyre side forces. We
have

(1.19)

where the average wheel slip angle αi indicated in the figure is

(1.20)

and the average additional steer angle and the average camber angle are:

(1.21)

The unknown quantity is the virtual slip angle αai which can be determined for
a given lateral acceleration ay. Next, we use the equations (1.8, 1.9, 1.13, 1.18,
1.14, 1.15), substitute the resulting expressions (1.21) and (1.20) in (1.19) and
add up these two equations. The result is a relationship between the axle slip
angle αai and the axle side force Fyi. We obtain for the slip angle of axle i:
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CFα i ' CFα iL%CFα iR ' CFα iLo%CFα iRo

CFγ i ' CFγ iL%CFγ iR ' CFγ iLo%CFγ iRo

αa1 ' α1&ψc1

(1.22)

The coefficient of Fyi constitutes the effective axle cornering compliance, which
is the inverse of the effective axle cornering stiffness (1.17). The quantitative
effect of each of the suspension, steering and tyre factors included can be easily
assessed. The subscript i refers to the complete axle. Consequently, the cornering
and camber stiffnesses appearing in this expression are the sum of the stiffnesses
of the left and right tyre: 

(1.23)

in which (1.7) and (1.11) have been taken into account. The load transfer
coefficient σi follows from Eq.(1.10). Expression (1.22) shows that the influence
of lateral load transfer only occurs if initially, at straight ahead running, side
forces are already present through the introduction of e.g. opposite steer and
camber angles. If these angles are absent, the influence of load transfer is purely
non-linear and is only felt at higher levels of lateral accelerations. In the next
subsection, this non-linear effect will be incorporated in the effective axle
characteristic.

Effective Non-Linear Axle Characteristics

To illustrate the method of effective axle characteristics we will first discuss the
determination of the effective characteristic of a front axle showing steering
compliance. The steering wheel is held fixed. Due to tyre side forces and self-
aligning torques (left and right) distortions will arise resulting in an incremental
steer angle ψc1 of the front wheels (ψc1 will be negative in Fig.1.5 for the case of
just steer compliance). Since load transfer is not considered in this example, the
situation at the  left and right wheels are identical (initial toe and camber angles
being disregarded). The front tyre slip angle is denoted with α1. The ‘virtual’ slip
angle of the axle is denoted with αa1 and equals (cf. Fig.1.5):

(1.24)

where both α1 and ψc1 are related with Fy1 and Mz1. The subscipt 1 refers to the
front axle and thus to the pair of tyres. Consequently, Fy1 and Mz1 denote the sum
of the left and right tyre side forces and moments. The objective is, to find the

αai'
Fyi

Ceff,i

'

'

Fyi

CFα i

1%
l (εiCFαi%τiCFγi)hN

(l&ai)(cφ1%c
φ2&mghN)

%

CFαi(ei%ti)

c
ψi

&CFαicsfi%
2lσi

l&ai

(ζ
αiψio%ζγiγio)



13TYRE CHARACTERISTICS AND VEHICLE HANDLING AND STABILITY

Mz1

Fy1

V

a1

1
1

Fig. 1.5.  Wheel suspension and steering compliance resulting in additional steer angle ψ1.
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Fig. 1.6.   Effective front axle characteristic Fy1(αa1) influenced by steering compliance.

function Fy1(αa1) which is the effective front axle characteristic. Figure 1.6 shows
a graphical approach. According to Eq.(1.24) the points on the Fy1(α1) curve
must be shifted horizontally over a length ψc1 to obtain the sought Fy1(αa1). The
slope of the curve at the origin corresponds to the effective axle cornering
stiffness found in the preceding subsection. Although the changes with respect
to the original characteristic may be small, they can still be of considerable
importance since it is the difference of slip angles front and rear which largely
determines the vehicle’s handling behaviour.

The effective axle characteristic for the case of roll steer can be easily
established by subtracting ψri  from α i. Instead of using the linear relationships
(1.8) and (1.13) non-linear curves may be adopted, possibly obtained from
measurements. For the case of roll camber, the situation becomes more complex.
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Fig. 1.7.  The influence of load transfer on the resulting axle characteristic.

At a given axle side force the roll angle and the associated camber angle can be
found. The cornering characteristic of the pair of tyres at that camber angle is
needed to find the slip angle belonging to the side force considered. 

Load transfer is another example that is less easy to handle. In Fig.1.7 a
three dimensional graph is presented for the variation of the side force of an
individual tyre as a function of the slip angle and of the vertical load. The former
at a given load and the latter at a given slip angle. The diagram illustrates that
at load transfer the outer tyre exhibiting a larger load will generate a larger side
force than the inner tyre. Because of the non-linear degressive Fy vs Fz curve,
however, the average side force will be smaller than the original value it had in
the absence of load transfer. The graph indicates that an increase ∆α of the slip
angle would be needed to compensate for the adverse effect of load transfer. The
lower diagram gives a typical example of the change in characteristic as a result
of load transfer. At the origin the slope is not affected but at larger slip angles
an increasingly lower derivative appears to occur. The peak diminishes and may
even disappear completely. The way to determine the resulting characteristic is
the subject of the next exercise. 

Exercise 1.1.  Construction of effective axle characteristic at load transfer

For a series of tyre vertical loads Fz the characteristics of the two tyres mounted on,
say, the front axle of an automobile are given. In addition, it is known how the load
transfer ∆Fz at the front axle depends on the centrifugal force K ( = mg Fy1 /Fz1 = mg
Fy2 /Fz2 ) acting at the centre of gravity. From this data the resulting cornering charac-
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Fig. 1.8. The construction of the resulting axle cornering characteristics at load transfer
(Exercise 1.1). 

teristic of the axle considered (at steady-state cornering) can be determined.
1. Find the resulting characteristic of one axle from the set of individual tyre

characteristics at different tyre loads Fz and the load transfer characteristic both
shown in Fig.1.8.
Hint:  First draw in the lower diagram the axle characteristics for values of ∆Fz =
1000, 2000, 3000 and 4000 N and then determine which point on each of these
curves is valid considering the load transfer characteristic (left-hand diagram).
Draw the resulting axle characteristic. 
It may be helpful to employ the Magic Formula (1.6) and the parameters shown
below:
side force: Fy = D sin[C arctan{Bα !E(Bα ! arctan(Bα))}]           
with factors: B =CFα/(CD) , C =1.3 , D =µFz , E= !3 , with µ =1  
cornering stiffness: CFα = c1 sin[2 arctan{Fz /c2}]
with parameters: c1 =60000 [N/rad], c2 = 4000 [N]
In addition, we have given for the load transfer: ∆Fz = 0.52Fy,axle (up to lift-off of
the inner tyre, after which the other axle may take over to accommodate the
increased total load transfer).

2. Draw the individual curves of FyL and FyR (for the left and right tyre) as a function
of α which appear to arise under the load transfer condition considered here.

3. Finally, plot these forces as a function of the vertical load Fz (ranging from 0-8000
N). Note the variation of the lateral force of an individual (left or right) tyre in this
same range of vertical load which may be covered in a left and in a right-hand turn
at increasing speed of travel until (and possibly beyond) the moment that one of the
wheels (the inner wheel) lifts from the ground.
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Fig. 1.9. Simple car model with side force characteristics for front and rear (driven) axle.

1.3.  Vehicle Handling and Stability

In this section attention is paid to the more fundamental aspects of vehicle
horizontal motions. Instead of discussing results of computer simulations of
complicated vehicle models we rather take the simplest possible model of an
automobile that runs at constant speed over an even horizontal road and thereby
gain considerable insight into the basic aspects of vehicle handling and stability.
Important early work on the linear theory of vehicle handling and stability has
been published by Riekert and Schunck (1940), Whitcomb and Milliken (1956)
and  Segel (1956). Pevsner (1947)  studied the non-linear steady-state cornering
behaviour at larger lateral accelerations and introduced the handling diagram.
One of the first more complete vehicle model studies  has been conducted by
Pacejka (1958) and by Radt and Pacejka (1963). 

For more introductory or  specialised study the reader may be referred to
books on the subject published earlier, cf. e.g.: Gillespie (1992), Mitschke
(1990), Milliken and Milliken (1995) and Kortüm and Lugner (1994).

 The derivation of the equations of motion for the three degree of freedom
model of Fig.1.4 will be treated first after which the simple model with two
degrees of freedom is considered and analysed. This analysis comprises the
steady-state response to steering input and the stability of the resulting motion.
Also, the frequency response to steering fluctuations and external disturbances
will be discussed, first for the linear vehicle model and subsequently for the non-
linear model where large lateral accelerations and disturbances are introduced.

The simple model to be employed in the analysis is presented in Fig.1.9. The
track width has been neglected with respect to the radius of the cornering motion
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which allows the use of a two-wheel vehicle model. The steer and slip angles will
be restricted to relatively small values. Then, the variation of the geometry may
be regarded to remain linear, that is: cosα.1 and sinα.α and similarly for the
steer angle δ. Moreover, the driving force required to keep the speed constant is
assumed to remain small with respect to the lateral tyre force. Considering
combined slip curves like those shown in Fig.1.2 (right), we may draw the
conclusion that the influence of Fx on Fy may be neglected in that case.

In principle, a model as shown in Fig.1.9 lacks body roll and load transfer.
Therefore, the theory is actually limited to cases where the roll moment remains
small, that is at low friction between tyre and road or a low centre of gravity
relative to the track width. This restriction may be overcome by using the
effective axle characteristics in which the effects of body roll and load transfer
have been included while still adhering to the simple (rigid) two-wheel vehicle
model. As has been mentioned before, this is only permissible when the
frequency of the imposed steer angle variations remains small with respect to the
roll natural frequency. Similarly, as has been demonstrated in the preceding
section, effects of other factors like compliance in the steering system and
suspension mounts may be accounted for.

The speed of travel is considered to be constant. However, the theory may
approximately hold also for quasi-steady-state situations for instance at moderate
braking or driving. The influence of the fore-and-aft force Fx on the tyre or axle
cornering force vs slip angle characteristic (Fy ,α ) may then be regarded (cf.
Fig.1.9). The forces Fy1 and Fx1 and the moment Mz1 are defined to act upon the
single front wheel and similarly we define Fy2 etc. for the rear wheel.

1.3.1.  Differential Equations for Plane Vehicle Motions

In  this section, the differential equations for the three degree of freedom vehicle
model of Fig.1.4 will be derived. In first instance, the fore and aft motion will
also be left free to vary. The resulting set of equations of motion  may be of
interest for the reader to further study the vehicle’s dynamic response at
somewhat higher frequencies where the roll dynamics of the vehicle body may
become of importance. From these equations, the equations for the simple two-
degree of freedom model of Fig.1.9 used in the subsequent section can be easily
assessed. In Subsection 1.3.6 the equations for the car with trailer will be
established. The possible instability of the motion will be studied. 

We will employ Lagrange’s equations to derive the equations of motion. For
a system with n degrees of freedom n (generalised) coordinates qi are selected
which are sufficient to completely describe the motion while possible kinematic
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d
dt
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MT
Mq i

%

MU
Mqi
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constraints remain satisfied. The moving system possesses kinetic energy T and
potential energy U. External generalised forces Qi associated with the generalised
coordinates qi may act on the system and do work W. Internal forces acting from
dampers to the system structure may be regarded as external forces taking part
in the total work W. The equation of Lagrange for coordinate qi reads:

(1.25)

The system depicted in Fig.1.4 and described in the preceding subsection
performs a motion over a flat level road. Proper coordinates are the Cartesian
coordinates X and Y of reference point A, the yaw angle ψ of the moving x axis
with respect to the inertial X axis and finally the roll angle φ about the roll axis.
For motions near the X axis and thus small yaw angles, Eq.(1.25) is adequate to
derive the equations of motion. For cases where ψ may attain large values, e.g.
when moving along a circular path, it is preferred to use modified equations
where the velocities u, v and r of the moving axes system are used as generalised
motion variables in addition to the coordinate φ. The relations between the two
sets of variables are (the dots referring to differentiation with respect to time):

(1.26)

The kinetic energy can be expressed in terms of u, v and r. Preparation of the
first terms of Eq.(1.25) for the coordinates X, Y and ψ yields:

(1.27)

The yaw angle ψ may now be eliminated by multiplying the final equations for
X and Y successively with cosψ and sinψ and subsequently adding and
subtracting them. The resulting equations represent the equilibrium in the x and
y (or u and v) directions respectively. 

We obtain the following set of modified Lagrangean equations for the first
three variables u, v and r and subsequently for the remaining real coordinates
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(for our system only φ) :

(1.28)

The generalised forces are found from the virtual work:

(1.29)

with qj referring to the quasi coordinates x and y and the coordinates ψ and φ.
Note that x and y can not be found from integrating u and v. For that reason the
term ‘quasi’ coordinate is used. For the vehicle model we find for the virtual
work as a result of the virtual displacements δx, δy, δψ and δφ :

(1.30)

where apparently

(1.31)

The longitudinal forces are assumed to be the same at the left and right wheels
and the effect of additional steer angles ψi are neglected here. Shock absorbers
in the wheel suspensions are represented by the resulting linear moments about
the roll axes with damping coefficients kφ i at the front and rear axles.

With the roll angle φ and the roll axis inclination angle θr.(h2!h1)/l assumed
small, the kinetic energy becomes:

(1.32)

The potential energy U is built up in the suspension springs (including the radial
tyre compliances) and through the height of the centre of gravity. We have, again
for small angles:

T'½m{(u&hNφ r)2
% (v%hNφ0 )2}%

%½ Ixφ0
2
%½ Iy(φ r)2

%½ Iz(r
2
&φ 2r 2

%2θr rφ0 )& Ixzrφ0
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(1.33)

The equations of motion are finally established by using the expressions (1.31),
(1.32) and (1.33) in the equations (1.28). The equations will be linearised in the
assumedly small angles φ and δ. For the variables u, v, r and φ we obtain
successively:

 (1.34a)

(1.34b)

(1.34c)

(1.34d)
Note that the small additional roll and compliance steer angles ψi have been
neglected in the assessment of the force components. The tyre side forces depend
on the slip and camber angles front and rear and on the tyre vertical loads. We
may need to take the effect of combined slip into account. The longitudinal
forces are either given as a result of brake effort or imposed propulsion torque
or they depend on the wheel longitudinal slip which follows from the wheel speed
of revolution requiring four additional wheel rotational degrees of freedom. The
first equation (1.34a) may be used to compute the propulsion force needed to
keep the forward speed constant.

The vertical loads and more specifically the load transfer can be obtained by
considering the moment equilibrium of the front and rear axle about the
respective roll centres. For this, the roll moments Mφi (cf. Fig.1.4) resulting from
suspension springs and dampers as appear in Eq.(1.34d) through the terms with
subscript 1 and 2 respectively, and the axle side forces appearing in Eq.(1.34b)
are to be regarded. For a linear model the load transfer can be neglected if initial
(left/right opposite) wheel angles are disregarded. We have at steady-state (effect
of damping vanishes):

(1.35)

The front and rear slip angles follow from the lateral velocities of the wheel axles
and the wheel steer angles with respect to the moving longitudinal x axis. The
longitudinal velocities of the wheel axles may be regarded the same left and right
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α1 ' δ%ψ1&
v%ar&eδ0

u

α2 ' ψ2&
v&br

u

(Ix%mhN

2)φ̈%mhN( 0v%ur)% (Izθr& Ixz) 0r% (k
φ1%k

φ2)φ0 %
% (c

φ1%c
φ2&mghN)φ ' 0

Fyi ' Fyα i%Fyγ i ' CFα iαi%CFγ iγi

Mzi ' Mzα i ' &CMα iαi ' &ti Fyα i ' &tiCFα iαi

m( 0v%ur%hNφ̈) ' CFα1{(1%csc1)(uδ%eδ0 &v&ar) /u%csr1φ}%
%CFα2 {(1%csc2)(&v%br) /u%csr2φ}% (CFγ1τ1%CFγ2τ2)φ

and equal to the vehicle longitudinal speed u. This is allowed when si|r|« u. Then
the expressions for the assumedly small slip angles read:

(1.36)

The additional roll and compliance steer angles ψi and the wheel camber angles
γi are obtained from Eq.(1.21) with (1.13-15) or corresponding non-linear
expressions. Initial wheel angles are assumed to be equal to zero. The influence
of the steer angle velocity appearing in the expression for the front slip angle is
relatively small and may be disregarded. The small products of the caster length
e and the time rate of change of ψi have been neglected in the above expressions.

Equations (1.34) may be further linearised by assuming that all the
deviations from the rectilinear motion are small. This allows the neglection of all
products of variable quantities which vanish when the vehicle moves straight
ahead. The side forces and moments are then written as in Eq.(1.5) with the
subscripts i=1 or 2  provided. If the moment due to camber is neglected and the
pneumatic trail is introduced in the aligning torque we have:

(1.37)

The three linear equations of motion for the system of Fig.1.4 with the forward
speed u kept constant finally turn out to read expressed solely in terms of the
three motion variables v, r and φ :

(1.38a)

(1.38b)

(1.38c)

In these equations the additional steer angles ψi have been eliminated by using
expressions (1.21) with (1.13-15). Furthermore, the resulting compliance steer

Iz 0r% (Izθr& Ixz)φ̈' (a&t1) CFα1{(1%csc1) (uδ%eδ0 &v&ar) /u%csr1φ}%
& (b%t2) CFα2 {(1%csc2) (&v%br) /u%csr2φ}% (aCFγ1τ1&bCFγ2τ2)φ
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csci'

csfi&
ei% ti

c
ψi

CFαi

1& csfi&
ei% ti

c
ψi

CFαi

, csri'

εi % τi csfi&
ei% ti

c
ψi

CFγi

1& csfi&
ei% ti

c
ψi

CFαi

θr '
h2& h1

l

CFαi ÷
CFαi

1%sσi /u

and roll steer coefficients for i = 1 or 2 have been introduced:

(1.39)

where the steer stiffness at the rear cψ2 may be taken equal to infinity.
Furthermore, we have the roll axis inclination angle:

 (1.40)

In Chapters 7 and 8 the transient properties of the tyre will be addressed. The
relaxation length denoted by σi is an important parameter that controls the lag of
the response of the side force to the input slip angle. For the Laplace transformed
version of the equations (1.38) with the Laplace variable s representing
differentiation with respect to time, we may introduce tyre lag by replacing the
slip angle αi by the filtered transient slip angle. This may be accomplished by
replacing the cornering stiffnesses CFαi appearing in (1.38) and (1.39) by the
‘transient stiffnesses’:

(1.41)

A similar procedure may be followed to include the tyre transient response to
wheel camber variations. The relaxation length concerned is about equal to the
one used for the response to side slip variations. At nominal vertical load the
relaxation length is of the order of magnitude of the wheel radius. A more precise
model of the aligning torque may be introduced by using a transient pneumatic
trail with a similar replacement as indicated by (1.41) but with a much smaller
relaxation length approximately equal to half the contact length of the tyre. For
more details we refer to Chapter 9 that is dedicated to short wavelength force and
moment response.
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Fy1 ' Fy1(α1) and Fy2 ' Fy2(α2)

1.3.2.  Linear Analysis of the Two-Degree of Freedom Model

From the equations (1.34b and c) the reduced set of equations for the two-degree
of freedom model can be derived immediately. The roll angle φ and its derivative
are set equal to zero and furthermore, we will assume the forward speed u (.V)
to remain constant and neglect the influence of the lateral component of the
longitudinal forces Fxi. The equations of motion of the simple model of Fig.1.9
for v and r now read:

(1.42a)m( 0v % ur) ' Fy1 % Fy2

(1.42b)I 0r ' aFy1 & bFy2

with v denoting the lateral velocity of the centre of gravity and r the yaw
velocity. The symbol m stands for the vehicle mass and I (=Iz) denotes the
moment of inertia about the vertical axis through the centre of gravity. For the
matter of simplicity, the rearward shifts of the points of application of the forces
Fy1 and Fy2 over a length equal to the pneumatic trail t1 and t2 respectively (that
is the aligning torques) have been disregarded. Later, we come back to this. The
side forces are functions of the respective slip angles:

(1.43)

and the slip angles are expressed by

    and   (1.44)α1 ' δ &
1
u

(v % ar) α2 ' &

1
u

(v & br)

neglecting the effect of the time rate of change of the steer angle appearing in
Eq.(1.36). For relatively low frequency motions the effective axle characteristics
or effective cornering stiffnesses according to Eqs.(1.17, 1.22) may be employed.

When only small deviations with respect to the undisturbed straight-ahead
motion are considered, the slip angles may be assumed to remain small enough
to allow linearisation of the cornering characteristics. For the side force the
relationship with the slip angle reduces to the linear equation:

(1.45)Fyi ' Ciαi ' CFαiαi

where Ci denotes the cornering stiffness. This can be replaced by the symbol CFαi

which may be preferred in more general cases where also camber and aligning
stiffnesses play a role. 

The two linear first-order differential equations now read:



24 TYRE CHARACTERISTICS AND VEHICLE HANDLING AND STABILITY

C ' C1%C2

Cs ' C1a&C2b
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' C1a

2
%C2b

2

mk 2
' I

m( 0v%ur)% C
u

v% Cs
u

r ' C1δ

mk 2
0r%

cq 2

u
r%

Cs
u

v ' C1 aδ

m 2k 2u 2r̈%mC(q 2
%k 2) u 0r% (C1C2l

2
&mu 2Cs) r'mu 2aC1δ

0

%uC1C2lδ

Imur̈%{I (C1%C2)%m(a 2C1%b 2C2)} 0r%

%

1
u

{C1C2l
2
&mu 2(aC1&bC2)} r ' muaC1δ

0

%C1C2lδ

(1.46)

m 0v% 1
u

(C1%C2) v% mu% 1
u

(aC1&bC2) r ' C1δ

I 0r% 1
u

(a 2C1%b 2C2)r% 1
u

(aC1&bC2)v ' aC1δ

After elimination of the lateral velocity v we obtain the second-order differential
equation for the yaw rate r :

(1.47)

Here, as before, the dots refer to differentiation with respect to time, δ is the steer
angle of the front wheel and l (=a+b) represents the wheel base. The equations
may be simplified by introducing the following quantities:

(1.48)

Here, C denotes the total cornering stiffness of the vehicle, s is the distance from
the centre of gravity to the so-called neutral steer point S (Fig.1.11), q is a length
corresponding to an average moment arm and k is the radius of gyration.
Equations (1.46) and (1.47) now reduce to:

(1.49)

and with v eliminated:

(1.50)
The neutral steer point S is defined as the point on the longitudinal axis of the
vehicle where an external side force can be applied without changing the
vehicle’s yaw angle. If the force acts in front of the neutral steer point, the
vehicle is expected to yaw in the direction of the force; if behind, then against the
force. The point is of interest when discussing the steering characteristics and
stability.
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η ' &

mg
l

aC1&bC2

C1C2

' &

s
l

mgC
C1C2

δ '
l
R

1%η V 2

gl
'

l
R
%η

ay

g

Linear Steady-State Cornering Solutions 

We are interested in the path curvature (1/R) that results from a constant steer
angle δ at a given constant speed of travel V.  Since we have at steady state:

     (1.51)
1
R
'

r
V
.

r
u

the expression for the path curvature becomes using (1.47) with u replaced by
V and the time derivatives omitted:

(1.52)
1
R
'

C1C2l

C1C2l
2
&mV 2(aC1&bC2)

δ

By taking the inverse, the expression for the steer angle required to negotiate a
curve with a given radius R is obtained:

(1.53)δ '
1
R

l&mV 2
aC1&bC2

lC1C2

It is convenient to introduce the so-called understeer coefficient or gradient η.
For our model, this quantity is defined as

      (1.54)

with g denoting the acceleration due to gravity. After having defined the lateral
acceleration which in the present linear analysis equals the centripetal
acceleration:

  (1.55)ay ' Vr '
V 2

R
Eq.(1.53) can be written in the more convenient form

(1.56)

The meaning of understeer versus oversteer becomes clear when the steer angle
is plotted against the centripetal acceleration while the radius R is kept constant.
In Fig.1.10 (left-hand diagram) this is done for three types of vehicles showing
understeer, neutral steer and oversteer. Apparently, for an understeered vehicle,
the steer angle needs to be increased when the vehicle is going to run at a higher
speed. At neutral steer the steer angle can be kept constant while at oversteer a
reduction in steer angle is needed when the speed of travel is increased and at the
same time a constant turning radius is maintained.
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g l
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Fig. 1.10. The steer angle versus lateral acceleration at constant path curvature (left graph). The
difference in slip angle versus lateral acceleration and the required steer angle at a
given path curvature (right graph). The understeer gradient η.

According to Eq.(1.56)  the steer angle changes sign when for an oversteered
car the speed increases beyond the critical speed that is expressed by:

(1.57)

As will be shown later, the motion becomes unstable when the critical speed is
surpassed. Apparently, this can only happen when the vehicle shows oversteer.

For an understeered car a counterpart has been defined which is the so-called
characteristic speed. It is the speed where the steer angle required to maintain the
same curvature increases to twice the angle needed at speeds approaching zero.
We may also say that at the characteristic speed the path curvature response to
steer angle has decreased to half its value at very low speed. Also interesting is
the fact that at the characteristic speed the yaw rate response to steer angle r/δ
reaches a maximum (the proof of which is left to the reader). We have for the
characteristic velocity: 

(1.58)Vchar '
g l
η

(η > 0)

Expression (1.54) for the understeer gradient η is simplified when the following
expressions for the front and rear axle loads are used:

    and       (1.59)Fz1 '
b
l

mg Fz2 '
a
l

mg
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Fig. 1.11.  Two-wheel vehicle model in a cornering manoeuvre.

We obtain:

(1.60)η '
Fz1

C1

&

Fz2

C2

which says that a vehicle exhibits an understeer nature when the relative
cornering compliance of the tyres at the front is larger than at the rear. It is
important to note that in (1.59) and (1.60) the quantities Fz1,2 denote the vertical
axle loads that occur at stand-still and thus represent the mass distribution of the
vehicle. Changes of these loads due to aerodynamic down forces and fore and aft
load transfer at braking or driving should not be introduced in expression (1.60).

In the same diagram the difference in slip angle front and rear may be
indicated. We find for the side forces

    (1.61)Fy1 '
b
l

may ' Fz1

ay

g
, Fy2 '

a
l

may ' Fz2

ay

g
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α1 '
Fz1

C1

ay

g
, α2 '

Fz2

C2

ay

g

α1&α2 ' η
ay

g

and hence for the slip angles

 (1.62)

The difference now reads when considering the relation (1.59)

(1.63)

Apparently, the sign of this difference is dictated by the understeer coefficient.
Consequently, it may be stated that according to the linear model an understeered
vehicle (η > 0) moves in a curve with slip angles larger at the front than at the
rear (α1>α2).  For a neutrally steered vehicle the angles remain the same (α1=α2)
and with an oversteered car the rear slip angles are bigger (α2>α1).  As is shown
by the expressions (1.54), the signs of η and s are different. Consequently, as one
might expect when the centrifugal force is considered as the external force, a
vehicle acts oversteered when the neutral steer point lies in front of the centre of
gravity and understeered when S lies behind the c.g.. As we will see later on, the
actual non-linear vehicle may change its steering character when the lateral
acceleration increases. It appears then that the  difference in slip angle is no
longer directly related to the understeer gradient.

Consideration of Eq.(1.56) reveals that in the left-hand graph of Fig.1.10 the
difference in slip angle can be measured along the ordinate starting from the
value l/R. It is of interest to convert the diagram into the graph shown on the
right-hand side of Fig.1.10 with ordinate equal to the difference in slip angle. In
that way, the diagram becomes more flexible because the value of the curvature
1/R may be selected afterwards. The horizontal dotted line is then shifted
vertically according to the value of the relative curvature l/R considered. The
distance to the handling line represents the magnitude of the steer angle.

Figure 1.11 depicts the resulting steady-state cornering motion. The vehicle
side slip angle β has been indicated. It is of interest to note that at low speed this
angle is negative for right-hand turns. Beyond a certain value of speed the tyre
slip angles have become sufficiently large and the vehicle slip angle changes into
positive values. In Exercise 1.2 the slip angle β  will be used. 

Influence of the Pneumatic Trail

The direct influence of the pneumatic trails ti may not be negligible. In reality,
the tyre side forces act a small distance behind the contact centres. As a
consequence, the neutral steer point should also be considered to be located at a
distance approximately equal to the average value of the pneumatic trails, more
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a0 r̈%a1 0r%a2 r ' b1δ

a2 ' C1C2 l 2 1%η V 2

g l
' C1C2 l 2 δ

l/R ss

> 0

V < Vcrit '
g l
&η

(η < 0)

to the rear, which means actually more understeer. The correct values of the
position s of the neutral steer point and of the understeer coefficient η can be
found by using the effective axle distances aN = a!t1 , bN = b + t2 and lN = aN+ bN

in the Eqs.(1.48) and (1.59) instead of the original quantities a, b and l.

Stability of the Motion

Stability of the steady-state circular motion can be examined by considering the
differential equation (1.47) or (1.50). The steer angle is kept constant so that the
equation gets the form

(1.64)

For this second-order differential equation stability is assured when all
coefficients ai are positive. Only the last coefficient a2 may become negative
which corresponds to divergent instability (spin-out without oscillations). As
already indicated, this will indeed occur when for an oversteered vehicle the
critical speed (1.57) is exceeded. The condition for stability reads:

(1.65)

with the subscript ss referring to steady-state conditions, or

(1.66)

The next section will further analyse the dynamic nature of the stable and
unstable motions.

It is of importance to note that when the condition of an automobile subjected
to driving or braking forces is considered, the cornering stiffnesses front and rear
will change due to the associated fore and aft axle load transfer and the resulting
state of combined slip. In expression (1.60) for the understeer coefficient η the
quantities Fzi represent the static vertical axle loads obtained through Eqs.(1.59)
and are to remain unchanged! In Subsection 1.3.4 the effect of longitudinal
forces on vehicle stability will be further analysed.

Free Linear Motions

To study the nature of the free motion after a small disturbance in terms of
natural frequency and damping, the eigenvalues, that is the roots of the
characteristic equation of the linear second-order system, are to be assessed. The
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Fig. 1.12. Possible eigenvalues for the over and understeered car at lower and higher speeds.

Mr̈% D 0r% Kr ' D1δ
0

% K1δ

Mλ2
% Dλ% K ' 0

characteristic equation of the system described by the equations (1.49) or (1.50)
reads after using the relation (1.54) between s and η :

(1.67)m 2k 2V 2λ2
%mC(q 2

% k 2)Vλ%C1C2l
2 1% η

g l
V 2

' 0

For a single mass-damper-spring system shown in Fig.1.13 with r the mass
displacement, δ the forced displacement of the support, M the mass, D the sum
of the two damping coefficients D1 and D 2 and K the sum of the two spring
stiffnesses K1 and K 2 a differential equation similar in structure to Eq.(1.50)
arises:

(1.68)

and the corresponding characteristic equation:

(1.69)

When an oversteered car exceeds its critical speed, the last term of (1.67)
becomes negative which apparently corresponds with a negative stiffness K. An
inverted pendulum is an example of a second-order system with negative last
coefficient showing monotonous (diverging) instability.

The roots λ of equation (1.67) may have loci in the complex plane as shown
in Fig.1.12. For positive values of the cornering stiffnesses only the last
coefficient of the characteristic equation can become negative which is
responsible for the limited types of eigenvalues that can occur. As we will see in
Subsection 1.3.3, possible negative slopes beyond the peak of the non-linear axle
characteristics may give rise to other types of unstable motions connected with
two positive real roots or two conjugated complex roots with a positive real part.
For the linear vehicle model we may have two real roots in the oversteer case and
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Fig. 1.13. The influence of parameters on natural frequency and damping.

a pair of complex roots in the understeer case, except at low speeds where the
understeered vehicle can show a pair of real negative roots. 

As indicated in the figure, the complex root is characterised by the natural
frequency ωo of the undamped system (D = 0), the damping ratio ζ and the
resulting actual natural frequency ωn. Expressions for these quantities in terms
of the model parameters are rather complex. However, if we take into account
that in normal cases |s|« l and q.k.½ l we may simplify these expressions and
find the following useful formulae:

The natural frequency of the undamped system:

(1.70)

The damping ratio:

(1.71)

The natural frequency:

(1.72)

The influence of parameters has been indicated in Fig.1.13. An arrow pointing
upwards represents an increase of the quantity in the same column of the matrix.

The yaw rate response to a step change in steer angle is typified by the rise
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Fig. 1.14. Step response of yaw rate to steer angle. Parameters according to Table 1.1.
Parameter influence on the rise time tr.

time tr indicated in Fig.1.14 and expressed in terms of the parameters as follows:

(1.73)tr'
rss

Mr

Mt t'0

'

mk 2 V

aC1 l 1% η

g l
V 2

'

mk 2 V

a

l
C1 l 2

% b&a
C1

C2

mV 2

which expression may be readily obtained with the aid of Eqs.(1.46,1.47).
The parameter influence has been indicated in the figure. The results

correspond qualitatively well with the 90% response times found in vehicle
model simulation studies. A remarkable result is that for an understeered
automobile the response time is smaller than for an oversteered car.

Forced Linear Vibrations

The conversion of the equations of motion (1.46) into the standard state space
representation is useful when the linear system properties are the subject of
investigation. The system at hand is of the second order and hence possesses two
state variables for which we choose: v and r. The system is subjected to a single
input signal: the steer angle δ. Various variables may be of interest to analyse the
vehicle’s response to steering input oscillations. The following quantities are
selected to illustrate the method and to study the dynamic behaviour of the
vehicle: the lateral acceleration ay of the centre of gravity of the vehicle, the yaw
rate r and the vehicle slip angle β defined at the centre of gravity. In matrix
notation the equation becomes:
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(1.74)

with

(1.75)

and

(1.76)

The frequency response functions have been computed using Matlab software.
Figure 1.15 presents the amplitude and phase response functions for each of the
three output quantities and at three different values of speed of travel. The values
of the chosen model parameters and a number of characteristic quantities have
been listed in Table 1.1.

Explicit expressions of the frequency response functions in terms of model
parameters are helpful to understand and predict the characteristic aspects of
these functions which may be established by means of computations or possibly
through full scale experiments.

From the differential equation (1.50) the frequency response function is
easily derived. Considering the quantities formulated by (1.70) and (1.71) and
the steady-state response (r/δ)ss =(V/R) /δ obtained from (1.56) we find:

0x '
0v

0r
, u ' δ , y '

ay

r

β

'

0v%Vr

r

&v/V
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Table 1.1.   Parameter values and typifying quantities

parameters                   derived typifying quantities

a 1.4 m l 3 m V [m/s] 20 40 60

b 1.6 m Fz1 8371 N ωo [rad/s] 4.17 2.6 2.21

C1 60000N/rad Fz2 7325 N  ζ   [-] 0.9 0.7 0.57

C2 60000N/rad q 1.503 m ωn [rad/s] 1.8 1.8 1.82

m 1600 kg s -0.1 m  tr   [s] 0.23 0.3 0.27

k 1.5 m η 0.0174 rad   (~1E extra steer / g lateral accel.)

(1.77)

Similarly, the formula for the response of  lateral acceleration ay can be derived:

(1.78)

and for the slip angle β:

(1.79)
By considering Eq.(1.77) it can  now be explained that for instance at higher
frequencies the system exhibits features of a first-order system: because of the
jω term in the numerator the yaw rate amplitude response tends to a decay at a
6dB per octave rate (when plotted in log-log scale) and the phase lag approaches
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Fig. 1.16.  ‘Four-wheel’ steering to make slip angle β = 0 ( Exercise 1.2).

90 degrees. The phase increase at low frequencies and higher speeds is due to the
presence of the speed V in that same term. At speeds beyond approximately the
characteristic speed, the corresponding (last) term in the denominator has less
influence on the initial slope of the phase characteristic. The lateral acceleration
response (1.78) shown in the centre graph of Fig.1.15 gives a finite amplitude at
frequencies tending to infinity because of the presence of ω2 in the numerator.
For the same reason, the phase lag goes back to zero at large frequencies. The
side slip phase response tends to !270 degrees (at larger speeds) which is due to
the negative coefficient of jω in the numerator of (1.79). This in contrast to that
coefficient of the yaw rate response (1.77). 

It is of interest to see that the steady-state slip angle response, indicated in
(1.79), changes sign at a certain speed V. At low speeds where the tyre slip
angles are still very small, the vehicle slip angle obviously is negative for positive
steer angle (considering positive directions as adopted in Fig.1.11). At larger
velocities the tyre slip angles increase and as a result, β changes into the positive
direction.

Exercise 1.2. Four-wheel steer,  condition that the vehicle slip angle vanishes

Consider the vehicle model of Fig.1.16. Both the front and the rear wheels can be
steered. The objective is to have a vehicle moving with a slip angle β remaining equal
to zero. In practice, this may be done to improve handling qualities of the automobile
(reduces to first-order system!) and to avoid excessive side slipping motions of the rear
axle in lane change manoeuvres. Adapt the equations of motion (1.46) and assess the
required relationship between the steer angles δ1 and δ2 . Do this in terms of the
transfer function between δ2 and δ1 and the associated differential equation. Find the
steady-state ratio (δ2 /δ1 )ss and plot this as a function of the speed V. Show also the
frequency response function δ2 /δ1 (jω) for the amplitude and phase at a speed V=30
m/s. Use the vehicle parameters supplied in Table 1.1.
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1.3.3.  Non-Linear Steady-State Cornering Solutions

From Eqs.(1.42) and (1.59) with the same restrictions as stated below Eq.(1.60),
the following force balance equations can be derived (follows also from
Eqs.(1.61)). The effect of the pneumatic trails will be dealt with later on.

(1.80)
Fy1

Fz1

'

Fy2

Fz2

'

ay

g
'

K
mg

Where K =may represents the centrifugal force. The kinematic relationship 

 (1.81)δ& (α1&α2) '
l
R

follows from Eqs.(1.44) and (1.51). In Fig.1.11 the vehicle model has been
depicted in a steady-state cornering manoeuvre. It can easily be observed from
this diagram that relation (1.81) holds approximately when the angles are small.

The ratio of the side force and vertical load as shown in (1.80) plotted as a
function of the slip angle may be termed as the normalised tyre or axle
characteristic. These characteristics subtracted horizontally from each other
produce the ‘handling curve’. Considering the equalities (1.80) the ordinate may
be replaced by ay /g . The resulting diagram with abscissa α1!α2 is the non-linear
version of the right-hand diagram of Fig.1.10 (rotated 90E anti-clockwise). The
diagram may be completed by attaching the graph that shows for a series of
speeds V the relationship between lateral acceleration (in g units) ay /g and the
relative path curvature l/R according to Eq.(1.55).
 Figure 1.17 shows the normalised axle characteristics and the completed
handling diagram. The handling curve consists of a main branch and two side
lobes. The different portions of the curves have been coded to indicate the
corresponding parts of the original normalised axle characteristics they originate
from. Near the origin the system may be approximated by a linear model.
Consequently, the slope of the handling curve in the origin with respect to the
vertical axis is equal to the understeer coefficient η. In contrast to the straight
handling line of the linear system (Fig.1.10), the non-linear system shows a
curved line. The slope changes along the curve which means that the degree of
understeer changes with increasing lateral acceleration. The diagram of Fig.1.17
shows that the vehicle considered changes from understeer to oversteer. We
define:
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km/h and steer angle δ = 0.04 rad. From the different line types the manner in
which the curves are obtained from the upper diagram may be retrieved.

(1.82)

understeer if: Mδ

MV R

> 0

oversteer if: Mδ

MV R

< 0

The family of straight lines represents the relationship between acceleration and
curvature at different levels of speed. The speed line belonging to V= 50km/h has
been indicated (wheel base l= 3m). This line is shifted to the left over a distance
equal to the steer angle δ = 0.04rad and three points of intersection with the
handling curve arise. These points I, II and III indicate the possible equilibrium
conditions at the chosen speed and steer angle. The connected values of the
relative path curvature l/R can be found by going back to the speed line. As will
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Fig. 1.18. A number of handling curves arising from the pairs of normalised tyre characteristics
shown left. Only the main branch of the handling curve has been drawn (1: front, 2:
rear).

be shown further on, only point I refers to a stable cornering motion. In points
II and III (R<0!) the motion is unstable.

At a given speed V, a certain steer angle δ is needed to negotiate a circular
path with given radius R. The steer angle required can be read directly from the
handling diagram. The steer angle needed to negotiate the same curve at very low
speed (V÷0) tends to l/R. This steer angle is denoted with δ0. Consequently, the
abscissa of the handling curve α1!α2 may as well be replaced by δ! δ0. This
opens the possibility to determine the handling curve with the aid of simple
experimental means, i.e. measuring the steering wheel input (reduced to
equivalent road wheel steer angle by means of the steering ratio, which method
automatically includes steering compliance effects) at various speeds running
over the same circular path.

Subtracting normalised characteristics may give rise to very differently
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shaped handling curves only by slightly modifying the original characteristics.
As Fig.1.17 shows, apart from the main branch passing through the origin,
isolated branches may occur. These are associated with at least one of the
decaying ends of the pair of normalised tyre characteristics. 

In Fig.1.18 a set of four possible combinations of axle characteristics have
been depicted together with the resulting handling curves. This collection of
characteristics shows that the nature of steering behaviour is entirely governed
by the normalised axle characteristics and in particular their relative shape with
respect to each other. 

The way in which we can use the handling diagram is presented in Fig.1.19.
The speed of travel may be kept constant and the lateral acceleration is increased
by running over a spiral path with decreasing radius. The required variation of
the steer angle follows from the distance between the handling curve and the
speed line. Similarly we can observe what happens when the path curvature is
kept constant and the speed is increased. Also, the resulting variation of the
curvature at a constant steer angle and increasing speed can be found. More
general cases of quasi steady-state motions may be studied as well.  
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Stability of the Motion at Large Lateral Accelerations

The non-linear set of equations (1.42-44) may be linearised around the point of
operation, that is one of the equilibrium states indicated above. The resulting
second-order differential equation has a structure similar to Eq.(1.64) or (1.47)
but with the variables replaced by their small variations with respect to the
steady-state condition considered. Analysis of the coefficients of the
characteristic equation reveals if stability exists. Also the nature of stability
(monotonous, oscillatory) follows from these coefficients. This is reflected by the
type of singular points (node, spiral, saddle) representing the equilibrium
solutions in the phase plane as treated in the next section.

It now turns out that not only the last coefficient can become negative but
also the second coefficient a1. Instead of the cornering stiffnesses C defined in the
origin of the tyre cornering characteristics, the slope of the normalised
characteristics at a given level of ay /g becomes now of importance. We define

(1.83)

The conditions for stability, that is: second and last coefficient of equation
comparable with Eq.(1.47) must be positive, read after having introduced the
radius of gyration k (k2= I/m):

(1.84)

(1.85)

The subscript V refers to the condition of differentiation with V kept constant,
that is while staying on the speed line of Fig.1.17. The first condition (1.84) may
be violated when we deal with tyre characteristics showing a peak in side force
and a downwards sloping further part of the characteristic. The second condition
corresponds to condition (1.65) for the linear model. Accordingly, instability is
expected to occur beyond the point where the steer angle reaches a maximum
while the speed is kept constant. This, obviously, can only occur in the oversteer
range of operation. In the handling diagram the stability boundary can be
assessed by finding the tangent to the handling curve that runs parallel to the
speed line considered. 

In the upper diagram of Fig.1.20 the stability boundary, that holds for the
right part of the diagram (ay vs l/R), has been drawn for the system of Fig.1.17
that changes from initial understeer to oversteer. In the middle diagram a number
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Fig. 1.20. Construction of stability boundary (upper diagram, from Fig.1.17). On the isolated
branch a stable range may occur (large steer angle as indicated in middle diagram).
The lower diagram shows the case with complete understeer featuring a stable main
branch.

of shifted V-lines, each for a different steer angle δ, has been indicated. In each
case the points of intersection represent possible steady-state solutions. The
highest point represents an unstable solution as the corresponding point on the
speed line lies in the unstable area. When the steer angle is increased the two
points of intersections move towards each other. It turns out that for this type of
handling curve a range of δ values exists without intersections with the positive
half of the curve. The fact that both right-hand turn solutions may vanish has
serious implications which follows from the phase plot. At increased steer angle,
however, new solutions may show up. At first, these solutions appear to be
unstable, but at rather large steer angles of more than about 0.2rad we find again
stable solutions. These occur on the isolated branch where α2 is small and α1 is
large. Apparently, we find that the vehicle that increases its speed while running
at a constant turning radius will first cross the stability boundary and may then
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Fig. 1.21.  Three sets of hypothetical axle cornering characteristics  (Exercise 1.3).

recover its stability by turning the steering wheel to a relatively large angle. In
the diagram the left part of the isolated branch is reached where stable spirals
appear to occur. This phenomenon may correspond to similar experiences in the
racing practice, cf. Jenkinson (1958).

The lower diagram depicts the handling curve for a car that remains
understeered throughout the lateral acceleration range. Everywhere the steady-
state cornering motion remains stable. Up to the maximum of the curve the
tangents slope to the left and cannot run parallel to a speed line. Beyond the
peak, however, we can find a speed line parallel to the tangent, but at the same
time one of the slopes (Φ1) of the normalised axle characteristics starts to show
a negative sign so that condition (1.85) is still satisfied. Similarly, the limit
oversteer vehicle of the upper graph remains unstable beyond the peak. On the
isolated part of the handling curve of the lower diagram the motion remains
unstable. It will be clear that the isolated branches vanish when we deal with axle
characteristics that do not show a peak and decaying part of the curve.

It may seem that the establishment of unstable solutions has no particular
value. It will become clear, however, that the existence and the location of both
stable and unstable singular points play an important role in shaping the
trajectories in the phase-plane. Also, the nature of stability or instability in the
singular points are of importance.

Exercise 1.3. Construction of the complete handling diagram from pairs of axle
characteristics
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We consider three sets of hypothetical axle characteristics (a, b and c) shown in the
graph of Fig.1.21. The dimensions of the vehicle model are: a = b = ½l = 1.5 m. For
the tyres we may employ axle characteristics described by the Magic Formula (1.6):

Fy = D sin[C arctan{Bα !E(Bα !arctan(Bα))}]      

We define: the peak side force D =:Fz and the cornering stiffness CFα=BCD= cFαFz

so that B = cFα /(Cµ). For the six tyre/axle configurations the parameter values have
been given in the table below.

 axle  case    µ    cFα  C E

 front
 a, b   0.8     8    1.2    !2

 c   0.78     8    1.3    !2

 rear

 a   0.9    11    1.2    !2

 b   0.9     6    1.2    !2

 c   0.65    11    1.5    !1

Determine for each of the three combinations (two dry, one wet):

1. The handling curve (cf. Fig. 1.17).
2. The complete handling diagram (cf. Fig. 1.17).
3. The portion of the curves where the vehicle shows an oversteer nature.
4. The stability boundary (associated with these oversteer ranges) in the (ay /g versus

l/R) diagram (= right-hand side of the handling diagram) (cf. Fig.1.20).
5. Indicate in the diagram (or in a separate graph):

a. the course of the steer angle δ required to negotiate a curve with radius R = 60m
as a function of the speed V. If applicable, indicate the stability boundary, that
is the critical speed Vcrit , belonging to this radius.

b. the course of steer angle δ as a function of relative path curvature l/R at a fixed
speed V = 72 km/h and if applicable assess the critical radius Rcrit.

For the vehicle systems considered so far a unique handling curve appears to
suffice to describe the steady-state turning behaviour. Cases may occur,
however, where more curves are needed, one for each velocity. A simple example
is the situation when the car runs over a wet surface where the tyre
characteristics change considerably with speed. Also, as a result of the down
forces acting on e.g. the body of a racing car, the tyre loads increase with speed.
Consequently, the tyre characteristics change accordingly which requires an
adaptation of the handling curve. 

A more difficult and fundamentally different situation occurs when the vehicle
is equipped with a third axle. Also in this case multiple handling curves arise. A
tandem rear axle configuration of a heavy truck for example, strongly opposes
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movement along a curved track. The slip angles of the two rear axles are
different so that a counteracting torque arises. This torque gets larger when the
turning radius becomes smaller. This may for instance occur at a given level of
lateral acceleration. When at this level the speed becomes lower, the curvature
must become larger and the opposing torque will increase which entails an
increased front steer angle to generate a larger side force needed to balance the
vehicle. This increased steer angle goes on top of the steer angle which was
already larger because of the increased l/R. Here, l is the average wheel base.
Consequently, in the handling diagram, the points on the handling curve
belonging to the lower speed lie more to the left. For a detailed study on this
special subject we refer to Winkler (1998).

Assessment of the Influence of the Pneumatic Trail on the Handling Curve

So far the direct influence of the pneumatic trails have not been taken into
account. As with the linear analysis we may do this by considering the effective
axle positions

      and      (1.86)a''a&t1 , b''b%t2 l''a'%b'

The difficulty we have to face now is the fact that these pneumatic trails ti will
vary with the respective slip angles. We have if the residual torques are
neglected:

(1.87)

Introducing the effective axle loads

(1.88)

yields for the lateral force balance instead of (1.80):

(1.89)

or after some rearrangements:

(1.90)

with

(1.91)
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The corrected normalised side force characteristics as indicated in (1.90) can be
computed beforehand and drawn as functions of the slip angles and the normal
procedure to assess the handling curve can be followed. This can be done by
taking the very good approximation Q =1 or we might select a level of Qay /g
then assess the values of the slip angles that belong to that level of the corrected
normalised side forces and compute Q according to (1.91) and from that the
correct value of ay /g.

Large Deviations with Respect to the Steady-State Motion

The variables r and v may be considered as the two state variables of the second-
order non-linear system represented by the equations (1.42). Through computer
numerical integration the response to a given arbitrary variation of the steer
angle can be easily obtained. For motions with constant steer angle δ (possibly
after a step change), the system is autonomous and the phase-plane represent-
ation may be used to find the solution. For that, we proceed by eliminating the
time from Eqs.(1.42). The result is a first-order non-linear equation (using k 2 =
I/m):

(1.92)

Since Fy1 and Fy2 are functions of α1 and α2 it may be easier to take α1 and α2 as
the state variables. With (1.44) we obtain:

(1.93)

which becomes with (1.92):

(1.94)

For the sake of simplicity we have assumed I/m= k2 = ab.
By using Eq.(1.94) the trajectories (solution curves) can be constructed in the

(α1,α2) plane. The isocline method turns out to be straightforward and simple to
employ. The pattern of the trajectories is strongly influenced by the so-called
singular points. In these points the motion finds an equilibrium. In the singular
points the motion is stationary and consequently, the differentials of the state
variables vanish.

From the handling diagram K/mg and l/R are readily obtained for given
combinations of V and δ. Used in combination with the normalised tyre
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characteristics  Fy1 /Fz1 and Fy2 /Fz2 the values of α1 and α2 are found, which form
the coordinates of the singular points. The manner in which a stable turn is
approached and from what collection of initial conditions such a motion can or
cannot be attained may be studied in the phase-plane. One of the more interesting
results of such an investigation is the determination of the boundaries of the
domain of attraction in case such a domain with finite dimensions exists. The
size of the domain may give indications as to the so-called stability in the large.
In other words the question may be answered: does the vehicle return to its
original steady-state condition after a disturbance and to what degree does this
depend on the magnitude and point of application of the disturbance impulse?

For the construction of the trajectories we draw isoclines in the (α1,α2) plane.
These isoclines are governed by Eq.(1.94) with slope dα2 /dα1 kept constant. The
following three isoclines may already provide sufficient information to draw
estimated courses of the trajectories. We have for k2 = ab:

vertical intercepts  (dα2 /dα1 ÷4):

(1.95)

horizontal intercepts  (dα2 /dα1 ÷0):

(1.96)

intercepts under 45o  (dα2 /dα1 = 1):

(1.97)

Figure 1.22 illustrates the way these isoclines are constructed. The system of
Fig.1.17 with k=a=b, δ= 0.04 rad and V= 50 km/h has been considered. Note,
that the normalised tyre characteristics appear in the left-hand diagram for the
construction of the isoclines. The three points of intersection of the isoclines are
the singular points. They correspond to the points I, II and III of Fig.1.17. The
stable point is a focus (spiral) point with a complex pair of solutions of the
characteristic equation with a negative real part. The two unstable points are of
the saddle type corresponding to a real pair of solutions, one of which is positive.
The direction in which the motion follows the trajectories is still a question to be
examined. Also for this purpose the alternative set of axes with r and v as
coordinates (multiplied with a factor) has been introduced in the diagram after
using the relations (1.44).
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Fig. 1.22. Isoclines for the construction of trajectories in the phase-plane. Also shown: the three
singular points I, II and III (cf. Fig.1.17) and the separatrices constituting the
boundary of the domain of attraction. Point I represents the stable cornering motion
at steer angle δ.

From the original equations (1.42) it can be found that the isocline (1.97)
forms the boundary between areas with  rs > 0 and  rs < 0 (indicated in Fig.1.22).
Now it is easy to ascertain the direction along the trajectories. We note that the
system exhibits a bounded domain of attraction. The boundaries are called
separatrices. Once outside the domain, the motion finds itself in an unstable
situation. Remains the disturbance limited so that resulting initial conditions of
the state variables stay within the boundaries, then ultimately the steady-state
condition is reached again.

For systems with normalized characteristics showing everywhere a positive
slope, a handling curve arises that consists of only the main branch through the
origin. If the rear axle characteristic (at least in the end) is  higher than the front
axle characteristic, the vehicle will show (at least in the limit) an understeer
nature and unstable singular points cannot occur. This at least if for the case of
initial oversteer the speed remains under the critical speed. In such cases, the
domain of attraction is theoretically unbounded so that for all initial conditions
ultimately the stable equilibrium is attained. The domain of Fig.1.22 appears to
be open on two sides which means that initial conditions, in a certain range of
(r/v) values, do not require to be limited in order to reach the stable point.
Obviously, disturbance impulses acting in front of the centre of gravity may give
rise to such combinations of initial conditions. 

In Figs.1.23 and 1.24 the influence of an increase in steer angle δ on the
stability margin (distance between stable point and separatrix) has been shown
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for the two vehicles considered in Fig.1.20. The system of Fig.1.23 is clearly
much more sensitive. An increase in δ (but also an increase in speed V) reduces
the stability margin until it is totally vanished as soon as the two singular points
merge (also the corresponding points I and II on the handling curve of Fig.1.17)
and the domain breaks open. As a result, all trajectories starting above the lower
separatrix tend to leave the area. This can only be stopped by either quickly
reducing the steer angle or enlarging δ to around 0.2rad or more. The latter
situation appears to be stable again (focus) as has been stated before. For the
understeered vehicle of Fig.1.24 stability is practically always ensured.

For a further appreciation of the phase diagram it is of interest to determine
the new initial state (ro, vo) after the action of a lateral impulse to the vehicle (cf.
Fig.1.25). For an impulse S acting at a distance x in front of the centre of gravity
the increase in r and v becomes:

(1.98)

which results in the direction

(1.99)
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Fig. 1.26.  The automobile subjected to longitudinal forces and the resulting load transfer.

The figure shows the change in state vector for different points of application
and direction of the impulse S (k2 = I/m= ab). Evidently, an impulse acting at the
rear (in outward direction) constitutes the most dangerous disturbance. On the
other hand, an impulse acting in front of the centre of gravity about half way
from the front axle does not appear to be able to get the new starting point
outside of the domain of attraction no matter the intensity of the impulse.

When the slip angles become larger, the forward speed u may no longer be
considered as a constant quantity. Then, the system is described by a third-order
set of equations. In the paper (Pacejka 1986) the solutions for the simple
automobile model have been presented also for yaw angles > 90E.

1.3.4.  The Vehicle at Braking or Driving

When the vehicle is subjected to longitudinal forces that may result from braking
or driving actions possibly to compensate for longitudinal wind drag forces or
down or upward slopes, fore and aft load transfer will arise (Fig.1.26). The
resulting change in tyre normal loads causes the cornering stiffnesses and the
peak side forces of the front and rear axles to change. Since, as we assume here,
the fore and aft position of the centre of gravity is not affected (no relative car
body motion), we may expect a change in handling behaviour indicated by a rise
or drop of the understeer gradient. In addition, the longitudinal driving or braking
forces give rise to a state of combined slip, thereby affecting the side force in a
way as shown in Fig.1.2. 

For moderate driving or braking forces the influence of these forces on the
side force Fy is relatively small and may be neglected for this occasion. This
means that, for now, the cornering stiffness may be considered to be dependent
on the normal load only. The upper left diagram of Fig.1.3 depicts typical
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variations of the cornering stiffness with vertical load.  
The load transfer from the rear axle to the front axle that results from a

forward longitudinal force FL acting at the centre of gravity at a height h above
the road surface (FL possibly corresponding to the inertial force at braking)
becomes:

(1.100)

The understeer gradient reads according to Eq.(1.60):

(1.101)

The static axle loads Fzio (i=1 or 2) are calculated according to Eq.(1.59), while
the actual loads Fzi front and rear become:

(1.102)

At moderate braking with deceleration !ax = FL /m the load transfer remains
small and we may use the linearised approximation of the variation of cornering
stiffness with vertical load:

(1.103)

The understeer gradient (1.101) can now be expressed in terms of the
longitudinal acceleration ax (which might be: minus the forward component of
the acceleration due to gravity parallel to the road). We obtain:

(1.104)

with the determining factor λ approximately expressed as:

(1.105)

and ηo denoting the original value not including the effect of longitudinal forces.
Obviously, since ζ

α1,2 is usually positive, negative longitudinal accelerations ax,
corresponding to braking, will result in a decrease of the degree of understeer.

To illustrate the magnitude of the effect we use the parameter values given
in Table 1.1 (above Eq.(1.77)) and add the c.g. height h=0.6m and the cornering
stiffness versus load gradients ζ

αi = 0.5Cio/Fzio. The resulting factor appears to
take the value λ = 0.052. This constitutes an increase of η equal to 0.052ax/g.
Apparently, the effect of ax on the understeer gradient is considerable when
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regarding the original value ηo = 0.0174. 
As illustrated by Fig.1.9 the peak side force will be diminished if a

longitudinal driving or braking force is transmitted by the tyre. This will have an
impact on the resulting handling diagram in the higher range of lateral
acceleration. The resulting situation may be represented by the second and third
diagrams of Fig.1.18 corresponding to braking (or driving) at the front or rear
respectively. The problem becomes considerably more complex when we realise
that at the front wheels the components of the longitudinal forces perpendicular
to the xaxis of the vehicle are to be taken into account. Obviously, we find that
at braking of the front wheels these components will counteract the cornering
effect of the side forces and thus will make the car more understeer. The opposite
occurs when these wheels are driven (more oversteer). For a more elaborate
discussion on this item we may refer to Pacejka (1973b).

At hard braking, possibly up to wheel lock, stability and steerability may
deteriorate severely. This more complex situation will be discussed  in Chapter
3 where more information on the behaviour of tyres at combined slip is given.

1.3.5.  The Moment Method

Possible steady-state cornering conditions, stable or unstable, have been
portrayed in the handling diagram of Fig.1.17. In Fig.1.22 motions tending to or
departing from these steady-state conditions have been depicted. These motions
are considered to occur after a sudden change in steer angle. The potential
available to deviate from the steady turn depends on the margin of the front and
rear side forces to increase in magnitude. For each point on the handling curve
it is possible to assess the degree of manoeuvrability in terms of the moment that
can be generated by the tyre side forces about the vehicle centre of gravity. Note
that at the steady-state equilibrium condition the tyre side forces are balanced
with the centrifugal force and the moment equals zero.

In general, the handling curve holds for a given speed of travel. That is so,
when e.g. the aerodynamic down forces are essential in the analysis. In Fig.1.27
a diagram has been presented that is designated as the MMM diagram (the
Milliken Moment Method diagram) and is computed for a speed of 60 mph. The
force-moment concept was originally proposed by W.F.Milliken in 1952 and
thereafter continuously further developed by the Cornell Aeronautical
Laboratory staff and by Milliken Research Associates. A detailed description is
given in Milliken’s book (1995). 

The graph shows curves of the resulting tyre moment N vs the resulting tyre
side force Y in non-dimensional form. The resulting force and moment result
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Fig. 1.27. The MMM diagram portraying the car’s potential manoeuvring capacity. 

from the individual side forces and act from ground to vehicle. For greater
accuracy, one may take the effect of the pneumatic trails into consideration. Two
sets of curves have been plotted: one set for constant values of the vehicle side
slip angle β with the steering wheel angle δstw as parameter and the other set for
contant steer angle and varying slip angle. Along the horizontal axis the moment
is zero and we have the steady-state equilibrium cornering situation that
corresponds with the handling curve. It is observed that for the constant speed
considered in the diagram, the steer angle increases when the total side force Y
or lateral acceleration ay is chosen larger which indicates that the motion remains
stable. At the limit (near number 2) the maximum steady-state lateral
acceleration is attained. At that point the ability to generate a positive moment
is exhausted. Only a negative moment may still be developed by the car that
tends to straighten the curve that is being negotiated. As we have seen in
Fig.1.18, second diagram,  there is still some side force margin at the rear tyre
which can be used to increase the lateral acceleration in a transient fashion. At
the same time, however, the car yaws outwards because the associated moment
is negative (cf. diagram near number 8). How to get at points below the
equilibrium point near the number 2 is a problem. Rear wheel steering is an
obvious theoretical option. In that way, the vehicle slip angle β and front steer
angle δ can remain unchanged while the rear steer angle produce the desired rear
tyre slip angle. Of course, the diagram needs to be adapted in case of rear wheel
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Fig. 1.28.  The MTS Flat-Trac Roadway SimulatorTM, Milliken (1995). 

steering. Another more practical solution would be to bring the vehicle in the
desired attitude (β68E) by briefly inducing large brake or drive slip at the rear
that lowers the cornering force and lets the car swing to the desired slip angle
while at the same time the steering wheel is turned backwards to even negative
values.

The MMM diagram, which is actually a Gough plot (for a single tyre, cf.
Figs.3.5 and 3.29) established for the whole car at different steer angles, may be
assessed experimentally either through outdoor or indoor experiments. On the
proving ground a vehicle may be attached at the side of a heavy truck or railway
vehicle and set at different slip angles while the force and moment are being
measured (tethered testing), cf. Milliken (1995). Figure 1.28 depicts the
remarkable laboratory MMM test machine. This MTS Flat-Trac Roadway
SimulatorTM uses four flat belts which can be steered and driven independently.
The car is constrained in its centre of gravity but is free to roll and pitch.

1.3.6.  The Car-Trailer Combination

In this section we will discuss the role of the tyre in connection with the dynamic
behaviour of a car that tows a trailer. More specifically, we will study the
possible unstable motions that may show up with such a combination. Linear
differential equations are sufficient to analyse the stability of the straight ahead
motion. We will again employ Lagrange’s equations to set up the equations of
motion. The  original equations (1.25) may be employed because the yaw angle
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Fig. 1.29.  Single track model of car trailer combination.

is assumed to remain small. The generalised coordinates Y, ψ and θ are used to
describe the car’s lateral position and the yaw angles of car and trailer
respectively. The forward speed dX/dt (.V . u) is considered to be constant.
Figure 1.29 gives a top view of the system with three degrees of freedom. The
alternative set of three variables v, r and the articulation angle n and the vehicle
velocity V (a parameter) which are not connected to the inertial axes system (0,
X, Y ) has been indicated as well and will be employed later on. The kinetic
energy for this system becomes, if we neglect all the terms of the second order
of magnitude (products of variables):

(1.106)

The potential energy remains zero:

(1.107)

and the virtual work done by the external road contact forces acting on the three
axles reads:

(1.108)

With the use of the equations (1.25) and (1.29) the following equations of motion
are established for the generalised coordinates Y, ψ and θ :

 (1.109)(m % mc ) Ÿ & mc ( hψ̈% f θ̈ ) ' Fy1% Fy2% Fy3

 (1.110)(Ic%mc f 2 )θ̈&mc f ( Ÿ&hψ̈ ) ' &gFy3

(1.111)( I%mc h 2 )ψ̈&mc h ( Ÿ& f θ̈ ) ' aFy1& bFy2& hFy3

This constitutes a system of the sixth order. By introducing the velocities v and
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r the order can be reduced to four. In addition, the angle of articulation n will
be used. We have the relations:

(1.112)0Y ' Vψ%v , ψ0 ' r , θ ' ψ&n

and with these the equations for v, r and n :

(1.113)

(1.114)

(1.115)

The right-hand members are still to be expressed in terms of the motion
variables. With the axle cornering stiffnesses C1, C2 and C3 we have:

(1.116)

From the resulting set of linear differential equations the characteristic equation
may be derived which is of the fourth degree. Its general structure is:

(1.117)

The stability of the system can be investigated by considering the real parts of
the roots of this equation or we might employ the criterium for stability
according to Routh-Hurwitz. According to this criterium, the system of order n
is stable when all the coefficients ai are positive and the Hurwitz determinants
Hn-1, Hn-3 etc. are positive. For our fourth-order system the complete criterium for
stability reads:

(1.118)

In Fig.1.30, the boundaries of stability have been presented in the caravan axle
cornering stiffness vs speed parameter plane. The three curves belong to the

(m%mc ) ( 0v%Vr)&mc {(h% f ) 0r& f n̈} ' Fy1% Fy2% Fy3

{ I%mc h (h% f ) } 0r&mc h ( 0v%Vr% f n̈ ) ' aFy1& bFy2& hFy3
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Fig. 1.30. Stability boundaries for the car caravan combination in the caravan cornering stiffness
vs critical speed diagram. Vehicle parameters according to Table 1.1, in addition: 

h = 2m, g= 2m, kc= 1.5m  (Ic=mckc
2 ),   cf. Fig.1.29.

three different sets of parameters for the position f of the caravan’s centre of
gravity and the caravan’s mass mc as indicated in the figure. An important result
is that a lower cornering stiffness promotes oscillatory instability: the critical
speed beyond which instability occurs decreases. Furthermore, it appears from
the diagram that moving the caravan’s centre of gravity forward ( f smaller)
stabilises the system which is reflected by the larger critical speed. A heavier
caravan (mc larger) appears to be bad for stability. Furthermore, it has been
found that a larger draw bar length g is favourable for stability. 

It turns out that a second type of instability may show up. This occurs when
the portion of the weight of the caravan supported by the coupling point becomes
too large. This extra weight is felt by the towing vehicle and makes it more
oversteer. The critical speed associated with this phenomenon is indicated in the
diagram by the vertical lines. This divergent instability occurs when (starting out
from a stable condition) the last coefficient becomes negative, that is an =a4 <0.

The oscillatory instability connected with the ‘snaking’ phenomenon arises
as soon as (from a stable condition) the second highest Hurwitz determinant
becomes negative, Hn-1 =H3 <0 (then also Hn <0), cf. Klotter (1960) or Leipholz
(1987). When the critical speed is surpassed self-excited oscillations are created
which shows an amplitude that in the actual non-linear case does not appear to
limit itself. This is in contrast to the case of the wheel shimmy phenomenon to
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Fig. 1.31.  On the stability of a trailer (Exercise 1.4).

be treated in Chapter 5 where a stable limited oscillation appears to arise. The
cause of the unlimited snaking oscillation is that with increasing amplitudes also
the slip angle increases which lowers the average cornering stiffness as a
consequence of the degressively non-linear cornering force characteristic. From
the diagram we found that this will make the situation increasingly worse. As has
been seen from full vehicle/caravan model simulations, the whole combination
will finally overturn. Another effect of this reduction of the average cornering
stiffness is that when the vehicle moves at a speed lower than the critical speed,
the originally stable straight ahead motion may become unstable if through the
action of an external disturbance (side wind gust) the slip angle of the caravan
axle becomes too large (surpassing of the associated unstable limit-cycle). This
is an unfortunate, possibly dangerous situation! We refer to Troger and Zeman
(1984) for further details.

Exercise 1.4.  Stability of a trailer    

Consider the trailer of Fig.1.31 that is towed by a heavy steadily  moving vehicle at a
forward speed V along a straight line. The trailer is connected to the vehicle by means
of a hinge. The attachment point shows a lateral flexibility that is represented by the
lateral spring with stiffness cy. Furthermore, a yaw torsional spring and damper are
provided with coefficients cn and kn .

Derive the equations of motion of this system with generalised coordinates y and
n. Assume small displacements so that the equations can be kept linear. The damping
couple kn sn  may be considered as an external moment acting on the trailer or we may
use the dissipation function D = ½ kn sn

 2 and add  to the left-hand side of%MD/M 0qi
Lagrange’s equation (1.25). Obviously, the introduction of this extra term will be
beneficial particularly when the system to be modelled is more complex.  

Assess the condition for stability for this fourth-order system. Simplify the system
by putting g = f and cn = kn = 0. Now find the explicit conditional statement for the
cornering stiffness C.
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1.3.7.  Vehicle Dynamics at More Complex Tyre Slip Conditions

So far, relatively simple vehicle dynamics problems have been studied in which
the basic steady-state cornering force versus slip angle characteristic plays the
dominant role. The situation becomes more complex when matters like combined
slip at hard braking, wheel camber, tyre transient and vibrational properties and
e.g. obstacle crossings are to be considered.

In the subsequent chapters tyre performance and modelling will be treated in
greater detail which enables us to introduce relevant tyre properties in the
analysis. The following specific subjects will be studied as applications of the
tyre modelling theory:

• Vehicle stability at excessive braking and wheel lock (Chapter 3)
• Motorcycle steady-state cornering (Chapter 11)
• Wheel shimmy (Chapter 6)
• Steering vibrations (Chapter 8)
• Motorcycle weave and wobble (Chapter 11)
• Tyre out-of-roundness (Chapter 8)
• Cornering on uneven roads (Chapters 5,8)
• ABS on uneven roads (Chapter 8)
• Traversing short obstacles (Chapter 10)
• Parking (Chapter 9)



Chapter 2

BASIC TYRE MODELLING
CONSIDERATIONS 

2.1.  Introduction

The performance of a tyre as a force and moment generating structure is a result
of a combination of several aspects. Factors which concern the primary tasks of
the tyre may be distinguished from factors which involve (often important)
secondary effects.

In Table 2.1 these factors are presented in matrix form. A further distinction
is made between (quasi) steady-state and vibratory behaviour and, additionally,
between symmetric (or in-plane) and anti-symmetric (or out-of-plane) aspects.
The primary task factors appear in bold letters. The remaining factors are
considered as secondary factors.

The primary requirements to transmit forces in the three perpendicular
directions (Fx, Fy, Fz) and to cushion the vehicle against road irregularities
involve secondary factors like lateral and longitudinal distortions and slip.
Although regarded as secondary phenomena, some of the quantities involved are
crucial for the generation of the deformations and the associated forces and will

Table 2.1.  Tyre factors

primary task functions   and   secondary effects

      (quasi) steady-state    ]    transient/vibratory state

symmetric
(in-plane)

load carrying
braking/driving
rolling resistance

radial deflection
tangential slip
and distortion

cushioning
dynamic coupling
natural vibrations

   anti-
symmetric
(out-of-plane)

cornering
pneumatic trail
overturning couple

lateral and
spin/turn slip
and distortion

phase lag
destabilisation
natural vibrations
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ψ    radial deflection

ω     longitudinal slip
κ   speed of revolution

σ     lateral slip angle
β     spin, turnslip

λ   camber angle

F normal load

F longitudinal force

F cornering (side) force

M rolling resist. moment

M (self) aligning torque

M overturning couple

z

z

x

y

y

x

input vector output vector

Fig. 2.1.  Input/output quantities (road surface considered flat).

be treated as input variables into the system. Figure 2.1 presents the ‘vectors’ of
input and output components. In this diagram the tyre is assumed to be uniform
and to move over a flat road surface. The input vector stems from motions of the
wheel relative to the road. A precise definition of these input quantities is given
in the next section.

For small deviations from the straight ahead motion a linear description of the
behaviour may be given. Then, it is advantageous to recognise the fact that the
responses to the symmetric and anti-symmetric motions of the assumedly
symmetric wheel-tyre system can be considered as uncoupled. Figure 2.2 shows
the separate function blocks with the input and output quantities. Here we have
also considered the possibility of input from variations in road surface geometry
and from tyre non-uniformities resulting in e.g. out-of-roundness, stiffness
variations and ‘built-in’ forces.

The forces and moments are considered as output quantities. It is sometimes
beneficial to assume these forces to act on a rigid disc with inertial properties
equal to those of the tyre when considered rigid. These forces may differ from
the forces acting between road and tyre because of the dynamic forces acting on
the tyre when vibrating relative to the wheel rim. The motions of the wheel rim
and the profile of the road, represented by its height w and its forward and
transverse slope at or near the contact centre, are regarded as input quantities to
the tyre. Braking and driving torques Ma are considered to act on the rotating
wheel inertia Iw. For the freely rolling tyre (then, by definition Ma = 0), the wheel
angular motion about the spindle axis is governed by only the internal moment
Mη acting between rim and tyre. The five motion components of the wheel spin
axis may then remain to serve as input vector.

The discussion on the force generation and dynamic properties of the tyre will
be conducted along the two main lines: symmetric and anti-symmetric behaviour.
Interaction between these main groups of input motions complicates the situation
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Fig. 2.2. Wheel axle motion and road surface coordinates and possibly uncoupled tyre system
blocks valid for small deviations from the steady-state straight ahead motion.

(combined slip). These interactions become important if at least one of the input
motions, or more precisely, one of the associated slip components becomes
relatively large. Because of its relative simplicity, the steady-state behaviour will
be treated first (Chapter 3). The discussion on tyre dynamic behaviour starts in
Chapter 5.

2.2.  Definition of Tyre Input Quantities

If the problem which is going to be investigated involves road irregularities, then
the location and the orientation of the stub axle (spindle axis) must be known
with respect to the specific irregularity met on the road. The road surface is de-
fined with respect to a coordinate system of axes attached to the road. If the
position and orientation of the axle is known with respect to the fixed triad then
the exact position of the wheel with respect to the possibly irregular road surface
can be determined. This relative position and orientation of the wheel with
respect to the road is important to derive the radial tyre deflection and the
relative attitude (camber) and to assess the current value of the friction
coefficient which may vary due to e.g. slippery spots  or non-homogeneous
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surface  conditions (grooves). The time rate of change of this relative position is
needed not only for possible hysteresis effects but mainly for the determination
of the so-called ‘slip’ of the wheel with respect to the ground.

If the road surface near the contact patch can be approximated by a flat plane
(that is, when the smallest considered wavelength of the decomposed surface
vertical profile is large with respect to the contact length and its amplitude small)
the distance of the wheel centre to the road plane and the angle between wheel
plane and the normal to the road surface will suffice in addition to the several
slip quantities and the running speed of the wheel.

For the definition of the various motion and position input quantities listed in
Fig.2.1, it is helpful to consider Fig.2.3. A number of planes have been drawn.
The road plane and the wheel-centre-plane (with line of intersection along the
unit vector l) and two planes normal to the road plane, one of which contains the
vector l and the other the unit vector s which is defined along the wheel spin axis.
From the figure follows the definition of the contact centre C also designated as
the point of intersection (of the three planes). The unit vector t lies in the road
plane and is directed perpendicular to l. Vector r forms the connection between
wheel centre A and contact centre C. Its length, r, is defined as the loaded radius
of the tyre. The position and attitude of the wheel with respect to the inertial triad
is completely described by the vectors b + a and s.The road plane is defined at
the contact centre by the position vector of that point c and the normal to the
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road in that point represented by the unit vector n (positive upwards). Figure 2.3
also shows two systems of axes (besides the inertial triad). Firstly, we have
introduced the road contact axes system (C, x, y, z) of which the x-axis points
forwards along the line of intersection (l), the z-axis points downwards normal
to the road plane (-n) and the y-axis points to the right along the transverse unit
vector t. Secondly, the wheel axle system of axes (A, ξ, η, ζ ) has been defined
with the ξ axis parallel to the x axis, the η axis along the wheel spindle axis (s)
and the ζ axis along the radius (r).

Sign conventions in the literature are not uniform. For the sake of
convenience and to reduce sources of making errors, we have chosen a sign
convention that avoids working with negative quantities as much as possible.

The radial deflection of the tyre ρ is defined as the reduction of the tyre radius
from the unloaded situation rf to the loaded case r:

ρ = rf ! r (2.1)

For positive ρ the wheel load Fz (positive upwards) is positive as well.
The tangential or longitudinal slip κ requires deeper analysis. For the sake of

properly defining the longitudinal slip, the so-called slip point S is introduced.
This point is thought to be attached to the rim or wheel body at a radius equal
to the slip radius rs and forms the centre of rotation when the wheel rolls at
longitudinal slip equal to zero. The slip radius is the radius of the slip circle. At
vanishing longitudinal slip, this slip circle rolls purely over an imaginary surface
parallel to the road plane. The length of the slip radius depends on the definition
of longitudinal slip that is adopted. A straight forward definition would be to
make the slip radius equal to the loaded wheel radius. This, however, would
already lead to a considerable magnitude of the longitudinal force Fx that would
be generated at longitudinal slip equal to zero. A more convenient and physically
proper definition corresponds to the situation that Fx=0 at zero longitudinal slip.
Because of the occurrence of rolling resistance, measurements of tyre charact-
eristics would then require the application of a driving torque to reach the
condition of slip equal to zero! This may become of importance especially when
experiments are conducted at large camber angles where the drag may become
considerable (motorcycle tyres). An alternative, often used definition takes the
effective rolling radius re defined at free rolling (Ma = 0), as the slip radius.
Under normal conditions, the resulting Fx vs κ diagrams according to the latter
two definitions are very close. A small horizontal shift of the curves is
sufficiently accurate to change from one definition to the other. The drawback
of the last definition is that when testing on very low friction (icy) surfaces, the
rolling resistance may be too large to let the wheel rotate without the application
of a driving torque. Consequently, the state of free rolling cannot be realised
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Fig. 2.4.  Effective rolling radius and longitudinal slip velocity.

under these conditions. Nevertheless, we will adopt the last definition where rs

= re and consequently, point S is located at a distance re from the wheel centre.
Figure 2.4 depicts this configuration.

According to this definition we will have the situation that when a wheel rolls
freely (that is: at Ma = 0) at constant speed over a flat even road surface, the
longitudinal slip κ  is equal to zero. This  notwithstanding the fact that at free
rolling some fore and aft deformations will occur because of the presence of
hysteresis in the tyre that generates a rolling resistance moment My . Through this
a rolling resistance force Fr = My /r arises which necessarily is accompanied by
tangential deformations. We may agree that at the instant of observation, point
S, that lies on the slip circle and is attached to the wheel rim, has reached its
lowest position, that is: on the line along the radius vector r. At free rolling, its
velocity has then become equal to zero and point S has become the centre of
rotation of the motion of the wheel rim. We have at free rolling on a flat road for
a wheel in upright position (γ = 0) and/or without wheel yaw rate ( = 0), cf.ψ0

Fig.2.3, a velocity of the wheel centre in forward (x or ξ ) direction:

(2.2)

with Ω denoting the speed of revolution of the wheel body to be defined
hereafter. By using this relationship, the value of the effective rolling radius can
be assessed from an experiment. The forward speed and the wheel speed of
revolution are both measured while the wheel axle is moved along a straight line
over a flat road. Division of both quantities leads to the value of re. The effective
rolling radius will be a function of the normal load and the speed of travel. We
may possibly have to take into account the dependency on the camber angle and
the slip angle.  
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Vsx ' Vx & Ω re

κ ' &

Vsx

Vx

κ ' &

Vx&Ω re

Vx

Vr ' reΩr

If at braking or driving the longitudinal slip is no longer zero, point S will
move with a longitudinal slip speed Vsx which differs from zero. We obviously
obtain if again  = 0:γψ0

(2.3)

The longitudinal slip (sometimes called the slip ratio) is denoted by κ and may
be tentatively defined as the ratio of longitudinal slip velocity !Vsx of point S and
the forward speed of the wheel centre Vx :

(2.4)

or with (2.3):

(2.5)

This again holds for a wheel on a flat road and with  = 0. A more general andγψ0

precise definition of κ will be given later on. The sign of the longitudinal slip κ
has been chosen such that at driving, when Fx > 0,  κ is positive and at braking,
when Fx < 0, κ is negative. When the wheel is locked (Ω = 0) we obviously have
κ = !1. In the literature, the symbol s (or S) is more commonly used to denote
the slip ratio.

The angular speed of rolling Ωr more precisely defined for the case of moving
over undulated road surfaces, is the time rate of change of the angle between the
radius connecting S and A (this radius is thought to be attached to the wheel) and
the radius r defined in Fig.2.3 (always lying in the plane normal to the road
through the wheel spin axis). Figure 2.5 illustrates the situation.

The linear speed of rolling Vr is defined as the velocity with which an
imaginary point C* that is positioned on the line along the radius vector r and
coincides with point S at the instant of observation, moves forward (in x
direction) with respect to point S that is fixed to the wheel rim:

(2.6)

For a tyre freely rolling over a flat road we have: Ωr =Ω and with  = 0 inγψ0

addition: Vr = Vx. Note, that at wheel lock (Ω = 0) the angular speed of rolling
Ωr is not equal to zero when the wheel moves over a road with a curved vertical
profile (then not always the same point of the wheel is in contact with the road).
For a cambered wheel showing a yaw rate , pure rolling can occur on a flatψ0

road even when the speed of the wheel centre Vx = 0. In that case a linear speed
of rolling arises that is equal to Vr = sinγ and consequently an angular speedreψ0
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Fig. 2.5.  Rolling and slipping of a tyre over an undulated road surface.

of rolling Ωr = sinγ.ψ0

In the normal case of an approximately horizontal road surface, the wheel
speed of revolution Ω may be defined as the angular speed of the wheel body
(rim) seen with respect to a vertical plane that passes through the wheel spindle
axis. On a flat level road, the angular speed of rolling Ωr and the speed of
revolution of the wheel Ω are equal to each other. The absolute speed of rotation
of the wheel about the spindle axis ωη will be different from !Ω when the wheel
is cambered and a yaw rate occurs of the plane through the spindle axis and
normal to the road about the normal to the road. Then (cf. Fig. 2.6)

(2.7)

This equation forms a correct basis for a general definition of Ω also on non-
level road surfaces. Its computation is straight forward  if ωη is available from
wheel dynamics calculations.

The longitudinal running speed Vc
*
x is defined as the longitudinal component

of the velocity of propagation of the imaginary point C* (on radius vector r) in
the direction of the x-axis (vector l ). In case the wheel is moved in such a way
that the same point remains in contact with the road we would have Vc

*
x = Vsx.

This corresponds to wheel lock when the road is flat and the vehicle pitch rate
is zero. For a freely rolling tyre the longitudinal running speed equals the linear
speed of rolling: Vc

*
x = Vr. On a flat road and at zero camber or zero yaw rate ( γψ0

= 0) we obtain Vc
*
x = Vx. The general definition for longitudinal slip now reads:

(2.8)
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tanα ' &

Vcy

V (

cx

tanα ' &

Vy

Vx

κ ' &

Vsx

Vcx

tanα ' &

Vsy

Vcx

Vs'

Vsx

Vsy

ss '
κ

tanα

The lateral slip is defined as the ratio of the lateral velocity !Vcy of the contact
centre C and the longitudinal running speed Vc

*
x . We have in terms of the slip

angle α :

(2.9)

which for a wheel, not showing camber rate  nor radial deflection rate  andγ0 ρ0

yaw rate  at non-zero camber angle γ, when running on a flat road reduces toψ0

the ratio of lateral and forward speed of the wheel centre:

(2.10)

In practice, points C and C* lie closely together and making distinction between
the longitudinal or the lateral velocities of these points is only of academic
interest and may be neglected. Instead of Vc

*
x in the denominator we may write Vcx

and if we wish, instead of Vcy in the numerator the lateral speed of point S
(parallel to road plane) which is Vsy. This may even be a better choice if large
values of camber are considered while a vertical tyre deflection rate occurs. The
definitions of the slip components then reduce to:

(2.11)

(2.12)

The slip velocities Vsx and Vsy form the components of the slip speed vector Vs

and κ  and tanα the components of the slip vector ss. We have:

(2.13)

and

(2.14)

The ‘spin’ slip n is defined as the component !ωz of the absolute speed of
rotation vector ω of the wheel body along the normal to the road plane n divided
by the forward running speed. We obtain the expression in terms of yaw rate ψ0
and camber angle γ (cf. Fig.2.6):
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n ' &

1
R
%

1
re

sinγ

(2.15)n ' &

ωz

V(

cx

' &

ψ0 &Ω sinγ

V(

cx

The minus sign is introduced again to remain consistent with the definitions of
longitudinal and lateral slip (2.11, 2.12). Then, we will have as a result of a
positive n a positive moment Mz . It turns out that then also the resulting side
force Fy is positive. The yaw rate  is defined as the speed of rotation of the lineψ0

of intersection (unit vector l) about the z axis normal to the road (cf. Fig.2.3). If
side slip does not occur (α/ 0) and the wheel moves over a flat road, equation
(2.15) may be written as

(2.16)n ' &

1
R
%

Ωr

V(

cx

sinγ ' &

1
R
%

1
re

Vr

V(

cx

sinγ

When the tyre rolls freely (then Vsx= 0, Vc
*
x = Vr) we obviously obtain:

(2.17)

with 1/R denoting the momentary curvature of the path of C* or approximately
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nt ' &

ψ0

V (

cx

sinγ ' &n @s

sinγ ' sz

c ' b%a% r

r ' r l × s

l ' λ n × s

' &

1
R

if α is constant

of the contact centre C.
For a tyre we shall distinguish between spin due to path curvature and spin

due to wheel camber. For a homogeneous ball the effect of both input quantities
is the same. For further use we define turn slip as

(2.18)

Wheel camber or wheel inclination angle γ is defined as the angle between the
wheel-centre-plane and the normal to the road. With Fig.2.3 we find:

(2.19)

or on level roads:

(2.20)

where sz represents the vertical component of the unit vector s along the wheel
spin axis.

2.3.  Assessment of Tyre Input Motion Components

The location of the contact centre C and the magnitude of the wheel radius r
result from the road geometry and the position of the wheel axle. We consider the
approximate assumption that the road plane is defined by the plane touching the
surface at point Q located vertically below the wheel centre A. The position of
point Q with respect to the inertial frame (Oo, xo, yo, zo) is given by vector q. The
normal to the road plane is defined by unit vector n. The location of a reference
point B of the vehicle is defined by vector b and the location of the wheel centre
A by b + a (cf. Fig.2.3). The orientation of the wheel spin axis is given by unit
vector s and the location of the contact centre C by

(2.21)

where r is still to be determined. The expression for r is derived from the
equations:

(2.22)

with
(2.23)

(with λ resulting from the condition that *l * = 1) and with (2.21) in order to
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c @n ' q @n

ρ ' rf & r

Vc ' 0c ' 0b % 0a % 0r ' V % 0r

V (

c ' V %

re

r
0r

Vs ' V %

re

r
ω ×r

Vr ' l @ (V (

c & Vs )

obtain the magnitude of the loaded radius r:

 (2.24)

which indicates that contact point C and road point Q lie on the same plane
perpendicular to n. On flat level roads the above equations become a lot simpler
since in that case nT = (0, 0, !1) and the z components of c and q become zero.

For small camber the radial tyre deflection ρ is now readily obtained from (cf.
pp.206,358 for the deflection normal to the road) 

(2.25)

with rf the free unloaded radius. For a given tyre the effective rolling radius re

is a function of amongst other things the unloaded radius, the radial deflection,
the camber angle and the speed of travel.

The vector for the speed of propagation of the contact centre Vc representing
the magnitude and direction of the velocity with which point C moves over the
road surface, is obtained by differentiation with respect to time of position vector
c (2.21):

(2.26)

With V the velocity vector of the wheel centre A (Fig.2.3). The speed of
propagation of point C* represented by the vector Vc

* becomes (cf. Fig.2.5 and
assume re /r constant):

(2.27)

The velocity vector of point S that is fixed to the wheel body results from 

(2.28)

with ω being the angular velocity of the wheel body with respect to the inertial
frame. On the other hand, this velocity is equal to the speed of point C* minus the
linear speed of rolling

    (2.29)Vs ' V (

c & Vr l

from which Vr follows:

(2.30)

or
    (2.31)Vr ' V (

cx & Vsx

The linear speed of rolling is according to (2.6) related to the angular speed of
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rolling:

(2.32)Ωr '
1
re

Vr

Of course, on flat roads Ωr = Ω which is the wheel speed of revolution and may
be directly calculated by using the relationship (2.7). 

The lateral slip speed Vcy is obtained by taking the lateral component of Vc

(2.26):

(2.33)

with

(2.34)

The lateral slip tanα reads:

(2.35)

The longitudinal slip speed Vsx is obtained in a similar way:

 (2.36)

The longitudinal slip κ now becomes:

(2.37)

The turn slip according to definition (2.18) is derived as follows

(2.38)

with in the numerator the time derivative of the unit vector l. The wheel camber
angle is obtained as indicated before:

(2.39)

Exercise 2.1.  Slip and rolling speed of a wheel steered about a vertical axis

The vehicle depicted in Fig.2.7 runs over a flat level road. The rear frame moves with
velocities u, v and r with respect to an inertial triad (choose (Oo, xo, yo, zo) which at the
instant considered is positioned parallel to the moving triad (B, x, y, z) attached to the
rear frame). The front  frame can be turned with a rate    (=dδ /d t ) with respect to theδ0

rear frame. At the instant considered the front frame is steered over an angle δ .
It is assumed that the effective rolling radius is equal to the loaded radius (re = r,
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Fig. 2.8. Side view of front part of vehicle (motorcycle) with wheel turned over angle δ about
steer axis (a) (Exercise 2.2).

C* = C ). The longitudinal slip at the front wheels is assumed to be equal to zero (Vsx

= 0).
Derive expressions for the lateral slip speed Vcy, the linear speed of rolling Vr and

the lateral slip tanα for the right front wheel. 

Exercise 2.2. Slip and rolling speed of a wheel steered about an inclined axis
(motorcycle)

The wheel shown in Fig.2.8 runs over a flat level road surface. Its centre A moves
along a horizontal straight line at a height H with a speed u. The rake angle g is 45°.
The steer axis BA (vector a)  translates with the same speed u. There is no wheel slip
in longitudinal direction (Vsx = 0). Again we assume re = r. For the sake of simplifying
the complex problem, it is assumed that the wheel centre height H is a given constant.
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s ' Vc t

Derive expressions for the lateral slip speed Vcy, the linear speed of rolling Vr and
the turn slip speed  in terms of H, u and  for  = 0°, 30° and 90°. Also show theψ0 δ0 δ

expressions for the slip angle α, the camber angle γ and the spin slip n with
contributions both from turning and camber. Note, that in reality height H depends on δ
and changes due to .δ0

2.4. Fundamental Differential Equations for 
a Rolling and Slipping Body

A wheel with tyre that rolls over a smooth level surface and at the same time
performs longitudinal and lateral slipping motions, will develop horizontal
deformations as a result of the presence of frictional forces which attempt to
prevent the tyre particles, that have entered the contact area, from sliding over
the road. Besides areas of adhesion, areas of sliding may occur in the contact
patch. The latter condition will arise when the deflection generated in the range
of adhesion would have become too large to be maintained by the available
frictional forces. In the following, a set of partial differential equations will be
derived that governs the horizontal tyre deflections in the contact area in
connection with possibly occurring velocities of sliding of the tyre particles. For
a given physical structure of the tyre, these equations can be used to develop the
complete mathematical description of tyre model behaviour as will be
demonstrated in subsequent chapters.

Consider a rotationally symmetric elastic body representing a wheel and tyre
rolling over a smooth horizontal rigid surface representing the road. As indicated
in Fig.2.9 a system of axes (OE, xE, yE, zE) is assumed to be fixed to the road.
The xE and yE axes lie in the road surface and the zE axis points downwards.
Another coordinate system (C, x, y, z) is introduced of which the axes x and y lie
in the (xE, OE, yE) plane and z points downwards. The x axis is defined to lie in
the wheel centre plane and the y axis forms the vertical projection of the wheel
spindle axis. The origin C which is the so-called contact centre or, perhaps
better: the point of intersection, travels with an assumedly constant speed Vc over
the  (xE, OE, yE) plane. The travelled distance s is

(2.40)

where t denotes the time. The tangent to the orbit of C makes an angle β with the
fixed xE axis. With respect to this tangent the x axis is rotated over an angle α,
defined as the slip angle. The angular deviation of the x axis with respect to the
xE axis (that is the yaw angle) becomes
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(2.41)ψ ' β%α

For the angle β the following relation with yE, the lateral displacement of 
C, holds

(2.42)

As a result of friction, horizontal deformations may occur in the contact patch.
The corresponding displacements of a contact point with respect to the position
this material point would have in the horizontally undisturbed state (defined to
occur when rolling on a frictionless surface), with coordinates (xo, yo), are
indicated by u and v in x and y direction respectively. These displacements are
functions of coordinates x and y and of the travelled distance s or the time t.

The position in space of a material point of the rolling and slipping body in
contact with the road (cf. Fig.2.9) is indicated by the vector



77BASIC TYRE MODELLING CONSIDERATIONS

p ' c % q

q ' (xo%u) ex % (yo%v) ey

Vg' 0p' 0c% 0q'Vc% ( 0xo% 0u) e x% ( 0yo% 0v)e y%ψ
0 {(xo%u) e y& (yo%v)e x}

0x ' dx
d t

' &ro(y) @Ω

0y ' dy
d t

' &x sinγ @Ω

 (2.43)

where c indicates the position of the contact centre C in space and q the position
of the material point with respect to the contact centre. We have for the latter
vector:

    (2.44)

with ex (= l ) and ey (= t ) representing the unit vectors in x and y directions. The
vector of the sliding velocity of the material point relative to the road obviously
becomes:

(2.45)

where Vc =  denotes the vector of the speed of propagation of contact centre C.0c
The coordinates xo and yo of the material contact point of the horizontally

undisturbed tyre (zero friction) will change due to rolling. Then, the point will
move through the contact area from the leading edge to the trailing edge. In the
general case, e.g. of an elastic ball rolling over the ground, we may have rolling
both in the forward and lateral directions. Then, both coordinates of the material
point will change with time. In the present analysis of the rolling wheel we will
disregard the possibility of sideways rolling. 

To assess the variation of the coordinates of the point on the zero friction
surface let us first consider an imaginary road surface that is in the same position
as the actual surface but does not transmit forces to the wheel. Then, the tyre
penetrates the imaginary surface without deformation. When the general
situation is considered of a wheel-spin-axis that is inclined with respect to the
imaginary road surface, i.e. rolling at a camber angle γ, the coordinates x and y
of the material point change with time as follows:

(2.46)

If  the effect of the time rate of change of the camber angle (wheel½a|γ0 | « ro|γ |Ω
plane rotation about the x axis) on the partial derivative My/Mt and thus on may0y
be neglected. This effect is directly connected with the small instantaneous or so-
called non-lagging response to camber changes. Similar instantaneous responses
may occur as a result of normal load changes when the tyre shows conicity or
ply-steer. The terms associated with My/Mt have been neglected in the above
equation and related neglections will be performed in subsequent formulae for

.0yo
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The radius of the outer surface in the undeformed state ro may depend on the
lateral coordinate y. If the rolling body shows a touching surface that is already
parallel to the road before it is deformed, we would have in the neighbourhood
of the centre of contact: ro(y) = ro(0)! ysinγ. In case of a cambered car tyre a
distortion of belt and carcass is needed to establish contact over a finite area with
the ground. The shape of the tyre cross section in the undeformed state governs
the dependency of the free radius with the distance to the wheel centre plane. 

In Fig.2.10 an example is given of two different cases. The upper part
corresponds to a rear view and the lower one to a plan view of a motorcycle tyre
and of a car tyre pressed against an assumedly frictionless surface (µ =0). It may
be noted that in case of a large camber angle like with the motorcycle tyre, one
might decide to redefine the position of the x and  z axes. The contact line which
is the part of the peripheral line that touches the road surface has been indicated
in the figure. 

When the tyre is loaded against an assumedly frictionless rigid surface,
deformations of the tyre will occur. These will be due to: (1) lateral and
longitudinal compression in the contact region, (2) a possibly not quite sym-
metric structure of the tyre resulting in effects known as ply-steer and conicity
and (3) loading at a camber angle which will result in distortion of the carcass
and belt. The deformations occurring in the contact plane will be denoted with
uo and vo. We will introduce the functions θx,y(x, y) representing the partial
derivatives of these normal-load-induced longitudinal and lateral deformations
with respect to x. We have:

     and      (2.47)θx (x,y)'
Muo

Mx
θy (x,y)'

Mvo

Mx
These functions depend on the vertical load and on the camber angle. 

If the tyre is considered to roll on a frictionless flat surface at a camber angle
or with non-zero θ ’s, lateral and longitudinal sliding of the contact points will
occur even when the wheel does not exhibit lateral, longitudinal or turn slip.
Since horizontal forces do not occur in this imaginary case, u and v are defined
to be zero. The coordinates with respect of the moving axes system (C, x, y, z)
of the contact point sliding over the hypothetical frictionless surface were
denoted as xo and yo. The time rates of change of xo and yo depend on the position
in the contact patch, on the speed of rolling Ω and on the camber angle γ. We
find after disregarding the effect of Myo/Mt:

0xo ' 0x % 0uo ' &{1 % θx(x, y)} @ro(y) @Ω
 (2.48)

0yo ' 0y % 0vo ' &{xo sinγ % θy(x, y) ro(y)} @Ω
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0xo ' 0x ' &{ro(0) & ysinγ} @Ω

0yo ' 0y ' &xsinγ @Ω

rej ' {1 % θx(yj) } ro(yj) ' re % ∆rej(yj)

For homogeneous rolling bodies (e.g. a railway wheel or a rubber ball) with
counter surfaces already parallel before touching, torsion about the longitudinal
axis and lateral bending do not occur, ply-steer and conicity are absent and
horizontal compression may be neglected (θ ’s vanish). Moreover, we then had:
ro(y) = ro(0)!y sinγ so that for this special case (2.48) reduces to:

(2.49)

For a tyre the terms with θ are appropriate. Circumferential compression (θx<0)
decreases the effective rolling radius re that is defined at free rolling. At camber,
due to the structure of a car tyre with a belt that is relatively stiff in lateral
bending, the compression/extension factor θx will not be able to compensate for
the fact that a car tyre shows only a relatively small variation of the free radius
ro(y) across the width of the tread, while for the same reason the lateral
distorsion factor θy appears to be capable of considerably counteracting the
effect of the term with sinγ in the second equation (2.48). For a motorcycle tyre
with a cross section approximately forming a sector of a circle, touching at
camber is accomplished practically without torsion about a longitudinal axis and
the associated lateral bending of the tyre near the contact zone. Figure 2.10
illustrates the expected deformations and the resulting much smaller curvature
of the contact line on a frictionless surface for the car tyre relative to the
curvature exhibited by the motorcycle tyre. Since on a surface with friction the
rolling tyre will be deformed to acquire a straight contact line, this observation
may explain the relatively low camber stiffness of the car and truck  tyre.

As mentioned above, circumferential compression of belt and tread resulting
from the normal loading process (somewhat counteracted by the presence of
hysteresis also represented by the factor θx ) gives rise to a decrease of the
effective rolling radius. The compression may not be uniform along the x axis.
For our purposes, however, we will disregard the resulting secondary effects.
The coefficient in (2.48) that relates the passage velocity  and the speed of& 0xo
revolution Ω of the wheel is designated as the local effective rolling radius rej at
e.g. row j of tread elements. This radius depends on the lateral position yj and
will change with the vertical load Fzand the camber angle γ. The velocity through
the contact zone of the elements of row j is: . We may write:& 0xo' rejΩ

(2.50)

in which use has been made of the overall tyre effective rolling radius re defined
according to Eqs.(2.2, 2.6) and ∆rej(yj)  the possibly anti-symmetric variation of
the local effective rolling radius over the tread width with respect to re due to
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loading at camber or conicity. The (average) effective rolling radius re is
expected to depend on the camber angle as well.

We will now try to make a distinction between the contributions to the anti-
symmetric variation originating from conicity and from camber. We write for the
local passage velocity:

(2.51)

In this way we have achieved a structure closely related to the first equation of
(2.49). For a rolling elastic body like a ball or a motorcycle tyre, θγx will be
(close to) zero, while a car, truck or racing car tyre is expected to have a θγx

closer to the value !1. A bias-ply tyre featuring a more compliant carcass and
tread band and a rounder cross section profile is expected to better ‘recover’
from the torsion effects, resulting in a value in between the two extremes. It is
true that in general bias-ply tyres show considerably larger side forces as a result
of camber than radial ply car tyres.  

When the product of θy and ro! re is considered to be negligible we write for
the lateral velocity of the points over a frictionless surface with respect to the x
axis instead of (2.48):

(2.52)

The resulting expressions (2.51, 2.52) may now be substituted in expression
(2.45) for the sliding speed components.

For a given material point of the tyre outer surface that now rolls on a road
surface with friction reintroduced, the associated deflections u and v (which
occur on top of the initial load induced deflections uo and vo) are functions of its
location in the contact patch and of the time: u = u(xo, yo, t) and v = v(xo, yo, t).
Hence we have for the time rates of change:

(2.53)

in which the expressions (2.51, 2.52) apply. If we disregard sideways rolling and
neglect a possible small effect of the variation of yo that occurs at camber,
conicity or ply-steer, the second terms of the right-hand members disappear. The
remaining expressions are  substituted in (2.45). 

According to Eq.(2.29) the linear speed of rolling and the velocity of the
contact centre are related through the slip speed. We have (when disregarding the
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generally very small difference between the velocities of C* and C) the vector
relationship:

        with    (2.54)Vr ' reΩ

After simplifying the equations by neglecting products of assumedly small
quantities (i.e. deflections and input (slip) quantities) and using the expression
for ωz which is the absolute angular velocity of the wheel body about the z axis
as indicated in Eq.(2.15), components of the sliding velocity become:

(2.55)

(2.56)

With all θ’s omitted we would return to the basic case of e.g. a ball rolling and
slipping over a flat rigid surface. In Chapter 3 a physical tyre model is developed
using the above equations. There, the θ’s are expressed in terms of the camber
angle and of equivalent camber and slip angles γcon and αply to account for
conicity and ply-steer (cf. Eqs.(3.108,3.109)).
 Let us now consider the special case of a freely rolling tyre subjected to only
small lateral slip and spin (κ= 0, |α|«1, |γ|«1, re«|R |, with R : the instantaneous
radius of path curvature, and thus |n t |«1/re) and neglect effects of initial non-
parallelity of touching surfaces as well as ‘built-in’ load and camber induced
deformation effects (all θ’s =0). We then have (approximately):

(2.57)

Using the travelled distance s (2.40) instead of the time t as an independent
variable, we obtain the following expressions for the sliding velocities of a
contact point with coordinates (x, y) of a freely rolling tyre at small lateral slip
and spin:

(2.58)

(2.59)

In the contact area regions of adhesion may occur as well as regions where
sliding takes place. In the region of adhesion the tyre particles touching the road
do not move and we have Vgx = Vgy = 0. In this part of the contact area, the
frictional shear forces acting from road to tyre on a unit area (with components
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denoted by qx and qy not to be confused with the components of the position
vector (2.44) used earlier) do not exceed the maximum available frictional force
per unit area. The maximum frictional shear stress is governed by the coefficient
of friction µ  and the normal contact pressure qz. In the adhesion region
Eqs.(2.58, 2.59) reduce to:

(2.60)

(2.61)

Furthermore we have the condition:

(2.62)

In the region of sliding, equations (2.58, 2.59) hold. If the deformation gradients
were known, the velocity components Vgx and Vgy might be obtained from these
equations. For the frictional stress vector we obtain:

(2.63)

with

          (2.64)

For the simpler case that only lateral slip occurs (n = 0) the equations for the
lateral deformations reduce to:

in adhesion region:

               (2.65)

in sliding region:         

(2.66)

The equations (2.55, 2.56) apply in general. Their solutions contain constants of
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integration which depend on the selected physical model description of the tyre.
Applications of the differential equations derived above will be demonstrated in
subsequent chapters both for steady-state and non-steady-state conditions. In the
case of steady-state motion of the wheel, the partial derivatives with respect to
time t or travelled distance s become equal to zero (Mv/Ms = Mu/Ms = 0). Then, the
deformation gradients in the area of adhesion (Vg = 0) follow easily from the then
ordinary differential equations. In the last simple case (2.66) we would obtain:
dv/dx = !α which means that the contact line is straight and runs parallel to the
speed vector Vc.

Exercise 2.3.  Partial differential equations with longitudinal slip included

Establish the differential equations for the sliding velocities similar to the Eqs.(2.58,
2.59) but now with longitudinal slip κ included (α and n remain small). Note that in
that case Vr…Vc and that Vr  may be expressed in terms of Vcx (-Vc) and κ. Also, find
the partial differential equations governing the deflections in the adhesion zone similar
to the Eqs.(2.60, 2.61).  

2.5.  Tyre Models (Introductory Discussion)

Several types of mathematical models of the tyre have been developed during the
last half century. Each type for a specific purpose. Different levels of accuracy
and complexity may be introduced in the various categories of utilisation. This
often involves entirely different ways of approach. Figure 2.11 roughly
illustrates how the intensity of various consequences associated with different
ways of attacking the problem tend to vary. From left to right the model is based
less on full scale tyre experiments and more on the theory of the behaviour of the
physical structure of the tyre. In the middle, the model will be simpler but
possibly less accurate while at the far right the description becomes complex and
less suitable for application in the simulation of vehicle motions and may be
more appropriate for the analysis of detailed tyre performance in relation to its
construction.

At the left-hand category, we have mathematical tyre models which describe
measured tyre characteristics through tables or mathematical formulae and
certain interpolation schemes. These formulae have a given structure and possess
parameters which are usually assessed with the aid of regression procedures to
yield a best fit to the measured data. A well-known empirical model is the Magic
Formula tyre model treated in Chapter 4. This model is based on a sin(arctan)
formula which not only provides an excellent fit for the Fy, Fx and Mz curves but
in addition features coefficients which have clear relationships with typical shape
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Fig. 2.11.   Four categories of possible types of approach to develop a tyre model.

and magnitude factors of the curves to be fitted.
The similarity approach (second category) is based on the use of a number

of basic characteristics typically obtained from measurements. Through
distortion, rescaling and multiplications, new relationships are obtained to
describe certain off-nominal conditions. Chapter 4 introduces this method which
is particularly useful for application in vehicle simulation models that requires
rapid (e.g. real time) computations.

Depending on the type of the physical model chosen, a simple formulation
may already provide sufficient accuracy for limited fields of application. The
HSRI model depicted in Fig.2.12 developed by Dugoff, Fancher and Segel
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Fig. 2.12. a. The brush type tyre model at combined longitudinal (brake) slip and lateral slip
in case of equal longitudinal and lateral stiffnesses.

b. The linearly decaying friction coefficient.

(1970) and later corrected and improved by Bernard et al. (1977) is a good
example. The figure illustrates the considerable simplification with respect to a
more realistic representation of tyre deformation (Fig.2.13) that is needed to keep
the resulting mathematical formulation manageable for vehicle dynamics
simulation purposes and still include important matters like the representation of
combined slip and a coefficient of friction that may drop with speed of sliding.

The model of Fig.2.13 exhibits carcass flexibility and shows a more realistic
parabolic pressure distribution. For such a model, (approximate) analytical
solutions are feasible only when pure side slip (possibly including camber)
occurs and the friction coefficient is considered constant (e.g. Fiala 1954).

Relatively simple physical models of this third category like the ‘brush model’
of Fig.2.12 are especially useful to get a better understanding of tyre behaviour.
The brush model with a parabolic pressure distribution will be discussed at
length in Chapter 3.

The right-most group of Fig.2.11 is aimed primarily at more detailed analysis
of the tyre. The complex finite element based models belong to this category. A
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Fig. 2.13.   Tyre model with flexible carcass at steady-state rolling with slip angle α.

simpler representation of carcass complance that is experienced in the lower part
of the tyre near the contact patch considerably speeds up the computation. Also
the way in which the tread elements are handled is crucial. The computer
simulation tread-element-following method is attractive and allows considerable
freedom to choose pressure distribution and friction coefficient functions of
sliding velocity and local contact pressure. The physical model that forms the
basis of the latter method has been depicted in Fig.2.14. Influence (Green)
functions may be used to describe the carcass horizontal compliance in the
contact zone and possibly several rows of tread elements may be considered to
move through the contact patch. One element per row is followed while it travels
through the length of contact (or several elements through respective sub-zones).
During such a passage the carcass deflection is kept constant, the motion of the
single mass-spring (tread element) system that is dragged over the ground is
computed, the frictional forces are integrated, the total forces and moment
determined and the carcass deflection is up-dated. Instead of using the dynamic
way of solving for the deflection of the tread element while it runs through the
contact patch, an iteration process may be employed. The model is capable of
handling non-steady-state conditions. A relatively simple application of the tread-
element-following method will be shown in the subsequent chapter when dealing
with the ‘brush model’ subjected to combined slip with camber, a condition that
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Fig. 2.14. Computer simulation tyre model with flexible carcass, arbitrary pressure distribution
and friction coefficient functions. Forces acting on a single tread element mass
during one passage through the contact length are integrated to obtain the total forces
and moment Fx , Fy  and Mz .

is too difficult to deal with analytically. Also the introduction of carcass
compliance will be demonstrated. A method based on modal synthesis to model
tyre deflection has been employed by Guan et al. (1999) and by Shang et al.
(2002). For further study we refer to the original work of Willumeit (1969),
Pacejka and Fancher (1972a), Sharp and El-Nashar (1986), Gipser et al. (1997),
Guo and Liu (1997) and Mastinu (1997) and the state-of-the-art paper of
Pacejka and Sharp (1991).

Although it is possible to develop a model for non-steady-state conditions by
purely empirical means, most relatively simple and more complex transient and
dynamic tyre models are based on the physical nature of the tyre. It is of interest
to note that for a proper description of tyre behaviour at time-varying  conditions
an essential property must be represented in the physical models belonging to
both right-hand categories of Fig.2.11. That is the lateral and sometimes also the
fore and aft compliance of the carcass. Less complex non-steady-state tyre
models feature only  carcass compliance without the inclusion of elastic tread
elements. In steady-state models the introduction of such a flexibility is often not
required. Only to properly represent the self-aligning torque in case of a braked
or driven wheel, carcass lateral compliance is needed. Tyre inertia becomes
important at higher speeds and frequencies of the wheel motion. The problem of
establishing non-steady-state tyre models is addressed in Chapters 5, 7, 8 and 9
in successive levels of complexity to meet conditions of increasing difficulty. 

Conditions become more demanding when for example: (1) the wheel motion
gives rise to larger values of slip which no longer permits an approximate linear
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description of the force and moment generating properties; (2) combined slip
occurs, possibly including wheel camber and turn slip; (3) large camber occurs
which may necessitate the consideration of the dimensions of the tyre cross
section; (4) the friction coefficient can not be approximated as a constant
quantity but may vary with sliding velocity and speed of travel as occurs on wet
or icy surfaces; (5) the wavelength of the path of contact points at non-steady-
state conditions can no longer be considered large, which may require the
introduction of the lateral and longitudinal compliance of the carcass; (6) the
wavelength becomes relatively short which may necessitate the consideration of
a finite contact length (retardation effect) and possibly the contact width (at turn
slip and camber); (7) the speed of travel is large so that tyre inertia becomes of
importance in particular its gyroscopic effect; (8) the frequency of the wheel
motion has reached a level that requires the inclusion of the first or even higher
modes of vibration of the belt; (9) the vertical profile of the road surface contains
very short wavelengths with appreciable amplitudes as would  occur in the case
of rolling over a short obstacle or cleat, then amongst other things the tyre
enveloping properties should be accounted for; (10) motions become severe
(large slip and high speed) which may necessitate modelling the effect of the
warming up of the tyre involving possibly the introduction of the tyre
temperature as a model parameter. All items mentioned (except the last one) will
be accounted for in the remainder of this book.



Chapter 3

THEORY OF STEADY-STATE SLIP FORCE
AND MOMENT GENERATION

3.1.  Introduction

This chapter is devoted to the analysis of the properties of a relatively simple
theoretical tyre model belonging to the third category of Fig.2.11. The
mathematical modelling of the physical model shown in Fig.2.13 has been a
challenge to various investigators. Four fundamental factors play a role:
frictional properties in the road-tyre interface, distribution of the normal contact
pressure, compliance of the tread rubber and compliance of the belt/carcass.

Models of the carcass with belt and side walls with encapsulated pressurised
air that are commonly encountered in the tyre modelling literature, are either
based on an elastic beam or on a stretched string both suspended on an elastic
foundation with respect to the wheel rim. The  representation of the belt by a
beam instead of by a stretched string is more difficult because of the fact that the
differential equation that governs the lateral deflection of the belt under the
action of a lateral force becomes of the fourth instead of the second order. For
the study of steady-state tyre behaviour, most authors approximate the more or
less exact expressions for the lateral deflection of the beam or string.

As an extension to the original ‘brush’ model of Fromm and of Julien (cf.
Hadekel (1952) for references) who did not consider carcass compliance, Fiala
(1954) and Freudenstein (1961) developed theories in which the carcass
deflection is approximated by a symmetric parabola. Böhm (1963) and
Borgmann (1963), the latter without the introduction of tread elements, used
asymmetric approximate shapes determined by both the lateral force and the
aligning torque. Pacejka (1966, 1981) established the steady-state side slip
characteristics for a stretched-string tyre model without and with the inclusion
of tread elements attached to the string. The lateral stiffness distribution as
measured on a slowly rolling tyre in terms of influence or Green’s functions (cf.
Savkoor 1970) may be employed in a model for the side slipping tyre possibly
in connection with the tread-element-following method that was briefly discussed
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Fig. 3.1. Comparison of calculated characteristics for four different tyre models with tread
elements and non-symmetrical pressure distribution at a given wheel vertical load
(a: string, b: beam, c: Fiala, d: brush i.e. with rigid carcass) (from Frank 1965a,b).

in the preceding section (cf. Pacejka 1972, 1974) and will be demonstrated later
on in Section 3.3 of the present chapter.

Frank (1965a) has carried out a thorough comparative investigation of the
various one-dimensional models. He employed a general fourth-order differential
equation with which tyre models can be examined that feature a stretched string,
a beam or a stretched beam provided with elastic tread elements. Frank obtained
a solution of the steady-state slip problem with the aid of a special analogue
computer circuit. A correlation with Fourier components of the measured
deformation of real tyres reveals that the stretched string type model seems more
suitable for the simulation of a bias ply tyre, whereas the beam model is
probably more appropriate for representing the radial ply tyre.

Figure 3.1 (from Frank 1965b) presents the calculated characteristics of
several types of carcass models provided with tread elements. The curves
represent: a. stretched string model, b. beam model, c. approximation based on
Fiala’s model (symmetric parabolic carcass deflection), d. model of Fromm
(brush model with rigid carcass). The tread element stiffness is the same for each
model. The parameters in the cases a, b and c have been chosen in such a way
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as to give a best fit to experimental data for the  peak side force and the
cornering force at small slip angles (that is: same cornering stiffness). It appears
then that model c shows close correspondence with curve a for the side force.
Curves d show the result when the carcass elasticity is neglected and only the
flexibility of the tread elements is taken into account. When the tread element
stiffness of model d is adapted (i.e. lowered) in such a way that the cornering
stiffness becomes equal to that of the other three models, no difference between
the side force characteristics according to Fromm’s and Fiala’s models appear
to occur. Due to approximations introduced by Fiala, the coefficients in the
expression for the side force versus slip angle (if parabolic pressure distribution
is adopted) become equal to those obtained directly by Fromm. 

In the calculations for Fig.3.1, Frank employed a constant coefficient of
friction µ  and a slightly asymmetric vertical pressure distribution qz(x), found
from measurements. The positive aligning torque obtained at larger values of the
slip angle α arises as a result of this asymmetry. The phenomenon that in
practice the aligning torque indeed varies in this way is due to a combination of
several effects.The main cause is probably connected with the asymmetric
pressure distribution of the rolling tyre (due to hysteresis of the tyre compound)
resulting in a small forward shift of the point of application of the normal load
(giving rise to rolling resistance) and, consequently, at full sliding also of the
resulting side force. Another important factor causing the moment to become
positive is the fact that the coefficient of friction is not a constant but tends to
decrease with sliding velocity. As may be derived from e.g. Eq.(2.59) the sliding
velocity attains its largest values in the rear portion of the contact area where the
slope Mv/Mx becomes largest. Consequently, we expect to have larger side forces
acting in the front half of the contact area at full sliding conditions than in the
rear half. The rolling resistance force that  due to the lateral distortion acts
slightly beside the wheel plane, may also contribute to the sign change of Mz. A
with sliding velocity decreasing µ  (not considered by Frank) causes the creation
of a peak in the Fy(α) curves and a further slight decay. This has often been
observed to occur in practice, especially on wet and icy roads. In the longitudinal
force characteristic the peak is usually more pronounced. 

The influence of different but symmetric shapes for the vertical force
distribution along the x-axis has been theoretically investigated by Borgmann
(1963). He finds that, especially for tyres exhibiting a relatively large carcass
compliance, the influence of the pressure distribution is of importance. Non-
symmetric more general distributions were studied by Guo (1994). Many authors
adopt for the purpose of mathematical simplicity the parabolic distribution (Fiala
1954, Freudenstein 1961, Bergman 1965, Pacejka 1958, Sakai (also n-th degree
parabola,1989), Dugoff et al. 1970 (uniform, rectangular distribution) and
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Bernard et al. 1977 (trapezium shape)). Models of Fiala and Freudenstein
feature a flexible carcass while the remaining authors have restricted themselves
to a rigid carcass or a uniformly deflected belt. That, however, enabled them to
include the description of the more difficult case of combined slip. The
introduction of a non-constant friction coefficient has been treated by amongst
others: Böhm (1963), Borgmann (1963), Dugoff et al. (1970), Sakai (1981) and
Bernard et al. (1977).

Figure 3.1 shows that, when the model parameters are chosen properly, the
choice of the type of carcass model (beam, string or rigid) has only a limited
effect. Qualitatively, the resulting curves are identical. The rigid carcass model
with elastic tread elements is often referred to as the brush tyre model. Because
of its simplicity and qualitative correspondence with experimental tyre behaviour
we will give a full treatment of its properties, mainly to provide understanding
of steady-state tyre slipping properties which may also be helpful in the
development of more complex models. A uniform carcass deflection will be
considered to improve the aligning torque representation at combined slip.

In Section 3.3 of this chapter we will deal with the effect of non-uniform
carcass deflection, non-constant friction coefficient and the inclusion of camber
and turning (path curvature) combined with side slip and braking/driving. For
this purpose, the tread simulation model will be employed. 

3.2. Tyre Brush Model

The brush model consists of a row of elastic bristles that touches the road plane
and can deflect in a direction parallel to the road surface. These bristles may be
called tread elements. Their compliance represents the elasticity of the
combination of carcass, belt and actual tread elements of the real tyre. As the
tyre rolls, the first element that enters the contact zone is assumed to stand
perpendicularly with respect to the road surface. When the tyre rolls freely (that
is without the action of a driving or braking torque) and without side slip,
camber or turning, the wheel moves along a straight line parallel to the road and
in the direction of the wheel plane. In that situation, the tread elements remain
vertical and move from the leading edge to the trailing edge without developing
a horizontal deflection and consequently without generating a fore and aft or side
force. A possible presence of rolling resistance is disregarded. When the wheel
speed vector V shows an angle with respect to the wheel plane, side slip occurs.
When the wheel velocity of revolution Ω multiplied with the effective rolling
radius re is not equal to the forward component of the wheel speed Vx = Vcosα
we have fore and aft slip. Under these conditions, depicted in Fig.3.2, horizontal
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95THEORY OF STEADY-STATE SLIP FORCE AND MOMENT GENERATION

deflections are developed and corresponding forces and moment arise. The tread
elements move from the  leading edge (at the right-hand side of the pictures) to
the trailing edge. The tip of the element will as long as the available friction
allows adhere to the ground (that is, it will not slide over the road surface). At
the same time, the base point of the element remains in the wheel plane and
moves backwards with the linear speed of rolling Vr (that is equal to Ωre) with
respect to wheel axis or better: with respect to the contact centre C. With respect
to the road, the base point of the element moves with a velocity that is designated
as the slip speed Vs of the wheel. 

In the lower part of the figure the model is shown at pure side slip. The slip
changes from very small to relatively large. We observe that the deflection
increases while the element moves further through the contact patch. The
deflection rate is equal to the assumedly constant slip speed. The resulting
deflection varies linearly with the distance to the leading edge and the tips form
a straight contact line that lies in a direction parallel to the wheel speed vector
V. The figure also shows the maximum possible deflection that can be reached
by the element depending on its position in the contact region. This maximum is
governed by the (constant) coefficient of friction µ , the vertical force distribution
qz and the stiffness of the element cpy. The pressure distribution and consequently
also the maximum deflection vmax have been assumed to vary according to a
parabola. As soon as the straight contact line intersects the parabola, sliding will
start. The remaining part of the contact line will coincide with the parabola for
the maximum possible deflection. At increasing slip angle, the side force that is
generated will increase. The distance of its line of action behind the contact
centre is termed the pneumatic trail t. The aligning torque arises through the non-
symmetric shape of the deflection distribution and will be found by multiplying
the side force with the pneumatic trail. As the slip increases, the deformation
shape becomes more symmetric and, as a result, the trail gets smaller. This is
because the point of intersection moves forward, thereby increasing the sliding
range and decreasing the range of adhesion. This continues until the wheel speed
vector runs parallel to the tangent to the parabola at the foremost point. Then,
the point of intersection has reached the leading edge and full sliding starts to
occur. The shape has now become fully symmetric. The side force attains its
maximum and acts in the middle so that the moment vanishes. That situation
remains unchanged when the slip angle increases further. The resulting
characteristics for the side force and the aligning torque have been depicted in the
same figure. In the part to follow next, the mathematical expressions for these
relationships will be derived, first for the case of pure side slip. 
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Fig. 3.3.  Brush model moving at pure side slip shown in top and side view.

3.2.1.  Pure Side Slip

The brush model moving at a constant slip angle has been depicted in greater
detail in Fig.3.3. It shows a contact line which is straight and parallel to the
velocity vector V in the adhesion region and curved in the sliding region where
the available frictional force becomes lower than the force which would be
required for the tips of the tread elements to follow the straight line further. In
the adhesion region the linear variation of the deformation is in accordance with
the general equation (2.65) (where tanα has been assumed small and replaced by
α) with at steady state Mv/Ms = 0. For this simple model, the  deformation of the
tread element at the leading edge vanishes. Consequently, the lateral deformation
in the adhesion region reads

(3.1)

where a denotes half the contact length.
In case of vanishing sliding, which will occur for α60 or for µ64, expression

(3.1) is valid for the entire region of contact. With the lateral stiffness cpy of the
tread elements per unit length of the assumedly rectangular contact area the
following integrals and expressions for the cornering force Fy and the aligning
torque Mz hold:
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Fy ' cpy m
a

&a
vdx ' 2 cpy a 2

α

Mz ' cpy m
a

&a
vxdx ' &

2

3
cpy a 3

α

CFα ' (MFy /Mα)
α'0 ' 2cpy a 2

CMα
' & (MMz /Mα)

α'0 '
2

3
cpy a 3

qz '
3Fz

4a
@ 1 & x

a

2

*qy, max* ' µ qz '
3

4
µ Fz

(a 2
& x 2 )

a 3

θy '
2cpy a 2

3µ Fz
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(a&xt)(a%xt )

λ ' 1&θy*tanα*

(3.2)

Consequently, the cornering stiffness and the aligning stiffness become

respectively:

(3.3)

Next, we will consider the case of finite µ  and a pressure distribution which
gradually drops to zero at both edges. For the purpose of simplicity we assume
a parabolic distribution of the vertical force per unit length as expressed by

(3.4)

where Fz represents the vertical wheel load. Hence, the largest possible side force
distribution becomes:

(3.5)

In Fig.3.3 the maximum possible lateral deformation vmax = qy,max /cpy has been
indicated. For the sake of abbreviation the following composite tyre model
parameter is introduced:

(3.6)

The distance from the leading edge to the point where the transition from the
adhesion to the sliding region occurs is written as 2aλ and is determined by the
factor λ. The value of this non-dimensional quantity is found by realising that at
this point, where x=xt , the deflection in the adhesion range becomes equal to that
of the sliding range.  Hence, with Eqs.(3.1,3.5,3.6) the following equality holds:

(3.7)

and thus for λ= (a! xt ) / 2a we obtain the relationship with the slip angle α:

(3.8)
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From this equation, the angle αsl , where total sliding starts (λ = 0), can be
calculated:

(3.9)

As the distribution of the deflections of the elements has now been established,
the total force Fy and the moment Mz can be assessed by integration over the
contact length (like in Eq.(3.2) but now separate for the sliding range !a<x<xt

and the adhesion range xt<x<a). For convenience we introduce the notation for
the slip:

(3.10)

The resulting formula for the force reads:
if *α* # αsl

 (3.11)

and if *α* $αsl  (but < ½π)

(3.11a)

and for the moment:
if *α* #αsl

(3.12)

with peak value (27/256) µFz at σy =1/(4θy). If *α* $αsl  (but < ½π)

(3.12a)

The pneumatic trail t, which indicates the distance behind the contact centre C
where the resultant side force Fy is acting, becomes:
if *α* #αsl

(3.13)

and if *α* $αsl  (but < ½π)

 (3.13a)t ' 0
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 Fig. 3.4. Characteristics of the simple brush model: side force, aligning torque and pneumatic
trail vs slip angle.

These relationships have been shown graphically in Fig.3.4. At vanishing slip
angle expression (3.13) reduces to

(3.14)

This value is smaller than normally encountered in practice. The introduction of
an elastic carcass will improve this quantitative aspect. Then, the more realistic
value of t.0.5a may be achieved (cf. Pacejka 1966 for a stretched string model
to represent the elastic carcass and Section 3.3 for a more generally applicable
way of approach to account for the carcass compliance). Another point in which
the simple model deviates considerably from experimental results concerns the
effect of changing the vertical wheel load  Fz. With the assumption that the
contact length 2a changes quadratically with radial tyre deflection ρ and that Fz

depends linearly on ρ, so that a2
-Fz , it can be easily shown that for the brush

model Fy and Mz vary proportionally with Fz and Fz
3/2 respectively. Experiments,

however, show that Fy varies less than linearly with Fz . In most cases, the Fy vs
Fz characteristic, obtained at a small value of the slip angle, even shows a
maximum after which the cornering force drops with increasing wheel load.
Obviously, the same holds for the cornering stiffness CFα (cf. Fig.1.3). Also in
this respect the introduction of an elastic carcass (in particular when its lateral
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stiffness decreases with increasing  normal load) improves the agreement with
experiments. When considering a deflected cross section of a tyre with side walls
modelled as membranes under tension encapsulating pressurised air, such a
decrease in lateral stiffness can be found to occur in theory (cf. Pacejka 1981,
pp.729 and 730).

 An interesting diagram is the so-called Gough-plot, in which Fy is plotted vs
Mz for a series of constant values of Fz (or possibly of µ  at constant Fz) and of
α respectively. This produces two sets of curves shown in Figs.3.5 and 3.6. In
the first figure, the characteristics for the brush model have been presented. The
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Fig. 3.7.  Side-view of the brush tyre model at braking (no sliding considered).

left-hand diagram shows that when made non-dimensional, a single curve results.
The second figure presents the measured curves for a truck tyre and in addition
a diagram according to the brush model. The model has been adapted to include
the non-linear relationship of the cornering stiffness vs vertical load by making
the tread element stiffness decrease linearly with vertical load. As can be seen
from the left-hand plot (at large values of α where saturation of Fy occurs), the
truck tyre also exhibits a decay in friction coefficient with increasing vertical
load (not included in the model calculations), cf. also Fig.1.3. Further, as
expected, the actual tyre generates an aligning torque larger than according to the
model. 

3.2.2.  Pure Longitudinal Slip

For the brush-type tyre model with tread elements flexible in longitudinal
direction, the theory for longitudinal (braking or driving) force generation
develops along similar lines as those set out in Section 3.2.1 where the side force
and aligning torque response to slip angle has been derived. To simplify the
discussion, we restrict ourselves here to non-negative values of the forward speed
Vx and of the speed of revolution Ω.

In Fig.3.7 a side-view of the brush model has been shown. As was indicated
before, the so-called slip point S is introduced. This is an imaginary point
attached to the wheel rim and is located, at the instant considered, a distance
equal to the effective rolling radius re (defined at free rolling) below the wheel
centre. At free rolling, by definition, the slip point S has a velocity equal to zero.
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u ' &Vsx
a & x

Vr

Ω ' Ωo '
Vx

re

Vsx ' Vx&Ω re

Vr ' Ω re ' Vx&Vsx

Then, it forms the instantaneous centre of rotation of the wheel rim. We may
think of a slip circle with radius re that in case of free rolling rolls perfectly, that
is: without sliding, over an imaginary road surface that touches the slip circle in
point S. When the wheel is being braked, point S moves forward with the
longitudinal slip velocity Vsx. When driven, the slip point moves backwards with
consequently a negative slip speed. In the model, a point S' is defined that is
attached to the base line at its centre (that is, at the base point of the tread
element below the wheel centre, cf. Fig.3.7). By definition, the velocity of this
point is the same as that of point S. That means that S’ also moves with the same
slip speed Vsx . It is assumed that the tread elements attached at their base points
to the circumferentially rigid carcass, enter the contact area in vertical position.
At free rolling with slip speed Vsx (of both points S and S’) equal to zero, the
orientation of the elements remains vertical while moving from front to rear
through the contact zone. Consequently, no longitudinal force is being
transmitted and we have a wheel speed of revolution: 

(3.15)

Here it is assumed that the longitudinal component of the speed of propagation
of the contact centre C is equal to the longitudinal component of the speed of the
wheel centre (Vcx = Vx). As has been seen in the previous chapter this will occur
on a flat road surface at vanishing . When Ω differs from its value at freeγψ0

rolling Ωo the wheel is being braked or driven and the longitudinal slip speed Vsx

becomes:

(3.16)

In the model, the base points of all the tread elements move with the same speed
Vsx. A base point progresses backwards through the contact zone with a speed
Vr called the linear speed of rolling. Apparently, we have:

(3.17)

An element the tip of which adheres to the ground and the base point is moved
towards the rear over a distance a!x from the leading edge (for which a time
span ∆t=(a!x)/Vr is needed) has developed a deflection in longitudinal direction:

(3.18)

The same expression may be obtained by integration of the fundamental equation
(2.55) and noting that Vgx =ωz = Mu/Mt = θ’s = 0 and finally using the boundary
condition u =0 at x = a.
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Fig. 3.8. Equality of the two pure slip characteristics for an isotropic tyre model if plotted

against the theoretical slip.

u ' (a&x)σx

v ' (a&x)σy

We may write the longitudinal deflection u in terms of the ‘practical’
longitudinal slip κ = !Vsx /Vx :

(3.19)

In terms of the alternative definition of longitudinal slip: the ‘theoretical’ slip, to
be used in the subsequent section and defined as

(3.20)

(note, we restrict ourselves to non-negative speeds of rolling: Vr$ 0 and κ$!1)
we obtain:

(3.21)

In Section 3.2.l we found with Eqs.(3.1) and (3.10) for the lateral deflection at
pure side slip (σy = tanα):

(3.22)

Comparison of the equations (3.21) and (3.22) shows that the longitudinal
deformations u will be equal in magnitude to the lateral deformations v if σy =
tanα equals σx = κ /(1+κ ). For equal tread element stiffnesses (cpx = cpy ) and
friction coefficients (µx= µy) in lateral and longitudinal directions, the slip force
characteristics in both directions are identical when tanα and κ /(1+κ ) are used
as abscissa, cf. Fig.3.8. Also, Eq.(3.11) holds for the longitudinal force Fx if the
subscripts y are replaced by x and tanα by κ.

Obviously, total sliding will start at σx = κ /(κ + 1) = ±1/θx  or in terms of the
practical slip at:
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µ'µx'µy

κ ' κsl '
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1±θx

u ' (a&x)κ

Fx ' 2cpxa
2
κ

(3.23)

with

(3.24)

Linearisation for small values of slip κ yields a deflection at coordinate x:

(3.25)
and a fore and aft force

(3.26)

with cpx the longitudinal tread element stiffness per unit length. This relation
contains the longitudinal slip stiffness

(3.27)

For equal longitudinal and lateral stiffnesses (cpx = cpy ) we obtain equal slip
stiffnesses CFκ = CFα. In reality, however, appreciable differences between the
measured values of CFκ and CFα may occur (say CFκ about 50% larger than CFα)
which is due to the lateral (torsional) compliance of the carcass of the actual
tyre. Still, it is expected that qualitative similarity of both pure slip charact-
eristics remains.

3.2.3.  Interaction between Lateral and Longitudinal Slip (combined slip)

For the analysis of the influence of longitudinal slip (or longitudinal force) on the
lateral force and moment generation properties we shall, for the sake of
mathematical simplicity, restrict ourselves to the case of equal longitudinal and
lateral stiffnesses of the tread elements (isotropic model), i.e.:

(3.28)

and equal and constant friction coefficients

 (3.29)

Again a parabolic pressure distribution is considered.
Figure 3.9 depicts the deformations which arise when the tyre model which

runs at a given slip angle α is driven or braked. Due to the equal stiffness in all

CFκ ' (MFx /Mκ)
κ'0 ' 2cpx a 2
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  Fig. 3.9. Vector diagram and deformation of the brush model running at a given slip angle for
the cases of driving and braking.

horizontal directions and the isotropic friction properties, the deflections are
directed opposite to the slip speed vector Vs , also in the sliding region. In this
latter region, the tips of the elements slide over the road with sliding speed Vg

directed opposite to the local friction force q (per unit contact length). The whole
deformation history of a tread element while running through the contact area is
a one-dimensional process along the direction of Vs.

The velocity of progression of a base point through the contact length is the
rolling speed Vr (again assumed non-negative). The deflection rate of an element
in the adhesion region is equal to the slip speed Vs. The time which elapses from
the point of entrance to the point a distance x in front of the contact centre equals

 (3.30)
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In this position, the deflection of an element that is still in adhesion becomes in
vectorial form

(3.31)

It seems natural at this stage to introduce the alternative (theoretical) slip
quantity again, but now in vectorial form:

(3.32)

with the linear speed of rolling

(3.33)

The relations of these theoretical slip quantities with the practical slip quantities
κ (= !Vsx /Vx ) and tanα (= !Vsy /Vx ) are:

(3.34)

The deflection of an element in the adhesion region now reads

             (3.35)

from which it is apparent that longitudinal and lateral deflections are governed
by σx and σy respectively and independent of each other. This would not be the
case if expressed in terms of the practical quantities κ and α !

The local horizontal contact force acting on the tips of the elements (per unit
contact length) reads

(adhesion region)             (3.36)

As soon as

(3.37)

the sliding region is entered. Then the friction force vector becomes

(sliding region)              (3.38)

e '
u

v
' V s∆t ' &

V s

Vr

(a & x)
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where

(3.39)

and

(3.40)

Similarly, the magnitude of the deflection of an element becomes:

(3.41)

The point of transition from adhesion to sliding region is obtained from the
condition:

(3.42)

or

(3.43)

which yields

(3.44)

or in similar terms as Eq. (3.8):

    (3.45)

where analogous to expressions (3.6) and (3.24) for the isotropic model
parameter θ reads:

(3.46)

From Eq.(3.45) the slip σsl at which total sliding starts can be calculated. We get
analogous to (3.9)

(3.47)

The magnitude of the total force F= *F* now easily follows in accordance with
(3.11):

(3.48)

cpσ (a & xt) '
3

4
µ Fz

a 2
& x 2

t

a 3
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Fig. 3.10.  Equivalent side slip angle producing the same pneumatic trail t.

and obviously follows the same course as those shown in Fig.3.8. The force
vector F acts in a direction opposite to Vs or !σ. Hence

(3.49)

from which the components Fx and Fy may be obtained.
The moment !Mz is obtained by multiplication of Fy with the pneumatic trail

t. This trail is easily found when we realise that the deflection distribution over
the contact length is identical with the case of pure side slip if tanαeq =σ (cf. Fig.
3.10). Consequently, the formula (3.13) represents the pneumatic trail at
combined slip as well if θyσy is replaced by θσ. We have with (3.13):

   (3.50)

In Figs.3.11 and 3.12 the dramatic reduction of the pure slip forces (the side
force and the longitudinal force respectively) that occurs as a result of the
simultaneous introduction of the other slip component (the longitudinal slip and
the side slip respectively) have been indicated. We observe an (almost)
symmetric shape of these interaction curves. The peak of the side force vs
longitudinal slip curves at constant values of the slip angle appears to be slightly
shifted towards the braking side. This phenomenon will be further discussed in
connection with the alternative representation of the same results according to
Fig.3.13. At very large longitudinal slip that is when |Vsx|/Vx 64 the side force
approaches zero and the same occurs for the longitudinal force when the lateral
slip tanα goes to infinity (α 6 90E) at a given value of the longitudinal slip
because obviously in that case with Vx60 also the longitudinal slip speed must
vanish. For a locked wheel with Vsx = Vx and κ =!1 we have Fy = µFz sinα and
Fx =!µFz cosα.

In the diagram of Fig.3.13 the calculated variations of Fy and Mz with Fx have
been plotted for several fixed values of α. Also the curves for constant κ have
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been depicted. For clarification of the nature of the Fy!Fx diagram the deflection
of an element near the leading edge has been shown in Fig.3.14. Since the
distance from the leading edge has been defined for this occasion to be equal to
unity the deflection e of the element equals the slip σ. The radius of the circle
denoting maximum possible deflections is equal to σsl. The two points on the
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circle where at the α considered the sliding boundary σsl is attained correspond
to the points on the α curve of the force diagram of Fig.3.13. This also explains
the slightly inclined nature of the α curves. At braking, Fy appears to be a little
larger than at driving. This is at least true for the two cases of Fig.3.9, one at
driving and the other at braking, showing the same slip angle and the same
magnitude of the deviation angle δ of the slip velocity vector and thus of the
force vector with respect to the y axis. Then, the slip speeds Vs are equal in
magnitude, but at braking the speed of rolling Vr is obviously smaller. When
considering the definition of the theoretical slip σ (3.32) and the functional
relationship (3.48) with the force F it becomes clear that F must be larger for the
case of braking because of the then larger magnitude of σ.  Finally, the case of
wheel lock is pointed at. Then, the force vector F which in magnitude is equal
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to µFz , is directed opposite to the speed vector of the wheel V which then
coincides with the slip speed vector Vs.

Experimental evidence (e.g. Fig.3.17) supports the nature of the theoretical
curves for the forces as shown in Fig.3.13. Often, the shape appears to be more
asymmetric than predicted by the simple brush model. This may be due to a
slight increase in the contact length while braking (making the tyre stiffer) and
by the brake force induced slip angle of the contact patch at side slip. This is
accomplished through the torsion of the carcass induced by the moment about
the vertical axis that is exerted by the braking force which has shifted its line of
action due to the lateral deflection connected with the side force. The more
advanced model to be developed further on in this chapter will take the latter
effect into account.

The moment curves presented in the lower diagram of Fig.3.13 show a more
or less symmetrical bell shape. As expected, the aligning torque becomes equal
to zero when total sliding occurs (σ $σsl ). Later on, we will see that these
computed moment characteristics may appreciably deviate from experimentally
obtained curves.

At this stage, we will first apply the knowledge gained sofar to the analysis
of a practical situation that occurs with a wheel that is braked or driven (at
constant brake pressure and throttle respectively) while its slip angle is varied.

In Fig.3.15 the force diagram is shown in combination with the corresponding
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velocity diagram. At a given braking force !Fx and wheel speed of travel V, the
slip angle α is changed from zero to 90E. The variation of slip speed Vs and
rolling speed Vr may be followed from case 1 where α = 0 to case 3 where total
sliding starts and further to case 4 where Vr and thus Ω vanishes and the wheel
becomes locked. A further increase of α (at constant brake pedal force) as in case
5 will necessarily lead to a reduction in braking force !Fx unless the wheel is
rotated in opposite direction (Ω < 0) as represented by case 5'. In the cases of
driving indicated by Roman numerals the driving force Fx can be maintained
irrespective of the value of α (with *α* < 90E).

The nature of the resulting Fy ! α characteristics at given driving or braking
effort is shown in Fig.3.16. Plotting of Fy versus sinα is advantageous because
the portion where wheel lock occurs is then represented by a straight line.

Another important advantage of putting sinα instead of tanα along the
abscissa is that (after having completed the diagram for negative values of sinα
resulting in an oddly symmetric graph) the complete range of α is covered: the
speed vector V may swing around over the whole range of 360E. An application
in vehicle dynamics will be discussed in Section 3.4 of this chapter (yaw
instability at locked rear wheels).

For illustration we have shown in Figs.3.17 and 3.18 experimentally assessed
characteristics. The force diagrams correspond reasonably well with the
theoretical observations. The moment curves, however, deviate considerably
from the theoretical predictions (compare Fig.3.18 with Fig.3.13). It appears that
according to this figure Mz changes its sign in the braking half of the diagram.
This phenomenon can not be explained with the simple tyre brush model that has
been employed thus far. 

The introduction of a laterally flexible carcass seems essential for properly
modelling Mz that acts on a driven or braked wheel. In Fig.3.19 a possible
extension of the brush model is depicted. The carcass line is assumed to remain
straight and parallel to the wheel plane in the contact region. A lateral and
longitudinal compliance with respect to the wheel plane is introduced. In
addition, a possible initial offset of the line of action of the longitudinal force
with respect to the wheel centre plane is regarded. Such an off set is caused by
asymmetry of the  construction of the tyre or by the presence of a camber angle.

With this model the moment Mz is composed of the original contribution Mz'
established by the brush model and those due to the forces Fy and Fx which show
lines of action shifted with respect to the contact centre C over the distances uc

and vo + vc respectively. The self-aligning torque now reads: 

Mz ' MzN&Fx vo%vc % Fy uc
       (3.51)

' Mz' & c Fx Fy & Fx vo
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Fig. 3.19. Extended tyre brush model showing off set and deflection of carcass line (straight
and parallel to wheel plane).

where the compliance coefficient c has been introduced that is defined by:

(3.52)c '
gy

Ccy

&

gx

Ccx

Here, Ccx and Ccy denote the longitudinal and lateral carcass stiffnesses
respectively and gx and gy the effective fractions of the actual displacements.
These fractions must be considered because of concurrent lateral and
longitudinal rolling of the tyre lower section against the road surface under the
action of a lateral and fore and aft force respectively which will change the
normal force distribution in the contact patch and thereby reduce the actual
displacements of the lines of action of both horizontal forces. The resulting
calculations can be performed in a direct straightforward manner because the slip
angle of the extended model is the same as the one for the internal brush model.
Later on, in Section 3.3, the effect of the introduction of a torsional and  bending
stiffness of the carcass and belt will be discussed. The resulting model, however,
is a lot more complex and closed form solutions are no longer possible. In
Section 3.3 the technique of the tread element following method will be employed
in the tread simulation model to determine the response.

The combined slip response of the simple extended model of Fig.3.19 is given
in the Figs.3.20 and 3.21. It is observed that in Fig.3.20 the aligning torque
changes its sign in the braking range. This is due to the term in Eq.(3.51) with
the compliance coefficient c. The resulting qualitative shape is quite similar to
the experimentally found curves of Fig.3.18. In Fig.3.21 the effect of an initial
off set of vo = 5mm has been depicted.

 Here carcass compliance has been disregarded and only the last term of
(3.51) has been added. We see that a moment is generated already at zero slip
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angle. The curves found in Fig.3.13 for non-zero side slip are then simply added
to the inclined straight line belonging to α= 0. The type of curves that result are
often found experimentally. The effect of lateral compliance may then be very
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small or cancelled out by the effect of the fore and aft compliance of the carcass
(second term of right-hand member of (3.52)).

Exercise 3.1.  Characteristics of the brush model

Consider the brush tyre model as treated in Section 3.2. Elastic and frictional
properties are the same in all horizontal directions and Eq.(3.46) holds.
For 0 # α # ½π the side force characteristic is described by (according to Eq.(3.11))

Fy = µFz (3θ tanα !3θ 2 tan2
α + θ 3 tan3

α)            (α # αsl )
Fy = µFz (α $ αsl )

1. Calculate the value of θ and tanαsl for
µFz = 2000 N
CFα = 18000 N/rad

2. Sketch the Fy(tanα) characteristic and also the Mz(tanα) and t(tanα) curves
(according to Eqs.(3.12, 3.13)) for

a = 0.1 m
3. Replace in the Fy(tanα) diagram the ordinate Fy by F and the abscissa tanα by σ

thereby assessing the total force vs slip diagram. Calculate the slip values σx , σy

and σ using equations (3.34) and (3.40) for one value of tanα = 0.15 and a number
of values of κ in a suitable range (e.g. from !1/θ to +1/θ ). Determine the force
vector F for each of the κ values and sketch the Fy!Fx curve for tanα = 0.15. Draw
the friction circle with radius Fmax = µFz in which the curve  will appear. Note the
two points where σ= σsl (= tanαsl) where the curve touches the circle. Indicate the
point where wheel lock occurs.

4. Replace in the t(tanα) diagram the abscissa by σ thereby establishing the t(σ)
diagram. Determine the values of Mz’ = !tFy for the same series of κ values and
tanα = 0.15.

5. Now use Eq.(3.51) and calculate the torque Mz for a lateral carcass stiffness Ccy =
60000 N/m  (Ccx64) and disregard the correction factor gy (=1).

6. Draw for the cases mentioned in question 3 where the α curve touches the friction
circle (σ= σsl), the force and velocity diagram according to Fig.3.15. Do the same
for the case of wheel lock.

7. Sketch the Fy (sinα) characteristics (Fig.3.16) for Fx = 0 and also for that constant
brake pedal force corresponding to the value of !Fx where the tanα = 0.15 curve
touches the friction circle (σ= σsl).
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Fig. 3.22. Wheel rolling at a camber angle while turning along a circular path without side slip.
At the right: a top-view of the peripheral line of the non-rolling wheel considered as
being a part of an imaginary ball pressed against a flat surface.

3.2.4.  Camber and Turning  (Spin)

For the study of horizontal cornering, one should not only consider side slip but
also the influence of two other effects, which in most cases (except for the
motorcycle) are of much less importance than side slip. The introduction of these
two input variables which completes the description of the out-of-plane tyre force
and moment generation, are firstly the wheel camber or tilt angle γ between the
wheel plane and the normal to the road (cf. Fig.2.6), and secondly the turn slip

/Vx. Both are components of the total spin n. For a general discussion on spinψ0

we may refer to Pacejka (2004). First, we will analyse the situation in the
absence of lateral and longitunal wheel slip.

Pure spin

In the steady-state case the turn slip equals the curvature 1/R of a circular path
with radius R. For homogeneous rolling bodies (solid rubber ball, steel railway
wheel) the mechanisms to produce side force and moment as a result of camber
and turning are equal as they both originate from the same spin motion (cf. Eq.
(2.17)). For a tyre with its rather complex structure the situation may be
quantitatively different for the two components of spin.

As depicted in Fig.3.22, the wheel is considered to move tangentially to a
circular horizontal path with radius R while the wheel plane shows a constant
camber angle γ and apparently the slip angle is kept equal to zero. The wheel is
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picturised here as a part of an imaginary ball. When lifted from the ground, the
intersection of wheel plane and ball outer surface forms the peripheral line of the
tyre. When loaded vertically, the ball and consequently the peripheral line are
assumed to show no horizontal deformations, which in reality will approximately
be the case for a homogeneous ball showing a relatively small contact area.

We apply the theory of a rolling and slipping body and consider equations
(2.55, 2.56) and restrict ourselves to the case of steady-state pure spin, that is:
with α = κ = 0. Then with turn slip velocity ωzt =  in Fig.3.22 we find ψ0

(3.53)

Furthermore, the difference between (x,y) and (xo,yo) will be neglected and tyre
conicity and ply-steer disregarded. The correction factors θ attributed to camber
may be approximated by:

(3.54)

with both reduction factors g equal or close to zero for a railway wheel or a
motorcycle tyre and expected to be closer to unity for a steel belted car or truck
tyre, cf. discussion below Eq.(3.117). With both factors assumed equal and
denoted as gγ we may define a total actual spin

(3.55)

The last term represents the curvature !1/Rγ of the tyre peripheral line touching
a frictionless surface at a cambered position. When disregarding a possible
uniform offset of this line we obtain when integrating (2.52) by using (3.54) and
approximating (2.51) by taking :0xo' 0x' reΩ

(3.56)

which reduces expressions (2.55, 2.56) for the sliding velocities with (3.53-55)
to:

(3.57)

In the range of adhesion where the sliding velocities vanish, the deflection
gradients become:

n ' &

1
Vc

{ψ0 & (1 & g
γ
)Ω sinγ} ' &

1
R
%

1 & g
γ

re

sinγ

θ
γx(y) ' &g

γx , θy(x,y) ' &g
γy

x
re

sinγ



120 THEORY OF STEADY-STATE SLIP FORCE AND MOMENT GENERATION

Mz'
4

3
cNpx a 2 b 3

n' CMnn

u ' yxn % C1

v ' &½x 2
n % C2

x ' a : v ' u ' 0

u ' &y (a & x)n

v ' ½(a 2
& x 2)n

Fy '
4

3
cNpy a 3 bn ' CFnn

(3.58)
du
dx

' yn , dv
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' &xn

Integration yields the following expressions for the horizontal deformations in the
contact area:

(3.59)

The second expression is, of course, an approximation of the actual variation
which is according to a circle. The approximation is due to the assumption made
that the deflections v are much smaller than the path radius R. The constants of
integration follow from boundary conditions which depend on the tyre model
employed and on the slip level. As an example, consider the simple brush model
with horizontal deformations through elastic tread elements only. The contact
area is assumed to be rectangular with length 2a and width 2b and filled with an
infinite number of tread elements. In Fig.3.23 three rows of tread elements have
been shown in the deformed situation. For this model the following boundary
conditions apply:

(3.60)

With the use of (3.59) the formulae for the deformations in the adhesion zone
starting at the leading edge read:

(3.61)

After introducing c'px and c'py denoting the stiffness of the tread rubber per unit
area in x and y direction respectively and assuming small spin and hence
vanishing sliding, we can calculate the lateral force and the moment about the
vertical axis by integration over the contact area. We obtain:

(3.62)

or in terms of  path curvature (if α/ 0 or constant) and camber angle (γ small):

(3.63)
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Fig. 3.23.   Top-view of cambered tyre model rolling in a curve with radius !R.

In case of pure turning, the force acting on the tyre is directed away from the
path centre and the moment acts opposite to the sense of turning. Consequently
both the force and the moment try to reduce the curvature 1/|R|. In case of pure
camber, the force on the wheel is directed towards the point of intersection of the
wheel axis and the road plane, while the moment tries to turn the rolling wheel
towards this point of intersection. No resulting force or torque is expected to
occur when (1!gγ)sinγ = re /R. For the special case that gγ = 0, this will occur
when the point of intersection and the path centre coincide. As the lateral
deflection shows a symmetric distribution, the moment must be caused solely by
the longitudinal forces. The generation of the moment may be explained by
considering three wheels rigidly connected to each other, mounted on one axle.
The wheels rotate at the same rate but in a curve the wheel centres travel
different distances in a given time interval and when cambered, these distances
are equal but the effective rolling radii are different. In both situations opposite
longitudinal slip occurs, which results in a braked and a driven wheel (in
Fig.3.23 the right and the left-hand wheel respectively) and consequently in a
couple Mz.

Up to now we have dealt with the relatively simple case of complete adhesion.
When sliding is allowed by introducing a limited value of the coefficient of
friction µ , the calculations become quite complicated. When a finite width 2b is
considered, complete adhesion will only occur for vanishing values of spin. We
expect that sliding will start at the left and right rear corners of the contact area,
since in these points the available horizontal contact forces reduce to zero and
the longitudinal deformations u would become maximal in the hypothetical case
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that µ 64. The zones of sliding grow with increasing spin and will thereby cause
a less than proportional variation of Fy and Mz with n. The case of finite contact
width is too difficult to handle by a simple analysis. It will be dealt with later on
in Section 3.3 when the tread element following simulation method is introduced.

For now we assume a thin tyre model with b = 0. If, as before, a parabolic
pressure distribution is assumed with a similar variation of the maximum
possible lateral deflection vmax, it is obvious from Eq.(3.61) showing that the
lateral deflection is also (approximately) parabolic, that no sliding will occur up
to a certain critical value of spin nsl, where the adhesion limit is reached
throughout the contact length. Up to this point Fy varies linearly with n and Mz

remains equal to zero.
According to Eq.(3.63) with gγ assumed to take a value that is minimally

equal to zero, spin due to camber theoretically cannot exceed the value 1/re.
Consequently, at larger values of spin turn slip must be involved. Beyond the
critical value nsl the situation becomes quite complex. The discussion may be
simplified by considering a turn table on top of which the wheel rolls with its
spin axis fixed. The condition of adhesion is satisfied when the deflections
remain within the boundaries given by the parabola’s ±vmax as indicated in
Fig.3.24a. In the same figure the corresponding situation at camber has been
indicated at the same value of spin with curvature 1/Rγ of the deflected peripheral
line (yγo , Eq.(3.56)) on a µ = 0 surface equal to the path curvature 1/R.
 Sliding occurs as soon as the points of the table surface can cross the
adhesion boundary ±vmax. This occurs  simultaneously for all the points in the
front half of the contact line when the path curvature exceeds the curvature of
the adhesion boundary. Once the contact point arrives in the rear half of the
contact zone (at x = 0), the point can maintain adhesion because now the point
on the table moves towards the inside of the adhesion boundaries. The point
follows a circle until the opposite boundary is reached at x=xs2 (cf. Fig.3.24b,c)
where the deformation v is opposite in sign and reaches its maximum value vmax,
after which sliding occurs again. With increasing turn slip n (= !1/R) this latter
sliding zone grows. At the same time the side force Fy decreases and the torque
Mz, that arises for n>nsl, increases until the situation is reached where R and Fy

approach zero and Mz attains its maximum value (tyre standing still and rotating
about its vertical axis). In Fig.3.24c the radius R has been considered large with
respect to half the contact length a. Then the circle segments may be
approximated by parabolas which makes the analysis a lot simpler. In the lower
part of the figure a camber equivalent graph has been depicted. The curved
contact line in the adhesion range is then converted to a straight (horizontal) line.
The graph is obtained from the turn slip graph by subtracting from all the curves
the deflection vn4 that would occur if full adhesion can be maintained (e.g. at µ
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64). We use this graph as the basis for the calculation of the force and moment
response to spin. First for the case of pure spin and then for the case of combined
spin and side slip.
 The parameter θy defined by Eq.(3.6) is used again and the maximum possible
lateral deflection reads according to (3.5):

(3.64)

The deflection at assumed full adhesion would become:

(3.65)

Equating the deflection at full sliding to the one at full adhesion yields the spin
at the verge of sliding:

(3.66)

The locations of the transition points indicated in Fig.3.24c are found to be given
by the coordinates:

(3.67)

The deflections become in the first and second sliding regions and in the adhesion
region respectively:

(3.68)

Integration over the contact length yields for the side force:

(3.69)

and for the moment:

(3.70)

At n=n sl the force reduces to µFz sgnn and the moment to zero. The same can
be obtained from the expressions (3.62) holding for the case of full adhesion
when 2c'py b is replaced by cpy and the width 2b is taken equal to zero. 



124 THEORY OF STEADY-STATE SLIP FORCE AND MOMENT GENERATION

Vc

-R

vmax

x

y
v

Vc

-v
max

x
y

v
yλ

v

camber graph

contact line

contact line

wheel plane

peripheral line on 
frictionless surface

turn slip  graph

-Rλ

-R

x

y

v

-vmax

vmax

M Fz
y

contact line

'large' turn slip

wheel plane

4
v    (as if σ 64)
(contact line if σ 64)

x

y

v

-vmax

vmax

4
v    (as if σ 64)

y (=-λ v   )
4

4
upward shifted v    

v
λequivalent graph

x

y

-y

-x
x =0s1

s2

s2

'large' turn slip 

contact line

(|R|  >a)

M Fz
y

contact line

wheel plane

y =y -vλ maxmaxL

y     =y +v λ  maxmaxR

 > 

         a

                 

     b

    c      
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Fig. 3.25.  Force and moment vs non-dimensional spin for single row brush model.

For spin approaching infinity, that is when the radius R60, the force Fy vanishes
while the moment reaches its maximum value:

(3.71)

In Fig.3.25 the pure spin characteristics have been presented according to the
above expressions. It is of interest to note that although the parabola does not
resemble the circular path so well at smaller radii, the resulting response seems
to be acceptable at least if the deflections remain sufficiently small.

Spin and side slip

In the analysis of combined spin and side slip we may distinguish again between
the cases of small and large spin. As before, at small spin we have only a sliding
range that starts at the rear end of the contact line, whereas at large spin we have
an additional sliding zone that starts at the leading edge. First we will consider
the simpler case of small spin.

In Fig.3.26 an example is shown of the single row brush model, both for the
cases of turning and (equivalent) camber. In the camber graph, the curves ymaxL

and ymaxR have been drawn which indicate the maximum possible displacements
of the tips of the elements to the left and to the right with respect to the yγo line.
The shaded area corresponds to the deformation of the brush model when
subjected solely to the slip angle with the maximum possible deflection !vmax

replaced by (in this case with negative slip angle) ymaxL. This would correspond
to the introduction of an adapted friction coefficient µ  or parameter θy.
Apparently, the actual deflection of the elements at camber and side slip is then
obtained by adding the deflection vn4 that would occur when the model would be
subjected to spin only and full adhesion is assumed. The adapted parameter θy
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 Fig. 3.26. The brush model turning at ‘small’ spin or subjected to camber at the same level
of spin while running at a slip angle.

turns out to read:

     with (3.72)

with the condition for the spin to be ‘small’:

(3.73)

The side force becomes similar to Eq.(3.11) with the camber force at full
adhesion added:
if *tanα* = |σy| # σy,sl = 1/θy

*

 (3.74)

and if *tanα* = |σy| > σy,sl

(3.74a)

For the moment we obtain:

θy '
2cpy a 2

3µFz
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if *tanα* = |σy| # σy,sl = 1/θy
*

(3.75)

and if *tanα* = |σy| > σy,sl

(3.75a)

We may introduce a pneumatic trail t
α
 that multiplied with the force Fyα due to

the slip angle (with the last term of (3.74) omitted) produces the moment !Mz:

if *tanα* = |σy| # σy,sl = 1/θy
*

(3.76)

and else: t
α
 = 0.

The graph of Fig.3.27 clarifies the configuration of the various curves and
their mutual relationship. For different values of the camber angle γ the
characteristics for the force and the moment versus the slip angle have been
calculated with the above equations and presented in Fig.3.28. The
corresponding Gough plot has been depicted in Fig.3.29. The relationship
between γ and the spin n follows from Eq.(3.55).
 The curves established show good qualitative agreement with measured
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characteristics. Some details in their features may be different with respect to
experimental evidence. In the next section where the simulation model is
introduced, the effect of various other parameters like the width of the contact
patch and the possibly camber dependent average friction coefficient on the peak
side force will be discussed.

The next item to be addressed is the response to large spin in the presence of
side slip. Figures 3.30a,b refer to this situation. Large spin with two sliding
ranges occurs when the following two conditions are fulfilled.
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& x 2
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y1 ' & A1
a 2

& x 2

a
sgnn

p '
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a
sgnn , q ' tanα , r ' aA2 sgnn%ys1%xs1tanα

y2 ' ys1 % (xs1 & x) tanα

ys1 ' y1(xs1)

and               (3.77)|n | $ nl '
1

aθy

tan|α | # a |n | & 1
θy

(>0)

If the second condition is not satisfied we have a relatively large slip angle and
the equations (3.74,3.75) hold again. This situation is illustrated in Fig.3.30c.

For the development of the equations for the deflections we refer to Fig.3.30a
with the camber equivalent graph. First, the distances y will be established and
then the deflections vn4 will be added to obtain the actual deflections v. Adhesion
occurs in between the two sliding ranges. The straight line runs parallel to the
speed vector and touches the boundary ymaxR . The tangent point forms the first
transition point from sliding to adhesion. More to the rear, the straight line
intersects the other boundary ymaxL . With the following two quantities introduced

(3.78)

we derive for the x-coordinates of the transition points:

(3.79)

and

(3.80)

with

(3.81)

The distances y in the first sliding region (xs1 < x < a) read:

(3.82)

in the adhesion region  (xs2 < x < xs1):

(3.83)

with

(3.84)

and in second sliding range (!a < x < xs2):

(3.85)

A1 '
1

2
a |n | & 1

θy

, A2 '
1

2
a |n | % 1

θy

xs2 ' &

q % sgnn q 2
% 4pr

2p
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x 3
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Integration over the contact length after addition of vn4 and multiplication with
the stiffness per unit length cpy gives the side force and after first multiplying
with x the aligning torque. We obtain the formulae:

(3.86)

(3.87)

The resulting characteristics have been presented in Figs.3.31 and 3.32. The
graphs form an extension of the diagram of Fig.3.28 where the level of camber
correspond to ‘small’ spin. It can be observed that in accordance with Fig.3.25
the force at zero side slip first increases with increasing spin and then decays. As
was the case with smaller spin for the case where spin and side slip have the
same sign, the slip angle where the peak side force is reached becomes larger.
When  the signs of both slip components have opposite signs, the level of side
slip where the force saturates may become very large. As can be seen from
Fig.3.30b the deflection pattern becomes more anti-symmetric when with positive
spin the slip angle is negative. This explains the fact that at higher levels of spin
the torque attains its maximum at larger slip angles with a sign opposite to that
of the spin.  The observation concerning the peak side force, of course, also holds
for the slip angle where the torque reduces to zero. 

Spin, longitudinal and side slip, the width effect

The width of the contact patch has a considerable effect on the torque and
indirectly on the side force because of the consumption of some of the friction by
the longitudinal forces involved. Furthermore, for the actual tyre with carcass
compliance, the spin torque will generate an additional distortion of the carcass
which results in a further change of the effective slip angle (beside the distortion
already brought about by the aligning torque that results from lateral forces).
Amongst other things, these matters can be taken into account in the tread
simulation model to be dealt with in Section 3.3. 

In the part that follows now, we will show the complexity involved when
longitudinal slip is considered beside spin and side slip. To include the effect of
the width of the contact patch we consider a model with a left and a right row of
tread elements positioned at a distance yL =!brow and yR = brow from the wheel
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centre plane. In fact, we may assume that we deal with two wheels attached to
each other on the same shaft at a distance 2brow from each other. The wheels are
subjected to the same side slip and turn slip velocities, Vsy and , and show theψ0

same camber angle γ. However, the longitudinal slip velocities are different, for
the case of camber because of a difference in effective rolling radii. We have for
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the longitudinal slip velocity of the left or right wheel positioned at a distance yL,R

from the centre plane:

(3.88)

This expression is obtained by considering Eq.(2.55) in which conicity is
disregarded, steady-state is assumed to occur and the camber reduction factor gγ

is introduced. The factors θ are defined as (like in (3.54, 3.55)):

(3.89)

From Eqs.(2.55, 2.56) using (3.88) the sliding velocity components are obtained

(3.90)

(3.91)

After introducing the theoretical slip quantities for the two attached wheels

(3.92)

we find for the gradients of the deflections in the adhesion zone (where Vg = 0)
if small spin is considered (sliding only at the rear):

(3.93)

(3.94)

which yields after integration for the deflections in the adhesion zone (x < xt):

(3.95)

(3.96)

The transition point from adhesion to sliding, at x= xt, can be assessed with the
aid of the condition

(3.97)
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Fig. 3.33. Enhanced model with deflected carcass and tread element that is followed from front
to rear.

eL,R ' |eL,R* ' u 2
L,R % v 2

with the magnitude of the deflection

(3.98)

Solving for xt and performing the integration over the adhesion range may be
carried out numerically. In the sliding range, the direction of the deflections vary
with x. As an approximation one may assume that these deflections e (for an
isotropic model) are all directed opposite to the slip speed VsL,R. Results of such
integrations yielding the values of Fx, Fy and Mz will not be shown here. We refer
to Sakai (1990) for analytical solutions of the single row brush model at
combined slip with camber.

3.3.  The Tread Simulation Model 

In this section a methodology is developed that enables us to investigate effects
of elements in the tyre model which were impossible to include in the analytical
brush model dealt with in the preceding Section 3.2. Examples of such
complicating features are: arbitrary pressure distribution; velocity and pressure
dependent friction coefficient; anisotropic stiffness properties; combined lateral,
longitudinal and camber or turn slip; lateral, bending and yaw compliance of the
carcass and belt; finite tread width at turn slip or camber.

The method is based on the time simulation of the deformation history of one
or more tread elements while moving through the contact zone. The method is
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Fig. 3.34. The isotropic tread element with deflection e in two successive positions i!1 and i.
Its base point B moves with speed Vb and its tip P slides with speed Vg.

very powerful and can be used either under steady-state or time varying
conditions. In the latter non-steady situation we may divide the contact length
into a number of zones of equal length in each of which a tread element is
followed. In case of turning or camber the contact patch should be divided into
several parallel rows of elements. While moving through the zones the forces
acting on the elements are calculated and integrated. After having moved
completely through a zone the integration produces the zone forces. These forces
act on the belt and the corresponding distortion is calculated. With the updated
belt deflection the next passage through the zones is performed and the
calculation is repeated. 

Here, we will restrict the discussion to steady-state slip conditions and take
a single zone with length equal to the contact length. In Section 2.5 an
introductory discussion has been given and reference has been made to a number
of sources in the literature. The complete listing of the simulation program
TreadSim written in Matlab code is given in Appendix 2. For details we may
refer to this program. 

Figure 3.33 depicts the model with deflected belt and the tread element that
has moved from the leading edge to a certain position in the contact zone.  In
Fig.3.34 the tread element deflection vector e has been shown. The tread element
is assumed to be isotropic thus with equal stiffnesses in x and y direction. Then,
when the element is sliding, the sliding speed vector Vg , that has a sense opposite
to the friction force vector q , is directed opposite to the deflection vector e. The
figure depicts the deflected element at the ends of two successive time steps i!1
and i. The first objective is now to find an expression for the displacement g of
the tip of the element while sliding over the ground. 

The contact length is divided into n intervals. Over each time step )t the base
point B moves over an interval length towards the rear. With given length:

(3.99)∆x ' 2a
n
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Vsx ' &Vcxκ , Vr ' reΩ ' Vcx&Vsx , Vsy ' &Vcx tanα

∆s ' Vb∆t

Vbx ' Vsx&ybo (ψ0 &Ω sinγ)&θcon,x(y) Vr%θγx(y) yboΩsinγ

∆t ' ∆x
Vr

Vby ' Vsy%xbψ0 &
Myb

Mxb

Vr

ybo ' ±brow

and the linear speed of rolling Vr = reΩ the time step ∆t is obtained:

(3.100)

With the velocity vector Vb of point B the displacement vector ∆s of this point
over the time step becomes:

(3.101)

The base point B moves along the belt peripheral line or a line parallel to this
line. With the known lateral coordinate yb of this line of base points with respect
to the wheel centre plane, the local slope Myb /Mx can be assessed. Then, with the
slip velocity Vs of the slip point S, the yaw rate of the line of intersection  andψ0

the rolling speed Vr , the components of Vb can be found.
The velocity of point B may be considered as the sliding velocity of this point

with respect to the ground and we may employ the equations (2.55,2.56) for its
assessment. In these equations, at steady state, the time derivatives of u and v
vanish, the slope Mu/Mx is replaced by zero and for Mv/Mx we take the gradient of
the belt deflection caused by the external force and moment. We have with
average x position xb = x + 0.5∆x :

(3.102)

and

(3.103)

with the slip and roll velocities

(3.104)

The lateral displacement yb of the belt at the contact centre is attributed to
camber, conicity and the lateral external force (through the lateral compliance
of the carcass). The gradient Myb /Mxb may be approximately assessed by
assuming a parabolic base line yb(xb) exhibiting an average slope cs influenced
by the aligning torque (through the yaw compliance) and ply-steer, and a
curvature cc influenced by the side force (through the bending stiffness) and
camber and conicity (cf. (3.56)). We have for the lateral coordinate:

(3.105)

and for its approximation used in (3.102):

(3.106)

yb ' &

a 2

2re

1&g
γy (γcon% sinγ)%
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%cs xb%
1

2
cc x 2

b ± brow
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e i ' ei&1%g i & ∆s i

and the slope:

(3.107)

Conicity and ply-steer will be interpreted here to be caused by ‘built-in’ camber
and slip angles. These equivalent camber and slip angles γcon and αply are
introduced in the expressions of the quantities θ. We define:

(3.108)
and

(3.109)

The coefficients gγx and gγy may be taken equal to each other. The first term of the
displacement (3.105) is just a guess. It constitutes the lateral displacement of the
base line at the contact centre when the tyre is pressed on a frictionless surface
in the presence of conicity and camber. The displacements at the contact leading
and trailing edges are assumed to be zero under these conditions.The
approximation ybo (3.106) is used in (3.102) to avoid apparent changes in the
effective rolling radius at camber. The actual lateral coordinate yb (3.105) plus
a term yrγ is used to calculate the aligning torque. With this additional term the
lateral shift of Fx due to sideways rolling when the tyre is being cambered is
accounted for. We have yb,eff = yb + yrγ with yrγ = gyrγ bsinγ with an upper limit of
its magnitude equal to b. The moment  causes the torsion of the contact patchMz'
and is assumed to act around a point closer to its centre like depicted in Fig.3.19.
A reduction parameter  is used for this purpose. More refinements may begy'
introduced. For details we refer to the complete listing of the program TreadSim
included in the Appendix.

With the displacement vector ∆s (3.101) established we can derive the change
in deflection e over one time step. By keeping the directions of motion of the
points B and P in Fig.3.34 constant during the time step, an approximate
expression for the new deflection vector is obtained. After the base point B has
moved according to the vector ∆s we have:

      with   (3.110)g i ' &

gi

ei&1
ei&1

Here, ei-1 denotes the absolute value of the deflection and gi the distance P has
slided in the direction of !ei-1. In case of adhesion, the sliding distance gi = 0.
When the tip slides, the deflection becomes:

θ
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(3.111)

From (3.110) an approximate expression for gi can be established, considering
that g is small with respect to the deflection e. We obtain:

(3.112)

in which expression (3.111) is to be substituted. If gi is positive, sliding remains.
If not, adhesion commences. In the case of sliding, the deflection components can
be found from (3.110) using (3.112). Then, the force vector per unit length is:

(3.113)

If adhesion occurs, gi = 0 and with (3.110) the deflection is determined again.
The force per unit length now reads:

(3.114)
As soon as the condition for adhesion

(3.115)

is violated, sliding begins. The sliding distance gi is calculated again and its sign
checked until adhesion may show up again.

In (3.113) the friction coefficient appears. This quantity may be expressed as
a function of the sliding velocity of the tip of the element over the ground.
However, this velocity is not available at this stage of the calculation. Through
iterations we may be able to assess the sliding speed at the position considered.
Instead, we will adopt an approximation and use the velocity of the base point
(3.102, 3.103) to determine the current value of the friction coefficient. The
following functional relationship may be used for the friction coefficient versus
the magnitude of the approximated sliding speed Vb :

(3.116)

During the passage of the element through the contact zone the forces ∆Fi are
calculated by multiplying qi with the part of the contact length ∆x covered over
the time step ∆t.

Subsequently, the total force components and the aligning moment are found
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by adding together all the contributions ∆Fxi , ∆Fyi , and xbi∆Fyi ! ybi,eff∆Fxi

respectively. A correction to the moment arm may be introduced to account for
the side ways rolling of the tyre cross section while being cambered and deflected
(causing lateral shift of point of action of the resulting normal load Fz and
similarly of the longitudinal force Fx). Also, the counter effect of the longitudinal
deflection uc may contribute to this correction factor, cf. Eq.(3.51).

In the sequel a number of example results of using the tread simulation model
have been presented. The following cases have been investigated:

1. Sliding velocity dependent friction coefficient (rigid carcass but
parameter c of Eq.(3.52) is included). (Fig.3.35a)

2. Flexible carcass, without and with camber. (Fig.3.35b)
3. Finite tread width (two rows of tread elements,  flexible carcass), with

and without camber. (Fig.3.35c)
4. Combined lateral and turn slip (two rows, flexible carcass). (Fig.3.35d)
5. Pneumatic trail at pure side slip (flexible and rigid carcass). (Fig.3.36)

The computations have been conducted with the set of parameter values listed
in Table 3.1.

Table 3.1.   Parameter values used in the tread simulation model (Figs. 3.35-3.37)

a 0.1m Fz 3000 N clat 100 kN/m CFκ 15Fz

b 0.08m Vc 30 m/s cbend 4 kNm yo 0 :vo Eq.(3.51)

brow 0.05m µo 1.0 cyaw 6 kNm/rad αply 0

re 0.3 m aµ 0, 0.03s/m c 1/clat γcon 0

gyrγ 4.0 other g’s = 0     cp = CFκ /(2a2 nrow) θ= CFκ /(3 µo Fz)

In case of a ‘rigid’ carcass, parameter c (=0.01m/kN), Eq.(3.52), is used while
clat, cbend, cyaw 64. As indicated, quantities cp and θ follow from the model
parameters.

The graphs of the lower half of Fig.3.35a relative to the upper half show the
most prominent effect of a with sliding velocity decreasing friction coefficient.
At aµ =0.03 the side force Fy exhibits a clear peak at a slip angle of about seven
degrees when the wheel is rolling freely (κ= 0). Also the fore and aft force Fx

tends to decrease after having reached its peak value. The inward endings of the
curves at constant values of slip angle shown in the bottom diagram are typical
especially for a tyre running on wet road surfaces. The peak values themselves
will decrease when the speed of travel is increased (not shown) while the initial
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slopes (slip stiffnesses) remain unchanged. The change in sign of the aligning
torque in the braking range of its diagram occurs because of the retained
parameter c that produces the effect of the flexible carcass according to
Eqs.(3.51,3.52). The expected change in sign of the aligning torque curve at pure
side slip at higher levels of side slip does not occur due to the limitation of the
estimation of the sliding speed for which the speed of a point of the belt is taken
(here rigid). In Fig.3.35b with the carcass considered flexible this sign change
does show up as illustrated in the upper right diagram.

A more important effect of the flexible carcass presented in Fig.3.35b is the
decreased cornering stiffness while the fore and aft slip stiffness remains the
same. The lower value of Fy at α = 2E in the Fy vs Fx diagram clearly demon-
strates this effect. The aligning torque, however, is not so much affected. This
due to the larger pneumatic trail which is a result of the curved deflection line of
the belt. Figure 3.36 shows the pneumatic trail diagram for the model with and
without carcass compliance (the number of rows has no influence in case of zero
spin). As expected, the simple brush model with rigid carcass has a trail of 0.33a
when the slip angle approaches zero. The flexible carcass model considered
features a pneumatic trail of about 0.46a. See Fig.3.38 for the deflection pattern.

The influence on the curves of the introduction of the relatively large camber
angle of 10E is indicated in the lower half of Fig.3.35b. The effect is most clearly
demonstrated in the lower left diagram. The camber thrust is accompanied by a
lateral deflection that causes a shift of the line of action of the longitudinal force.
The resulting torque tends to rotate the lower part of the belt about the vertical
axis which now can be accomplished through the yaw compliance of the carcass.
At braking, the rotation is such that an apparent slip angle arises that increases
the camber side force. At driving, the opposite occurs. As a result, the constant
slip angle curves plotted in the diagram show an inclination. The corresponding
influence diagram of κ on Fy shows distorted curves when compared with those
of Fig.3.11. The inversed S shape of the curves at small slip angle is a feature
that is commonly encountered in measured characteristics. The aligning torque
diagram (lower right picture) is considerably changed as a result of the action of
the torque mentioned above that originates from Fx.

In Fig.3.35c the effect of a finite width of the contact patch is demonstrated.
Two rows of tread elements have been considered. At the camber angle of 10E
a spin torque is generated that appears to rotate the lower part of the belt in such
a way that an apparent slip angle arises that increases the camber thrust. The
upper left hand diagram shows the increase in side force. The right-hand diagram
indicates the considerable rise in the aligning torque as a result of the spin torque
in the range of small longitudinal force Fx.
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                          Fig. 3.35c.   Characteristics computed with tread simulation model.
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         Fig. 3.35d.  Characteristics computed with tread simulation model.  

                    Fig. 3.36.  Pneumatic trail variation as computed with tread simulation model.  
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Fig. 3.37. Pure turn slip characteristics according to the model (left, rigid carcass with one or
two rows of elements) and results from experiments with a bias ply truck tyre (right,
9.00-20 eHD, pi = 5.5 bar, V = 1-3 km/h on dry road, from Freudenstein 1961).
Model paramaters: θ= 5, aµ = 0, brow = 0.5 a.

The two diagrams in the second row demonstrate the effects of tread width,
carcass flexibility and friction decay with velocity on the side force and moment
vs slip angle characteristics for a series of camber angles. The plots may be
compared with those of Fig.3.28. The lower half of Fig.3.35c refers to the case
without camber and may be compared with the plots of the upper half of
Fig.3.35b that does not include the effects of tread width.

Figure 3.35d presents the force and moment characteristics for a series of
levels of turn slip including large values of spin corresponding to a radius of
curvature equal to a/0.8. The figures of the second row refer to the case of
constant friction (aµ = 0) and may be compared with Figs.3.31,3.32. An
interesting effect of tread width is the further decrease of the side force at higher
levels of turn slip due to longitudinal slip that occurs on both sides of the contact
patch which consumes a lot of the available frictional forces. Of course, the
aligning torque is now considerably larger. The third row of diagrams represent
the spin force and moment characteristics at various levels of side slip. In
Fig.3.37 the pure spin characteristics have been drawn for the  model with a rigid
carcass provided with one row of tread elements (same as Fig.3.25) and with two
rows computed with the tread simulation model. Comparison clearly shows the
considerable reduction of the peak side force and the much larger level of the
aligning torque caused by the finite tread width. The influence of carcass
flexibility appears to be very small both for the force and for the moment. 

These results indicate that the single row theory developed in Section 3.2 also
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for high spin in combination with side slip has only limited practical significance.
The influence of small spin, i.e. camber, on the side force vs slip angle
characteristic as calculated with the aid of the simple single row, rigid carcass
brush model may be considered as reasonable.  

Freudenstein (1961) has conducted side slip and turning experiments with a
bias-ply truck tyre on a dry road surface. The side slip measurement results of
this tyre were already depicted in Fig.3.6. In the right-hand diagram of Fig.3.37
the results from the turning experiments have been presented. As abscissa, both
the path radius and the path curvature have been used. Obviously, the calculated
two-row model characteristics show good qualitative agreement with the
experimental curves. For the values a = 0.1m, µFz = 20000N and θ = 8 a very
reasonable also quantitative correspondance for both the force and the moment
characteristics of Fig.3.37 can be obtained. Freudenstein suggests the following
formula for the peak moment generated at pure turning at wheel speed V = 0.

(3.117)

As Freudenstein did not give the camber characteristics of the truck tyres on
which the turning behaviour was measured, we are not able to compare the
responses to camber and turning. According to Hadekel (1952), for aircraft tyres
the lateral force due to turning is about four times higher than the camber force
at equal values of spin. From experiments performed by Higuchi (1997) a factor
of about two can be deduced for a radial ply car tyre, cf. Chap.7 discussion
above Fig.7.11. This supports the theory of the reduced curvature of the
peripheral line of the cambered tyre pressed on a frictionless surface due to the
high lateral bending stiffness of the tread band, as illustrated in Fig.2.10, and the
associated coefficient gγ in Eq.(3.55).

The program TreadSim also provides information on the distribution of
contact forces and deflections of belt and tread elements. Some examples of the
deformation pattern have been depicted in the Figs.3.38 and 3.39. In Fig.3.38 the
deflections of the single row brush model have been depicted and in addition of
the model with carcass lateral, yaw and bending compliance. As indicated, the
scale of the drawing has been chosen larger in lateral direction. In the middle two
diagrams the influence of camber and of turning on the deflections at side and
brake slip has been shown. Turning was considered with an exceptionally small
turn radius R equal to a which is half the contact length. One may note the
central section where adhesion occurs. The latter situation also occurs with the
middle row of tread elements of the three row brush model depicted in Fig.3.39.
In this drawing the scales are the same. Clearly, the tyre generates longitudinal
deflections of the outer rows of elements that contributes to the torque.
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3.4.  Application: 
Vehicle Stability at Braking up to Wheel Lock 

When the vehicle is being braked forcefully and a possible downward slope does
not compensate for the reduction in speed of travel, the situation can no longer
be considered as steady state. The influence of the rate of change of the
longitudinal speed and of the effect of combined slip on the lateral stability may
no longer be neglected. Instead of using the two first-order differential equations
(1.42) for the lateral and yaw motions we must now consider the complete set
including the equation for the longitudinal motion which is also of the first order.

Because of the complexity involved, the influence of the height of the centre
of gravity on the vehicle motion will be disregarded. With a finite height, fore
and aft but also lateral load transfer would occur, the latter causing unequal
braking forces on the left and right locked wheels that gives rise to a stabilising
torque counteracting the effect of the fore and aft load transfer. 

The steer angle is kept equal to zero. This two-wheel, single track, rigid
vehicle with zero c.g. height has been depicted in Fig.3.40 where the wheel on
axle 2 is considered to be locked. For the three states we obtain the equations:

(3.118)

with

(3.119)

and

(3.120)

For a proper simulation of the motion, the slip ratio’s κi should result from the
wheel speeds of revolution Ωi which would require additional degrees of freedom.
For this occasion we will employ an alternative approach that involves the
introduction of functions for the side force in which its direct dependence on the
braking effort (or brake pressure) is included. This is possible when ‘dry’ friction
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Fig. 3.41.  Tyre side force characteristics for freely rolling and braked wheels.  

is assumed to occur between tyre and road and the curves of the right-most
diagram of Fig.1.2 do not show inward endings and thus double valued functions
are avoided. The characteristics of Fig.3.16 will be used for our analysis. In
Fig.3.41 the characteristics have been reproduced: one curve for the freely rolling
wheel, another one for the wheel that is being braked with a braking effort
corresponding to a brake force B1 =!Fx1 at straight ahead rolling (α small) and
finally for a wheel that is locked completely. The second curve shows that at
higher slip angles a lower horizontal plateau is followed until the straight inclined
line is reached where also this wheel gets locked (note that sinα has been used as
abscissa which makes the relationship linear). A full discussion of this behaviour
has been given in Subsection 3.2.3 in connection with the treatment of the tyre
brush model. 

As shown in Fig.3.40 we assume that the wheel on axle 2 is locked and that
on axle 1 the wheel may be braked. The characteristics of Fig.3.41 apply. First,
the situation near the undisturbed straight ahead motion will be studied.
Linearisation with both slip angles assumed small yields for the horizontal wheel
forces:
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For the locked wheel we have now an effective cornering stiffness:

(3.122)

As a result the Eqs.(118-120) reduce to:

(3.123)

Furthermore, we have introduced the absolute value of the forward speed u in the
denominators to allow for the consideration of negative values of u while at the
same time the sign of α remains unchanged (cf. the corresponding equations
(1.46) for the non-driven or braked vehicle). Negative values of u correspond to
the case of locked front wheels.

Elimination of the lateral velocity v from equations (3.123) yields:

(3.124)

When compared with Eq.(1.50), considering (1.48), it is noted that in the second
coefficient of (3.124) the term k2C2 has disappeared and that !k2B1 has been
added. This is due to the differentiation of u in the elimination process of v. We
had originally in the second coefficient of (3.124) the term:

(3.125)

which explains the changes observed . In other respects, Eq.(3.124) is similar to
the homogeneous version of Eq.(1.50). However, an important difference
appears in the coefficients which are now dependent on the time because of the
presence of the linearly with time decreasing speed u. We have the additional
equation for u (by integration of the first of Eqs.(3.123)):  

C2 ' µ Fz2 ' µ a
l

mg
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(3.126)

The exact solution of Eq.(3.124) can be found because of the fortunate fact that
the equation can be reduced to the differential equation of Bessel the solution of
which is known in tabular form. Before giving an example of such a complete
solution we will analyse the motion just after the application of a slight
disturbance which allows us to approximate the equation to one with constant
parameters in which u is replaced by its initial value uo. For this substitutive
equation the solution can be found easily. We obtain:

(3.127)

with D1,2 denoting the constants of integration (governed by the initial values of
the state variables v and r) and λ1,2 representing the eigenvalues, that is: the roots
of the characteristic equation of the substitutive differential equation:

(3.128)

Comparison with the coefficients of Eq.(3.124) reveals the expressions for the
quantities A, B, C and D. Since, apparently, the first three are always positive
and in the case considered C2 is much smaller than C1 which makes D also a
positive quantity, we expect that the substitutive system can only become
unstable because of a possibly negative third coefficient. Then, one of the roots
(lets say λ1 ) becomes positive (while remaining real). Obviously, this can only
occur when u is positive which means: when the wheels of the rear axle are
locked. Locked front wheels which occurs when in our system description u<0
will not destabilise the system but makes the vehicle unsteerable. This because
of the fact that changing the steer angle of a locked wheel can not effect the
orientation of its frictional force vector. The car with locked rear wheels
corresponds in behaviour with the case of excessive oversteer while locked front
wheels would give rise to extreme understeer. The critical speed for the case of
locked rear wheels is derived by making the third coefficient of Eq.(3.128), or
of Eq.(3.124), equal to zero. We find by using (3.122):

(3.129)

From this expression it can be seen that when a rigid front tyre is considered (so
that C164) we obtain the simple form: ucrit =%(µgl). The influence of an elastic
front tyre is not very great as the front cornering stiffness may range from 6 to
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Fig. 3.42.  Real (part of the) eigenvalues of the substitutive linear system with constant
coefficients.

30 times the tyre normal load. Considering a dry road with µ = 1 we find a
critical speed of about 20 km/h. 

In view of this very low speed above which the vehicle with rear wheels
locked becomes unstable and the fact that normally the speed will already be a
lot larger than the critical speed when the brakes are being applied it is more
useful to consider the degree of instability as a function of speed. We will adopt
the root λ1 to represent the degree of instability. Figure 3.42 illustrates the
manner in which the roots vary with speed of travel. The diagram includes the
case of front wheels locked (u < 0), where obviously the roots remain negative
and become complex at higher speeds of travel (real part: dotted curve). As a
practical indication for the degree of instability we may employ the height of the
horizontal asymptote to which λ1 tends when u64. For that we find:  

 (3.130)λ1/ u64 '
g
l
@

ab

k 2
@

C1

Fz1

& µ

which shows that instability decreases when the front tyre cornering stiffness is
lower and becomes more in balance with the here very low rear ‘cornering
stiffness’ (3.122). It also becomes clear that when the front wheels are locked as
well (C1 = µFz1) the degree of instability reduces to zero representing indifferent
stability. 

The complete solution of Eq.(3.124) can be found by applying the Lommel
transformation of the Bessel differential equation and using the modified
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Fig. 3.43.  Solutions of the exact and the approximated linear systems representing the
variation of the yaw rate r with forward velocity u or with time t.

functions of Bessel in its solution. These functions are available in tabulated
form and can be found in the book of Abramowitz and Stegun (1965, cf.
Eq.9.1.53 for the transformed equation and p.377 for the solution). 

In the paper of Koiter and Pacejka (1969) the exact solution has been given
together with examples of the numerically computed solution for the complete
non-linear system. For the special case with parameters a=b=k, B1 = 0, C1/µFz

=6 the solution of the linear equation (3.124) is presented in Fig.3.43. The exact
solution is compared with the approximate one (3.127) of the substitutive
equation. The solution in the form of a stable and an unstable branch has been
drawn in the (u, r) plane constituting the projection of the complete three-
dimensional trajectory in the (u, v, r) space. Along the u axis we may introduce
the time axis considering the relationship (3.126). In the case considered the non-
dimensional eigenvalues λ1,2%(l/µg) take the values 1.26 and !3.43 respectively.
For the sake of comparison the initial values have been taken the same for both
pairs of solutions. No visible difference can be detected between the two
decaying stable branches. The ‘unstable’ branch of the exact solution, however,
shows for greater values of time an increasing difference with the corresponding
approximate exponential solution. At the start of the motion where the rear axle
tends to break away the agreement is very good. It can be shown that when
expanded in a series of powers of the time t the solutions are identical up to and
including the third term (with t2). This supports our choice of defining the degree
of instability. 

Along the vertical axis the yaw rate is plotted. After having attained a
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 Fig. 3.44. Development of the vehicle motion after the rear wheels get locked while the  front
wheels remain rolling freely.

maximum, the yaw angle develops at a lesser rate until the motion reaches a
complete stop. The area underneath the curves is proportional to the final angle
of swing. This finite angle will linearly depend on the initial values of the
variables r and v. Consequently, the final deviation with respect to the original
rectilinear path can be kept within any chosen limit and, strictly speaking, the
actual system is always stable.

Finally, the solutions for the non-linear system governed by the Eqs.(3.118,
3.119) and tyre characteristics according to Fig.3.41 have been established by
numerical integration of the equations of motion. Now, the character of the
motion may change with the level of the initial disturbance. In Figs.3.44 and
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3.45, the resulting motions for two cases have been depicted. The first, without
braking the front wheels (Fig.3.44) and the second with also the front wheels
being braked but at a lower effort to make sure that they roll at least initially.
The initial speed of travel and disturbances have been kept the same for all cases
but the coefficient of friction µ  has been varied. At lower friction the time
available to develop the angle of swing is larger and we see that an angle of more
than 180 degrees may be reached. Then the locked wheels are moving at the front
(u<0) and we have seen that that situation is stable while the motion can become
oscillatory (cf. Fig.3.42). For the case of Fig.3.44 with µ = 0.25 we indeed
observe that a sign change occurs once for the yaw rate r. When the brakes are
applied also at the front axle, the deceleration is larger and we have less time to
come to  a stop. Consequently, the final angles of Fig.3.45 are smaller than those
reached in Fig.3.44. The shaded zones indicate the ranges where also the front
wheels get locked. This obviously occurs when the slip angle of the initially
rolling wheels 1 becomes sufficiently large and exceeds the value indicated in
Fig.3.41 where the inclined straight line is reached. It has been found (not
surprisingly) that the influence of raising the initial speed is qualitatively the
same as the effect of reducing the coefficient of friction.



Chapter 4

SEMI-EMPIRICAL TYRE MODELS

4.1.  Introduction

In the preceding chapter the theory of the tyre force and moment generating
properties have been dealt with based on physical tyre models. The present
chapter treats models that have been specifically designed to represent the tyre
as a vehicle component in a vehicle simulation environment. The modelling
approach is termed ‘semi-empirical’ because the models are based on measured
data but may contain structures that find their origin in physical models like
those treated in the preceding chapter. The mathematical descriptions are
restricted to steady-state situations. The non-steady-state behaviour will be
discussed in subsequent chapters.

In the past, several types of mathematical functions have been used to
describe the cornering force characteristic. Exponential, arctangent, parabolic
(up to its maximum) and hyperbolic tangent functions (difference of two) have
been tried with more and less success. Often, only very crude approximations
could be achieved. To improve the accuracy, tables of measured data points have
been used together with interpolation schemes. Also, higher order polynomials
were popular but proved not always suitable in terms of accuracy and the very
large deviations that occur outside the ranges of slip covered by the original
measurement data  used in the fitting process. Mathematical representations of
longitudinal force and aligning torque came later and only relatively recently the
combined slip condition was included in the empirical description. The
longitudinal slip ratio was introduced as an input variable instead of the braking
or driving force which was common practice in the early days of vehicle
dynamics analysis. This latter method, however, is still in use for certain
applications.

In the following sections of this chapter, first, a relatively simple approach
will be discussed that is based on the similarity concept and after that, in the
remainder of the chapter, a detailed description will be given of the Magic
Formula tyre model. The two model approaches belong to the second and first
categories of Fig.2.11 respectively. 
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Fig. 4.1. Result of Radt’s non-dimensionalisation of tyre characteristics showing that the tyre
side force characteristics measured at different loads reduce to virtually the same
curve when the force and the slip angle are normalised as indicated.

4.2.  The Similarity Method

The method to be discussed in this section is based on the observation that the
pure slip curves remain approximately similar in shape when the tyre runs at
conditions that are different from the reference condition. The reference condition
is defined here as the state where the tyre runs at its rated (nominal) load (Fzo),
at camber equal to zero (γ= 0), at either free rolling (κ = 0) or at side slip equal
to zero (α = 0) and on a given road surface (µo). A similar shape means that the
characteristic that belongs to the reference condition is regained by vertical and
horizontal multiplications and shifting of the curve. The similarity method has
been first used by Pacejka (1958) and later by Radt and Pacejka (1963). A
demonstration that in practice similarity indeed approximately occurs is given
by Radt and Milliken (1983), also see Milliken and Milliken (1995). The
Figs.4.1 and 4.2 present the results when the force and moment as well as the
slip angle have been normalised resulting in the non-dimensional quantities
shown along the axes. The raw data have been processed to make the
characteristics pass through the origin of the graph. The curve results from a
Magic Formula fit. The parameters BN, CN, DN and EN for the non-dimensional
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trail at vanishing slip angle.

side force (subscript y) and for the non-dimensional moment (subscript z) have
been used in the non-dimensional version of the Magic Formula given in
Eqs.(1.6) and similar for the moment. Later on, the formula will be introduced
again, Eqs.(4.6,4.10). 

The resulting model is through its simplicity relatively fast. It is capable to
represent pure slip conditions rather well including the influence of a camber
angle. The description of the situation at combined lateral and longitudinal slip
is qualitatively satisfactory. Quantitatively, however, deviations may occur at
higher levels of the combined two slip values. 

4.2.1.  Pure Slip Conditions

The functions representing the reference curves which are found at pure slip
conditions are designated with the subscript o. We have, for instance, the
reference function Fy = Fyo(α) that represents the side force vs slip angle
relationship at nominal load Fzo , with longitudinal slip and camber equal to zero
and the friction level represented by µo. We may now try to change the condition
to a situation at a different wheel load Fz . Two basic changes will occur with the
characteristic: (1) a change in level of the curve where saturation of the side
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force takes place (peak level) and (2) a change in slope at vanishing side slip (α
=0). The first modification can be created by multiplying the characteristic both
in vertical and horizontal direction with the ratio Fz /Fzo. The horizontal
multiplication is needed to not disturb the original slope. We obtain for the new
function:

(4.1)

with the equivalent slip angle:

(4.2)

Because, obviously, the derivative of Fyo with respect to its argument αeq at αeq

= 0 is equal to the original cornering stiffness CFαo , we find for the derivative of
Fy with respect to α the same value for the slope at α = 0: 

(4.3)

which proves that the slope at the origin of the characteristic is not affected by
the successive multiplications. The second step in the manipulation of the
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αeq '
CFα(Fz)

CFαo

Fzo

Fz

α

Mz '
Fz

Fzo

CMα
(Fz)

CMαo

CFαo

CFα(Fz)
Mzo(αeq)

original curve is the adaptation of the slope. This is accomplished by a horizontal
multiplication of the newly obtained characteristic. This  is done by multiplying
the argument with the ratio of the new and the original cornering stiffness.
Consequently, the new argument reads: 

(4.4)

Together with Eq.(4.1) we have the new formulation for the side force vs slip
angle relationship at the new load Fz . In Fig.4.3 the two steps taken to obtain the
new curve have been illustrated. Here, the nominal load Fzo = 3000N and the new
load Fz = 1500N.

In the same figure the characteristic of the aligning torque has been adapted
to the new condition. For this, we use the knowledge gained when working with
the brush model (cf. Fig.3.4). More specifically, we will obey the rule that
according to the theory, obviously, the point where the Mz curve reaches the α
axis lies below the peak of the Fy curve. In Fig.3.4 this occurs at tanα = 1/θy .
This requirement means that the same equivalent slip angle (4.4) must be used
as for the argument of the Fy function (4.1). Secondly, we will use information
on the new value of the aligning stiffness CMα

. The reference curve for Mzo that
is used is more realistic than the theoretical curve of Fig.3.4. Typically, the
moment changes its sign in the larger slip angle range where Fy reaches its peak.

With the same equivalent slip angle and the new aligning stiffness we obtain
the expression for the new value of the aligning torque according to the similarity
concept:

(4.5)

The first and third factors being the inverse of the multiplication factor used in
(4.4), are needed to maintain the original slope. The second factor multiplies the
intermediate Mz curve (1 in Fig.4.3) in vertical direction to adapt the slope to its
new value (2) while not disturbing the α scale. It may be noted that the combined
second and third factor equals the ratio of the new and the original values of the
pneumatic trail t/to.

For the calculations connected with Fig.4.3 the reference characteristics for
Fyo , Mzo and CFα have been described by means of the Magic Formula type
functions (cf. Eqs.(1.6)). For this occasion, the aligning stiffness is modelled as
the product of a certain fraction of the contact length 2a and the cornering
stiffness. The resulting characteristics for these four quantities as shown in Figs.
4.3 and 4.4 are realistic. The following formulae have been used:
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a ' ao Fz /Fzo

CMα
' tCFα ' c4aCFα

Side force at nominal load Fzo

(4.6)Fyo' Dyo sin[Cy arctan{Byoα&Ey(Byoα&arctan(Byoα))}]

with stiffness factor

(4.7)Byo' CFαo /(Cy Dyo)
peak factor for the side force which in general is different from the one for the
longitudinal force, consequently we introduce µyo beside µxo:

(4.8)Dyo' µyoFzo

and cornering stiffness as function of wheel load Fz

 (4.9)CFα' c1c2 Fzo sin 2arctan
Fz

c2 Fzo

Aligning torque at nominal wheel load:

(4.10)Mzo' Dzo sin[Czarctan{Bzoα&Ez (Bzoα&arctan(Bzoα))}]

with stiffness factor

(4.11)Bzo' &CMαo /(Cz Dzo)
peak factor (ao representing half the contact length at nominal load)

(4.12)Dzo' c3 ao Dyo

and aligning stiffness as function of wheel load Fz

 (4.13)

where apparently the pneumatic trail t=c4a. Half the contact length a is assumed
to be proportional with the square root of the wheel load

(4.14)

The resulting approximation of the pneumatic trail turns out to be quite adequate
and might be considered to be used in the set of Magic Formula Tyre model
equations (4.E42) to be dealt with later on.  

The values of parameters used for the calculations to be conducted have been
listed in Table 4.1.

Table 4.1.  Parameter values used in Section 4.2

  Fzo  3000 N  Cy    1.3    Cx    1.5    c1    8    c5     1    c9   0.3

  ao   0.08 m Ey !1 Ex !1 c2     1.33    c6   0.3    c10    0

b   0.07 m Cz    2.3 :yo     1    c3   0.25    c7     100    c11    4

re   0.30 m Ez    -2 :xo    1.26    c4   0.5    c8    15
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Fy '
µy Fz

µyo Fzo

Fyo(αeq)

αeq '
CFα(Fz)

CFαo

µyo Fzo

µy Fz

α

The next two items we will deal with are a change in friction coefficient from :yo

to :y and the introduction of a camber angle γ. The first change can be handled
by multiplying the curves in radial direction with factor :y/:yo. Together with the
change in load we find:

(4.15)

with

(4.16)

The friction coefficient may be assumed to depend on the slip velocity Vs. To
model the situation on wet roads a decaying function :(Vs) may be employed, cf.
e.g. Eq.(4.E23). 

When considering the computed characteristics of Fig.3.35c (2nd row) for
small camber angles a horizontal shift of the Fy curve may give a reasonable
result.  Then, the peak side force remains unchanged which is a reasonable
assumption but not always supported by experimental evidence (where often but
not always a slight increase in maximum side force is manifested) or by
computations with a physical model with constant friction and finite contact
width which show a slight decrease. For small angles, the camber thrust is
approximated by the product of the camber stiffness and the camber angle: Fyγ=
CFγγ.  Consequently, the α shift should amount to 

(4.17)SHy '
CFγ

(Fz)

CFα (Fz)
γ

so that
α

*=α + SHy (4.18)
which gives rise to αeq (4.16) with α replaced by α*=α + SHy.

For the representation of the aligning moment at the new conditions the
situation is more complex. We observe from Fig.3.35c that for not too large slip
angles the original curve Mzo tends to both shift sideways and upwards. If the
same equivalent slip angle and thus the same horizontal shift (4.17) as for the
force is employed, the moment would become zero where also the force curve
crosses the α axis. A moment equal to !CMαSHy would arise at α= 0. However,
the moment should become equal to CMγγ, with a positive camber moment
stiffness CMγ. This implies that an additional vertical shift is required equal to:

(4.19)SVz ' CMγ
(Fz) γ% CMα

(Fz)SHy

This additional moment corresponds to the so-called residual torque Mzr , which
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is the moment that remains when the side force becomes equal to zero. For larger
values of the slip angle the additional moment should tend to zero as can be
observed in Fig.3.35c. This may be easily accomplished by dividing (4.19) by
a term like 1 + c7α

2.
The dependencies of the camber stiffnesses on the vertical load may be

assumed linear. We have:

(4.20a)CFγ
' c5 Fz , CMγ

' c6
b 2

re

CFκ

where b denotes half the (assumedly constant) width of the contact patch, re the
effective rolling radius and CFκ the longitudinal slip stiffness which is considered
to be linearly increasing with load:

   (4.20b)CFκ' c8 Fz

In Fig.4.5 the different steps leading to the condition with a (small) camber
angle have been demonstrated. First, the original curve (0) is moved to the left
over a distance equal to the horizontal shift (4.17) yielding the intermediate curve
(1). Then the residual torque is added: vertical shift (4.19), possibly made a
function of slip angle by multiplying the shift with a decaying weighting function
as suggested above. The load Fz and the friction coefficient µy have been kept
equal to their reference values: 3000N and 1 respectively.

The longitudinal force at pure longitudinal slip may be modelled in the same
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way as we did for the side force. Equations similar to (4.6-8) hold for the
reference function. An influence of camber on the longitudinal force, however,
is assumed not to occur. In the same Fig.4.5 the characteristic for Fx vs κ  has
been drawn. The values of the relevant additional parameters for the longitudinal
force and the moment have been listed in Table 4.1. 

We finally have the following similarity formulae for pure slip conditions
(either at longitudinal or at lateral slip) for the longitudinal force:

(4.21)

with the equivalent longitudinal slip

(4.22)

and for the side force:

(4.23)

with the equivalent slip angle, containing the horizontal shift (4.17):

(4.24)

and for the aligning torque:

(4.25)

with the residual torque corresponding to the vertical shift (4.19) provided with
the reduction factor:

(4.26)Mzr '
CMγ

(Fz)% t (Fz) CFγ(Fz)

1%c7α
2

γ

4.2.2.  Combined Slip Conditions

We will now address the problem of describing the situation at combined slip.
The analysis of the brush model has given considerable insight into the
mechanisms that play a role and we will use the theoretical slip quantities σx,y

(3.34 or 3.32) and the magnitude σ (3.40) and we will adopt the concept similar
to that of assessing the components of the resulting horizontal force according



165SEMI-EMPIRICAL TYRE MODELS

to (3.49) and consider the pneumatic trail t as in (3.50) and include explicit
contributions of Fx to the moment as indicated in (3.51). We have for the
theoretical slip quantities with the α shift due to camber included:

(4.27a)σx '
κ

1 % κ

(4.27b)σ
(

y '
tanα(

1 % κ

and

(4.28)σ
(

' σx
2
% σ

(2
y

with

(4.29)α
(

' α%
CFγ

(Fz)

CFα (Fz)
γ

In the ensuing theory we will make use of the theoretical slip quantities
(4.27a,b), which does produce the slope in the constant α curves in the Fy vs Fx

diagram at Fx = 0. It should be noted, however, that experience has shown that
the use of practical slip quantities sx and sy

(  (that is: κ  and tanα( which may be
obtained again by omitting the denominators in (4.27a,b)) may already give very
good results as will be indicated later on in Fig.4.8. Note that when approaching
wheel lock σx64. This calls for an artificial limitation by adding a small positive
quantity to the denominator of (4.27a).

Because we are dealing with an in general non-isotropic tyre we have pure
longitudinal and lateral slip characteristics that are not identical (cf. Fig.4.5).
Still, we will take the lateral and longitudinal components but then of the
respective pure slip characteristics Fyo and Fxo. If we want to use the theoretical
slip quantities σ  we must have available the pure slip characteristics with σx and
σy as abscissa. This can be accomplished by fitting the original data after having
computed the values of σx for each value of κ by using (4.27a) and similar for
transforming α into tanα and denoting the resulting functions: Fxo(σx), Fyo(σy) and
Mzo(σy). Or, simpler, by replacing in the already available pure slip force and
moment functions, expressed in terms of the practical slip quantities, the
argument α (in radians) by tanα (probably acceptable approximation) and κ by
the expression given below (derived from Eq.(4.27a)).

(4.30)κ '
σx

1&σx

which would be successful if the Fx characteristic had been fitted for the whole
range of positive (driving) and negative (braking) values of κ. Otherwise if only
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Fig. 4.6. Construction of the resulting combined slip force from the pure slip characteristics
according to Eqs.(4.31).

the braking side is available (κ and σx <0) and the driving side is modelled as the
mirror image of the braking side one might better take: 

(4.30a)κ '

σx

1% |σx|

If the thus obtained function of Fx is plotted vs σx the resulting curve becomes
symmetric. However, if then the abscissa is transposed into κ by using (4.30) the
resulting curve turns out to become asymmetric with the braking side identical
to the characteristic we started out with. This asymmetry was already found to
occur with the  brush model discussed in Chapter 3.

Next, we should realise that through (4.18) camber has been accounted for
and that, as a consequence, σy is to be replaced byσy

( defined by Eq.(4.27b).The
resulting force and moment functions are denoted by Fxo(σx), Fyo(σy

() and Mzo(σy
().

As illustrated in Fig.4.6, the ‘components’ now become with σ( denoting the
magnitude of the theoretical slip vector (4.28):

(4.31)Fx'
σx

σ
(

Fxo(σ
() , Fy'

σ
(

y

σ
(

Fyo(σ
()

The figure shows how the force vector arises from the individual pure slip
characteristics. At small slip, in general, the vector does not run opposite with
respect to the slip speed vector Vs. At wheel lock, however, the force vector does



167SEMI-EMPIRICAL TYRE MODELS

run opposite with respect to the slip speed vector because it is assumed here that
the levels of the individual characteristics (asymptotes) are the same for the slip
approaching infinity (in the Magic Formula we should have: µyosin(½πCy) =
µxosin(½πCx)). At large slip the theory apparently fails to properly account for
the contribution of the camber angle. At wheel lock one would expect the side
force to become zero at vanishing slip angle. This will not exactly be the case in
the model due to the equivalent theoretical side slip defined according to
Eq.(4.27b) with α( given by (4.18).

For the aligning torque we may define:

(4.32)Mz' MNz %Mzr&
c9 ao

Fzo

Fx Fy&c10 ao Fx&c11 bγFx

with the first term directly attributable to the side force. This term can be written
as: 

(4.33)MNz ' &t (σ() @Fy

By considering (4.31) it turns out that (4.33) becomes:

(4.34)MNz '
σ
(

y

σ
(

MNzo(σ
()

The last three terms of Eq.(4.32) result from the moment exerted by the
longitudinal force because of the moment arm that arises through the side force
induced deflection, a possibly initial offset of the line of action and the sideways
rolling of the tyre cross section due to camber. For the sake of simplicity these
effects are assumed not to be influenced by the wheel load.

With the similarity expressions for the pure slip forces Fx,yo and moment MNzo

we finally obtain the following formulae for combined slip conditions. For the
longitudal force:

(4.35)Fx '
σx

σ
(

µx Fz

µxo Fzo

Fxo(σ
x

eq)

with the equivalent slip

(4.36)σ
x

eq '
CFκ(Fz)

CFκo

µxo Fzo

µx Fz

σ
(

and for the side force:

(4.37)Fy '
σ
(

y

σ
(

µy Fz

µyo Fzo

Fyo(σ
y

eq)
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Fig. 4.8. Tyre combined slip characteristics as
obtained from measurements with the Delft
tyre test trailer compared with the curves
calculated with the aid of the similarity
method.

10 0.2 0.4 0.6 0.8

1

0

-ω

Fy

Fz

9.8
o

4.7

1.9

  =

-1.9
o

test data
Magic Form.
+ similarity
   method
F = 7000Nz

10 0.2 0.4 0.6 0.8

1

0

-ω

-Fx

Fz   = "1.9
o

4.7
o

9.8
o

with the residual torque

(4.40)Mzr '
CMγ

(Fz)% t (Fz) CFγ
(Fz)

1%c7 (σ y
eq )2

γ

On behalf of example calculations, the three additional non-dimensional
parameters c9 , c10 and c11 have been given values listed in Table 4.1.

For the case of a load different from the reference value and the presence of
a camber angle, the combined slip characteristics for the tyre side force and for
the aligning torque have been assessed by using the above equations. The
resulting diagrams with slip angle α  used as parameter have been presented in
the Figs.4.7a and b. Due to the use of the theoretical slip quantities (4.27a,
4.27b)  we find that the curves of Fy show the slight slope near Fx = 0 also
observed to occur with the physical brush model and sometimes more
pronounced in experimentally assessed characteristics (Fig.3.18). The additional
slope that arises when a camber angle is introduced (cf. Fig.3.35c, top) for which
the torsional compliance is responsible does not appear. A special formulation
would be needed to represent this effect. In the next section we will take care of
this in connection with the Magic Formula tyre model.  

It may be further remarked that the similarity model given by the equations
(4.35-40) together with (4.27a,b), (4.28) and the reference pure slip functions
does represent the actual tyre steady-state behaviour well in the following
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extreme cases: (1) in pure slip situations, (2) in the linearised combined slip
situation (small α  and κ ) and (3) in the case of  a locked wheel (γ = 0). As
illustrated in Fig.4.6 the model correctly shows that when the wheel is locked, the
resulting force acts in a direction opposite to the slip speed vector Vs if in the
original reference pure slip curves the level of  Fxo and of Fyo tend to the same
level when both slip components approach infinity (governed by the parameters
µ  and C in the Magic Formula). Other combinations of slip may give rise to
deviations with respect to measured characteristics. It is noted that when the
terms for the aligning torque with parameters c9, c10 and c11 are disregarded, the
combined slip performance can be represented without the necessity to rely on
combined slip measurement data.

A comparison with measured data is given in Fig.4.8. Here the similarity
method is used where instead of the theoretical slip quantities the practical slip
variables κ  and tanα have been employed. A relatively good agreement is
achieved for this passenger car tyre in the combined slip situation.

4.2.3.  Combined Slip Conditions with Fx as Input Variable

In more simple vehicle dynamics simulation studies with the wheel spin degree
of freedom not included, one may prefer to use the longitudinal force Fx as input
quantity instead of the longitudinal slip κ. This approach has been used, almost
exclusively, in early vehicle dynamics research. However, for (quasi) steady-
state cornering analysis, notably circuit simulation in the racing world, this
option is still popular. An important limitation of using this method is the
condition that the Fx vs κ characteristic (although not used) is supposed to show
a positive slope over the entire range of longitudinal slip while at wheel lock Fx

=!µFz. Or,alternatively, we use only that part of the characteristic that lies in
between the two peaks. This entails that the Fy vs Fx curves are single valued in
the Fx range employed. Furthermore, it is assumed that the friction coefficient is
the same for longitudinal and lateral directions and is denoted with µ .

The obvious main effect of the introduction of Fx on the side force is the
lowering of the maximum side force that can be generated. For this to realise the
right-hand expressions of Eqs.(4.23) and (4.25) are to be multiplied with the
factor 

(4.41)φx '
µ2F 2

z & F 2
x

µFz

while the expression (4.24) is to be divided by the same factor. The cornering
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Fy ' φx

µ Fz

µo Fzo

Fyo(αeq)

αeq '
1
φx

CFα(µ ,Fz,Fx)

CFαo

µo Fzo

µ Fz

α%
CFγ (µ ,Fz,Fx)

CFα (µ ,Fz,Fx)
γ

and aligning stiffnesses remain unaffected through this operation. These
stiffnesses, however, do depend on the longitudinal force as becomes obvious
from the curves of Fig.3.13 that belong to small side slip angles. The following
functions may serve as a crude approximation of the actual relationships.

(4.42)CFα(µ ,Fz,Fx) ' φxα CFα (Fz) &
1

2
µFz %

1

2
(µFz&Fx)

with

(4.42a)φxα ' 1&
Fx

µFz

n 1/n

Depending on the user’s desire one may choose for n a value in the range of 2 to
8 (more or less curved characteristic CFα(Fx)) . For the aligning stiffness we may
use the formula:

(4.43)CMα
(µ ,Fz,Fx) ' φ

2
x CMα

(Fz)

and similar for the camber stiffness:

(4.44)CFγ(µ ,Fz,Fx) ' φ
2
x CFγ (Fz)

The camber moment stiffness may be disregarded. The load dependencies
CF,Mα

(Fz) and CFγ(Fz) of the freely rolling tyre already appeared in Eqs.(4.24,
4.25). It may be ascertained that the present model makes sure that the cornering
stiffness vanishes when Fx 6 µFz (wheel drive spin, κ 64) while at Fx = !µFz

(wheel lock, κ = !1) the side slip stiffness equals µFz , which is correct. The
functional relationships (4.21, 4.22) for Fx do not play a role anymore and the
friction coefficient µy has been replaced by µ . The imposed longitudinal force
should be kept within the boundaries !µFz cosα #Fx# µFz.

The resulting equations for the side force and the aligning torque with the
longitudinal force serving as one of the input quantities now read:
For the side force:

(4.45)

with the equivalent slip angle

(4.46)

and for the aligning torque:
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Mz ' φx

µ Fz

µo Fzo

CMα
(µ ,Fz,Fx)

CMαo

CFαo

CFα(µ ,Fz,Fx)
Mzo(αeq) % Mzr%

&

c9 ao

Fzo

Fx Fy&c10 ao Fx&c11 bγFx (4.47)

where the last terms have been taken from (4.39) and the residual torque reads:

(4.48)Mzr ' φx

CMγ
(Fz)% t (Fz) CFγ

(Fz)

1%c7α
2

γ

Exercise 4.1 given at the end of Section 4.3 addresses the problem of assessing
the side force characteristics using the similarity technique with the longitudinal
force considered as one of the input quantities. 

In Section 4.3 the Magic Formula tyre model will be treated in detail. This
complex model is considerably more accurate and will again employ the
longitudinal slip κ  as input variable.

4.3.  The Magic Formula Tyre Model

A widely used semi-empirical tyre model to calculate steady-state tyre force and
moment characteristics for use in vehicle dynamics studies is based on the so-
called Magic Formula. The development of the model was started in the mid-
eighties. In a cooperative effort TU-Delft and Volvo developed several versions
(Bakker et al. 1987, 1989, Pacejka et al. 1993). In these models the combined
slip situation was modelled from a physical view point. In 1993 Michelin (cf.
Bayle et al. 1993) introduced a purely empirical method using Magic Formula
based functions to describe the tyre horizontal force generation at combined slip.
This approach was adopted by DVR (the Delft Vehicle Dynamics Research
Center, a joint venture of TU-Delft and TNO-Delft). In the newer version of
‘Delft-Tyre’ the original description of the aligning torque is altered to
accommodate a relatively simple physically based combined slip extension. The
pneumatic trail is introduced as a basis to calculate this moment about the
vertical axis, cf. Pacejka (1996). A complete listing of the model is given in
Section 4.3.2. In Section 4.3.3 the model is further extended by introducing
formulae for the description of the situation at large camber and turn slip.
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y ' D sin[C arctan{B x&E (B x& arctanBx)}]

H

y

x

Y
xm

D

SV

S

arctan(BCD)

ya

X

y(x)

x

x
βλ

Dsinβ

β
Carctan(Bx ...)

=

Cλ /2

Fig. 4.9. Curve produced by the original sine version of the Magic Formula, Eq.(4.49).  The
meaning of curve parameters have been indicated.

4.3.1.  Model Description

The general form of the formula that holds for given values of vertical load and
camber angle reads:

(4.49)
with

(4.50)Y(X) ' y(x)%SV
(4.51)x ' X%SH

where
Y: output variable Fx , Fy or possibly Mz

X: input variable tanα or κ
and 

B stiffness factor
C shape factor
D peak value
E curvature factor
SH horizontal shift
SV vertical shift

The Magic Formula y(x) typically produces a curve that passes through the
origin x = y = 0, reaches a maximum and subsequently tends to a horizontal
asymptote. For given values of the coefficients B, C, D and E the curve shows
an anti-symmetric shape with respect to the origin. To allow the curve to have
an offset with respect to the origin, two shifts SH  and SV have been introduced.
A new set of coordinates Y(X) arises as shown in Fig.4.9. The formula is capable
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of producing characteristics that closely match measured curves for the side
force Fy (and if desired also for the aligning torque Mz) and for the fore and aft
force Fx as functions of their respective slip quantities: the slip angle α and the
longitudinal slip κ with the effect of load Fz and camber angle γ included in the
parameters. 

Figure 4.9 illustrates the meaning of some of the factors by means of a typical
side force characteristic. Obviously, coefficient D represents the peak value (with
respect to the central x-axis and for C$1) and the product BCD corresponds to
the slope at the origin (x = y = 0). The shape factor C controls the limits of the
range of the sine function appearing in formula (4.49) and thereby determines the
shape of the resulting curve. The factor B is left to determine the slope at the
origin and is called the stiffness factor. The factor E is introduced to control the
curvature at the peak and at the same time the horizontal position of the peak. 

From the heights of the peak and of the horizontal asymptote the shape factor
C may be computed:

(4.52)C ' 1 ± 1& 2
π

arcsin
ya

D
From B and C and the location xm of the peak the value of E may be assessed:

(4.53)E '

B xm & tan{π/(2C)}

B xm & arctan(B xm)
( if C>1)

The offsets SH and SV appear to occur when ply-steer and conicity effects and
possibly the rolling resistance cause the Fy and Fx curves not to pass through the
origin. Wheel camber may give rise to a considerable offset of the Fy vs α curves.
Such a shift may be accompanied by a significant deviation from the pure anti-
symmetric shape of the original curve (cf. Fig.3.35c,d). To accommodate such
an asymmetry, the curvature factor E is made dependent of the sign of the
abscissa (x).

(4.54)E ' Eo % ∆E @sgn(x)

Also the difference in shape that is expected to occur in the Fx vs κ characteristic
between the driving and braking ranges can be taken care of. In Fig.4.10 the
influence of the two shape factors C and E on the appearance of the curves have
been demonstrated. The diagrams have been normalised by dividing y by D and
multiplying x with CB making the curve peak level and initial slope independent
of the parameters.

In rather extreme cases, the sharpness that can be reached by means of the
function given by Eq.(4.49) may not be sufficient. It turns out to be possible to
considerably increase the sharpness of the curves by introducing an extra term
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Fig. 4.10. The influence of the shape factors C and E on the appearance of the curve according
to Eq.(4.49). Note that a value of curvature factor E > 1 does not produce realistic
curves.

in the argument of the arctan function. The modified function reads:

(4.55)y ' D sin[C arctan{B x&E (B x& arctanBx)% H arctan7Bx}]

Figure 4.11 demonstrates the effect of the new coefficient H. Too large values
may give rise to an upward curvature of the curve near the origin as would also
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Fig. 4.11. Sharpness of curves near the peak may be increased by introducing additional term
with sharpness factor H (according to Eq.(4.55)).
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Fig. 4.12.  Cornering stiffness vs vertical load and the influence of wheel camber, Eq. (4.56).

occur at large negative values of E (cf. the lower diagrams of Fig.4.10). In the
ensuing text we will not use this additional coefficient H.

It may be furthermore of interest to note that the possibly awkward function
arctan(x) may be replaced by the possibly faster and almost identical pseudo
arctan function psatan(x)= x(1+a|x|)/{1+2(b|x|+ax2)/π} with a = 1.1 and b = 1.6.

The various factors are functions of normal load and wheel camber angle.
Several parameters appear in these functions. A suitable regression technique is
used to determine their values from measured data according to a quadratic
algorithm for the best fit (cf. Oosten and Bakker 1993). One of the important
functional relationships is the variation of the cornering stiffness (almost exactly
given by the product of the coefficients By , Cy and Dy of the side force function:
BCDy =Kyα = MFy/Mα at tanα= ! SH ) with Fz and γ.

(4.56)BCDy ' p1 sin[2 arctan(Fz /p2)] (1%p3γ
2)

For zero camber, the cornering stiffness attains its maximum p1 at Fz = p2. In
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αt ' tanα % SHt

FyMz

-t.F        

Mzr

t

y

 

 

 
SHt

 SHf

Fig. 4.13. The aligning torque characteristic composed of a part directly attributed to the side
force and a part due the so-called residual torque (due to tyre conicity and camber).

Fig.4.12 the basic relationship has been depicted. Apparently, for a cambered
wheel the cornering stiffness decreases with increasing |γ|. Note the difference in
curvature left and right of the characteristics at larger values of the camber
angle. To accomplish this, a split-E according to Eq.(4.54) has been employed.
We refer to Section 4.3.2 for a complete listing of the formulae. Here, non-
dimensional parameters have been introduced. For example, the parameters in
(4.56) will become: p1 = Fzo pKy1, p2 = Fzo pKy2 and p3 = pKy3, with Fzo denoting the
nominal wheel load.

The aligning torque Mz can now be obtained by multiplying the side force Fy

with the pneumatic trail t and adding the usually small (except with camber)
residual torque Mzr (cf. Fig.4.13). We have:

(4.57)Mz ' & t @Fy % Mzr

The pneumatic trail decays with increasing side slip and is described as follows:

(4.58)t (αt ) ' Dt cos[Ct arctan{Btαt& Et (Btαt& arctan(Btαt ))}]

where

(4.59)
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Fig. 4.14. Curve produced by the cosine version of the Magic Formula, Eq.(4.58). The

meaning of curve parameters have been indicated.

The residual torque showing a similar decay:

(4.60)Mzr(αr) ' Dr cos[ arctan(Brαr )]

with
αr ' tanα% SHf (4.61)

It is seen that both parts of the moment are modelled using the Magic Formula,
but instead of the sine function, the cosine function is employed. In that way a
hill-shaped curve is produced. The peaks are shifted sideways.

The  residual torque is assumed to attain its maximum Dr at the slip angle
where the side force becomes equal to zero. This is accomplished through the
horizontal shift SHf. The peak of the pneumatic trail occurs at tanα = !SHt. This
formulation has proven to give very good agreement with measured curves. The
advantage with respect to the earlier versions, where formula (4.49) is used for
the aligning torque as well, is that we have now directly assessed the function for
the pneumatic trail which is needed to handle the combined slip situation. 

In Fig.4.14 the basic properties of  the cosine based curve have been indicated
(subscripts of factors have been deleted again). Again, D is the peak value, C is
a shape factor determining the level ya of the horizontal asymptote and now B
influences the curvature at the peak (illustrated with the inserted parabola).
Factor E modifies the shape at larger values of slip and governs the location xo

of the point where the curve intersects the x axis. The following formulae hold:

(4.62)C '

2
π

arccos
ya

D

(4.63)E '

B xo & tan{π/(2C)}

Bxo & arctan(Bxo)
( if C>1)
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G ' D cos[C arctan(B x)]

Fy ' Gyκ @Fyo % SVyκ

In case of the possible presence of large camber angles (motorcycles) it may
be better to use in (4.57) the side force Fy that would arise at γ=0. Also, the side
force function (4.49) and the cornering stiffness function (4.56) may be modified
to better approximate large camber response for motorcycle tyres, cf. De Vries
(1998a) and Sec.11.6 for a full listing of equations. We refer to Section 4.3.3 for
the discussion of the model extension for larger camber and turn slip (path
curvature) also applicable in case of combined slip with braking or driving
forces. 

In the paper of Pacejka and Bakker (1993) the tyre’s response to combined
slip was modelled by using physically based formulae. A newer more efficient
way is purely empiric. This method was developed by Michelin and published
by Bayle, Forissier and Lafon (1993). It describes the effect of combined slip on
the lateral force and on the longitudinal force characteristics. Weighting
functions G have been introduced which when multiplied with the original pure
slip functions (4.49) produce the interaction effects of κ on Fy and of α on Fx.
The weighting functions have a hill shape. They take the value one in the special
case of pure slip (κ or α equal to zero). When, for example, at a given slip angle
a from zero increasing brake slip is introduced, the relevant weighting function
for Fy may first show a slight increase in magnitude (becoming larger than one)
but will soon reach its peak after which a continuous decrease follows. The
cosine version of the Magic Formula is used to represent the hill shaped function:

(4.64)

Here, G is the resulting weighting factor and x is either κ or tanα (possibly
shifted). The coefficient D represents the peak value (slightly deviating from one
if a horizontal shift of the hill occurs), C determines the height of the hill’s base
and B influences the sharpness of the hill. Coefficient B constitutes the main
factor responsible for the shape of the weighting functions.

As an extension to the original function published by Bayle et al., the part
with shape factor E will be added later on. This extension appears to improve the
approximation, in particular at large levels of slip, especially in view of the strict
condition that the weighting function G must remain positive for all slip
conditions. 

For the side force we get the following formulae:

(4.65)

with the weighting function now expressed such that it equals unity at κ = 0:

(4.66)Gyκ'
cos[Cyκarctan(ByκκS ) ]

cos[Cyκarctan(ByκSHyκ)]
(>0)
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where
(4.67)κS ' κ % SHyκ

and further the coefficients
(4.68a)Byκ ' rBy1 cos[arctan{rBy2 (tanα& rBy3)}]

(4.68b)Cyκ ' rCy1

(4.68c)SHyκ ' rHy1 % rHy2 dfz

(4.69a)SVyκ ' DVyκ sin[ rVy5 arctan(rVy6κ )]

(4.69b)DVyκ ' µy Fz @ (rVy1% rVy2 dfz% rVy3γ ) @cos[ arctan( rVy4 tanα )]

with dfz the notation for the non-dimensional increment of the vertical load with
respect to the (adapted) nominal load, cf. next Subsection 4.3.2, Eq.(4.E2).
Figure 4.15 depicts the two weighting functions displayed both as functions of
α and of κ and the resulting force characteristics (parameters according to Table
4.2 at end of Sec.4.3.3). Below, an explanation is given. 

In Eq.(4.65) Fyo denotes the side force at pure side slip obtained from
Eq.(4.49). The denominator of the weighting function (4.66) makes Gyκ= 1 at κ
= 0. The horizontal shift SHyκ of the weighting function accomplishes the slight
increase that the side force experiences at moderate braking before the peak of
Gyκ is reached and the decay of Fy commences. This horizontal shift may be made
dependent on the vertical load. Cyκ controls the level of the horizontal asymptote.
If Cyκ = 1 the weighting function  (4.66) will approach zero when κ6 ±4. This
would be the correct value for Cyκ if κ is expected to be used in the entire range
from plus to minus infinity. If this is not intended then Cyκ may be chosen
different from one if Gyκ is optimised with the restriction to remain positive. The
factor Byκ influences the sharpness of the hill shaped weighting function. As
indicated, the hill becomes  more flat (wider) at larger slip angles. Then Byκ

decreases according to (4.68a). When in an extreme situation α approaches 90E,
that is when Vcx 60, Byκ will go to zero and, consequently, Gyκ will remain equal
to one unless κ goes to infinity which may easily be the case when at Vcx60 the
wheel speed of revolution Ω  and thus the longitudinal slip velocity Vsx remains
unequal to zero. The quantity SVyκ is the vertical ‘shift’, which sometimes is
referred to as the κ -induced ply-steer. At camber, due to the added asymmetry,
the longitudinal force clearly produces a torque that creates a torsion angle
comparable with a possibly already present ply-steer angle. This shift function
varies with slip κ indicated in (4.69a).
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Fig. 4.15. Nature of weighting functions and the resulting combined slip longitudinal and
lateral forces, the latter also affected by the κ induced ply-steer ‘vertical shift’ SVyκ.
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Fig. 4.16. The combined slip side force characteristics in the presence of a camber angle, Bayle
et al. (1993).

As illustrated in Fig.4.15, its peak value DVyκ depends on the camber angle γ
and decays with increasing magnitude of the slip angle α. Figure 4.16 presents
measured data together with the fitted curves as published by Bayle et al..

The combined slip relations for Fx are similar to what we have seen for the
side force. However, a vertical shift function was not needed. In Fig.4.17 a three-
dimensional graph is shown indicating the variation of Fx and Fy with both α and
κ. The initial ‘S’ shape of the Fy vs κ  curves (at small α) due to the vertical shift
function is clearly visible.

For possible improvement of the general tendency of the model at larger
levels of combined slip beyond the range of available test data one might include
additional ‘fabricated’ data which are derived from similarity method results at
larger values of the slip angle. Another possibility is the usage of the conditions
at wheel lock where one might assume that the force and slip vector are co-
linear. We then have for the ratio of the components:

(4.70)
Fx

Fy

'

Vsx

Vsy

'

κ

tanα
'

&1
tanα

or

 (4.71)Fx ' Fxo(κ'&1) @ cosα ' Fxo(κ'&1) @
Vsx

Vs

(4.72)Fy ' &Fxo(κ'&1) @ sinα ' Fxo(κ'&1) @
Vsy

Vs
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Fig. 4.17.  Three-dimensional graph of combined slip force characteristics.

Regarding the aligning torque, physical insight is used to model the situation at
combined slip. We write:

(4.73)Mz ' & t (αt,eq) @Fy % Mzr (αr,eq)% s (Fy ,γ) @Fx

The arguments αt and αr (including a shift) appearing in the functions (4.59,
4.61) for the pneumatic trail and residual torque at pure side slip are replaced by
equivalent slip angles, as indicated by Eq.(4.74), incorporating the effect of κ  on
the composite slip. 

(4.74)αt,eq ' α
2
t %

Kxκ

Kyα

2

κ
2

@ sgn(αt)

and similar for αr,eq. To approximate the same effect on the degree of sliding in
the contact patch as would occur with side slip, the longitudinal slip κ is
multiplied with the ratio of the longitudinal and lateral slip stiffnesses.

Besides, an extra term is introduced in (4.73) to account for the fact that a
moment arm s arises for Fx as a result of camber γ and lateral tyre deflection
related to Fy. This extra term may give rise to a sign change of the aligning



184 SEMI-EMPIRICAL TYRE MODELS

torque in the range of braking as discussed before (cf. Fig.3.20).
The complete set of steady-state formulae has been listed in the subsequent

section. Parameters p, q, r and s of the model are non-dimensional quantities. In
addition, user scaling factors λ have been introduced. With that tool the effect of
changing friction coefficient, cornering stiffness, camber stiffness etc. can be
quickly investigated in a qualitative way without having the need to implement
a completely new tyre data set. Scaling is done in such a way that realistic
relationships are maintained. For instance, when changing the cornering stiffness
and the friction coefficient in lateral direction (through λKyα and λµy), the abscissa
of the pneumatic trail characteristic is changed in a way equal to that of the side
force characteristic and in accordance with the similarity method of Section 4.2.

4.3.2.  Full Set of Equations

The Magic Formula model equations contain the non-dimensional model
parameters p, q, r and s and, in addition, a set of scaling factors λ. Other
parameters and variable quantities used in the equations are: 

g acceleration due to gravity,
Vc  magnitude of the velocity of the wheel contact centre C,
Vcx,y components of the velocity of the wheel contact centre C,
Vsx,y  components of slip velocity Vs (of point S) with Vsy.Vcy, cf. Eq.(2.13),
Vr  (=ReΩ=Vcx!Vsx) forward speed of rolling, 
Vo reference velocity (=% (gRo) or other specified value),
Ro  unloaded tyre radius (=ro), 
Re  effective rolling radius (=re),
Ω wheel speed of revolution
ρz   tyre radial deflection (>0 if compression),
Fzo nominal (rated) load ($0), 
F’zo adapted nominal load

The effect of having a tyre with a different nominal load may be roughly
approximated by using the scaling factor λFzo

(4.E1)FNzo ' λFzo Fzo

Further, we introduce the normalised change in vertical load

 (4.E2)dfz '
Fz&FNzo

FNzo

Instead of taking the slip angle α itself (in radians, from Eq.(2.12)) as input
quantity one may in case of very large slip angles and possibly backwards
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running of the wheel better use the tangent of the slip angle defined as the lateral
slip:

(4.E3)α
(

' tanα @sgnVcx ' &

Vcy

|Vcx |
For the spin due to the camber angle we introduce 

(4.E4)γ
(

' sinγ

The longitudinal slip ratio is defined as follows:

 (4.E5)κ ' &

Vsx

|Vcx|
If the forward speed Vcx becomes or is equal to zero one might add a small
quantity g in the denominator of (4.E3, 4.E5) to avoid singularity, or, when
transient slip situations occur, one should use the transient slip quantities (or
deformation gradients) tanαN and κN as defined and used in Chapters 7 and 8. 

To avoid the occurrence of similar singularities in the ensuing equations due
to e.g. zero velocity or zero vertical load, a small additional quantity g (with
same sign as its neighbouring main quantity) will be introduced in relevant
denominators like in the next equation.

For the factor cosα appearing in the equations for the aligning torque to
properly handle the case of large slip angles and possibly backwards running (Vcx

<0) we have defined: 

 (4.E6)cosNα '
Vcx

VNcwith

(4.E6a)VNc ' Vc%gV

where we may choose gV = 0.1. 
For the normally encountered situations where turn slip may be neglected

(path radius R 64) and camber remains small, the factors ζi appearing in the
equations, are to be set equal to unity:

ζi ' 1 (i ' 0, 1, ...., 8)

In the following Section 4.3.3 where the influence of spin (turn slip and camber)
is described in the extended Magic Formula model, the proper expressions will
be given for these factors and additional equations will be introduced. 
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User Scaling Factors

The following set of scaling factors λ is available. The default value of these
factors is set equal to one (except λµV which equals zero if not used). We have:

pure slip

λFzo nominal (rated) load 
λµx,y peak friction coefficient
λµV with slip speed Vs decaying friction 
λKxκ brake slip stiffness
λKyα cornering stiffness
λCx,y shape factor
λEx,y curvature factor
λHx,y horizontal shift
λVx,y vertical shift
λKyγ camber force stiffness
λKzγ camber torque stiffness
λt pneumatic trail (effecting aligning torque stiffness)
λMr residual torque

combined slip

λxα α influence on Fx(κ)
λyκ κ influence on Fy(α)
λVyκ κ induced ‘ply-steer’ Fy

λs Mz moment arm of Fx

other

λCz radial tyre stiffness
λMx overturning couple stiffness
λMy rolling resistance moment

To change from a relatively high friction surface to a low friction surface the
factors λµx and λµy may be given a value lower than unity. In addition, to reflect
a slippery surface (wet) with friction decaying with increasing (slip) speed one
may chose for λµV a value larger than zero, e.g. Eqs.(4.E13,4.E23). The
publications of Dijks (1974) and of Reimpell et al. (1986) may be useful in this
respect. Note, that the slip stiffnesses are not affected through these changes. For
the composite friction scaling factor, in x and y direction respectively, we have:

(4.E7)λ
(

µx,y ' λµx,y / (1%λµVVs /Vo)

A special degressive friction factor λNµx,y is introduced to recognise the fact that
vertical shifts of the force curves do vanish when :60 but at a much slower rate.

     (suggestion: Aµ =10) (4.E8)λµx,y' ' Aµ λ
(

µx,y / {1% (Aµ&1)λ(µxy}
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Kxκ ' Fz @ (pKx1%pKx2 dfz ) @exp(pKx3 dfz ) @λKxκ

(' BxCxDx ' MFxo /Mκx at κx'0 ) (' CFκ)

For the three forces and three moments acting from road to tyre and defined
according to the diagram of Fig.2.3, the equations, first those for the condition
of pure slip (including camber) and subsequently those for the condition of
combined slip, read (version 2004):

Longitudinal Force  (pure longitudinal slip)

 (4.E9)Fxo' Dx sin[Cx arctan{Bxκx&Ex (Bxκx&arctan(Bxκx ))}]% SVx

 (4.E10)κx ' κ % SHx

 (4.E11)Cx ' pCx1 @λCx (>0)

 (4.E12)Dx ' µx@Fz @ζ1 (>0)

 (4.E13)µx ' (pDx1 % pDx2 dfz) @λ
(

µx (>0)

 (4.E14)Ex ' (pEx1 % pEx2 dfz % pEx3 df 2
z ) @{1 & pEx4 sgn(κx )} @λEx (#1)

(4.E15)

(4.E16)Bx ' Kxκ /(Cx Dx % gx)

 (4.E17)SHx ' (pHx1% pHx2 dfz) @λHx

 (4.E18)SVx ' Fz @ (pVx1% pVx2 dfz) @{|Vcx|/(gVx% |Vcx|)} @λVx @λNµx @ ζ1

Lateral Force  (pure side slip)

 (4.E19)Fyo ' Dy sin[Cy arctan{Byαy&Ey (Byαy& arctan(Byαy ))}]% SVy

 (4.E20)αy ' α( % SHy

 (4.E21)Cy ' pCy1@λCy (>0)

 (4.E22)Dy ' µy@Fz @ζ2

(4.E23)µy ' {(pDy1 % pDy2 dfz) (1% pDy3 γ
(2 )} @λ

(

µy (>0)

 (4.E24)Ey ' (pEy1%pEy2 dfz ){1%pEy5 γ
(2
&(pEy3%pEy4 γ

( )sgn(αy )} @λEy (#1)

(4.E25)

Kyα'pKy1 FNzosin[pKy4 arctan{Fz ((pKy2%pKy5γ
(2)FNzo)}] (1%pKy3γ

(2) @ζ3 @λKyα

('ByCyDy'MFyo /Mαy at αy'0) ( if γ'0: 'Kyαo'CFα) (usually: pKy4' 2)
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(4.E26)By ' Kyα /(Cy Dy % gy)

 (4.E27)SHy ' (pHy1%pHy2 dfz) @λHy% (Kyγo γ
(

&SVyγ) @ζ0 / (Kyα%gK)% ζ4& 1

 (4.E28)SVyγ ' Fz @ (pVy3% pVy4 dfz ) γ( @λKyγ @λNµy @ζ2

 (4.E29)SVy ' Fz @ (pVy1% pVy2 dfz) @λVy @λNµy @ζ2 % SVyγ

 (4.E30)Kyγo ' Fz @ (pKy6%pKy7 dfz) @λKyγ (' ~ MFyo /Mγ at α' γ ' 0) (' CFγ )

Aligning Torque  (pure side slip)

 (4.E31)Mzo ' MzoN % Mzro

 (4.E32)MzoN ' & to @Fyo

 (4.E33)to' t (αt ) ' Dt cos[Ct arctan{Btαt&Et (Btαt&arctan(Btαt ))}]@cosNα

 (4.E34)αt ' α( % SHt

 (4.E35)SHt ' qHz1% qHz2 dfz% (qHz3% qHz4 dfz)γ
(

 (4.E36)Mzro' Mzr(αr) ' Dr cos[Cr arctan(Brαr )]

 (4.E37)αr ' α(% SHf (' αf )

 (4.E38)SHf ' SHy% SVy /KyαN

 (4.E39)KyαN ' Kyα % gK

 (4.E40)Bt' (qBz1%qBz2 dfz%qBz3 df 2
z ) @(1%qBz5 |γ( |%qBz6 γ

(2) @λKyα /λ(µy (>0)

 (4.E41)Ct ' qCz1 (>0)

 (4.E42)Dto ' Fz @ (Ro /FNzo ) @ (qDz1% qDz2 dfz ) @λt @sgnVcx

 (4.E43)Dt ' Dto @ (1 % qDz3 |γ(|% qDz4 γ
(2 ) @ζ5

 (4.E44)Et' (qEz1%qEz2 dfz%qEz3 df 2
z ) 1%(qEz4%qEz5γ

( ) 2

π

arctan(BtCtαt) (#1)

   ( preferred: ) (4.E45)Br ' (qBz9 @λKyα /λ(µy%qBz10 ByCy) @ζ6 qBz9' 0

 (4.E46)Cr ' ζ7
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 (4.E47)
Dr'Fz Ro{(qDz6%qDz7 dfz)λMrζ2%(qDz8%qDz9 dfz)γ

(λKzγζ0%

% (qDz10%qDz11 dfz)γ
( |γ(|ζ0}cosNα @λ

(

µy sgnVcx % ζ8&1

 (4.E48)Kzαo ' Dto Kyα,γ'0 ('~&MMzo /Mαy at αy' γ'0) (' CMα
)

(4.E49)
Kzγo'Fz Ro (qDz8%qDz9 dfz)λKzγ&Dto Kyγo

('~ MMzo /Mγ at α'γ'0) (' CMγ
)

Longitudinal Force   (combined slip) 

 (4.E50)Fx ' Gxα @Fxo

 (4.E51)Gxα'cos[Cxαarctan{BxααS&Exα(BxααS&arctan(BxααS))}]/Gxαo (>0)

 (4.E52)Gxαo'cos[Cxαarctan{BxαSHxα&Exα (BxαSHxα&arctan(BxαSHxα ))}]

 (4.E53)αS ' α
(

% SHxα

 (4.E54)Bxα ' (rBx1%rBx3 γ
(2)cos[arctan(rBx2κ )] @λxα (>0)

 (4.E55)Cxα ' rCx1

 (4.E56)Exα ' rEx1% rEx2 dfz (#1)

 (4.E57)SHxα ' rHx1

Lateral Force   (combined slip)

 (4.E58)Fy ' Gyκ @Fyo % SVyκ

 (4.E59)Gyκ'cos[Cyκarctan{ByκκS&Eyκ(ByκκS&arctan(ByκκS))}]/Gyκo (>0)

 (4.E60)Gyκo' cos[Cyκarctan{ByκSHyκ&Eyκ (ByκSHyκ& arctan(ByκSHyκ ))}]

(4.E61)κS ' κ % SHyκ

(4.E62)Byκ ' (rBy1%rBy4 γ
(2)cos[arctan{rBy2 (α(& rBy3)}] @λyκ (>0)

 (4.E63)Cyκ ' rCy1

 (4.E64)Eyκ ' rEy1% rEy2 dfz (#1)

 (4.E65)SHyκ ' rHy1%rHy2 dfz

 (4.E66)SVyκ ' DVyκ sin[rVy5 arctan(rVy6κ )] @λVyκ

 (4.E67)DVyκ ' µy Fz @ (rVy1% rVy2 dfz% rVy3 γ
( ) @cos[arctan(rVy4α

( )] @ζ2
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αt,eq ' α
2
t %

Kxκ

KyαN

2

κ 2
@sgn(αt )

αr,eq ' α
2
r %

Kxκ

KyαN

2

κ 2
@sgn(αr )

Normal Load (see also Eqs.(7.45) and (9.217))

 (4.E68)
Fz ' pz1 @ (FNzo /Ro) @ρz @λCz ($0)
(CFz ' MFz /Mρz ' pz1λCz FNzo /Ro )

Overturning Couple (see also Sec.4.3.5)

(4.E69)Mx ' Fz Ro @ (qsx1&qsx2γ
(

%qsx3 Fy /FNzo) @λMx

Rolling Resistance Moment (see also Eqs.(9.236,9.230))

(4.E70)My ' &Fz Ro @{qsy1 arctan(Vr /Vo )% qsy2 Fx /FNzo } @λMy

Aligning Torque   (combined slip)

 (4.E71)Mz ' MzN % Mzr% s @Fx

 (4.E72)MzN ' & t @FyN

 (4.E73)t't(αt,eq)'Dtcos[Ctarctan{Btαt,eq&Et(Btαt,eq&arctan(Btαt,eq))}]@cosNα

 (4.E74)FyN ' Fy& SVyκ

 (4.E75)Mzr ' Mzr (αr,eq ) ' Dr cos[Cr arctan(Brαr,eq )]

 (4.E76)s ' Ro @{ssz1% ssz2 (Fy /FNzo ) % (ssz3% ssz4 dfz )γ(} @λs

(4.E77)

(4.E78)

Note that actually -SHxCFκ should equal My /rl making κ=0 at free rolling (drive
torque MD =0). If SHx is set equal to zero, κ vanishes at MD =My making Fx =0.

A set of parameter values have been listed in App.3 for an example tyre in
connection with the SWIFT tyre model to be dealt with in Chapter 9. Examples
of computed characteristics compared with experimentally assessed curves for
both pure slip and combined slip conditions are discussed in Section 4.3.6 of this
chapter, cf. Figs.4.28-32. In the next Section 4.3.3 the effect of having turn slip
is modelled and some calculated characteristics have been presented for a set of
hypothetical model parameters (Fig.4.19). Section 4.3.4 examines the possibility
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to define the effects of conicity and ply-steer as responses to equivalent camber
and slip angles. Section 4.3.5 gives a possibly better description than (4E.69) for
the overturning couple of truck, car and racing tyres due to side slip and for the
part due to camber that is illustrated for the case of a motorcycle tyre.

4.3.3.  Extension of the Model for Turn Slip

The model described so far contains the input slip quantities side slip,
longitudinal slip and wheel camber. In the present section the turn slip or (in
steady state) path curvature is added which completes the description of the
steady state force and moment generation properties of the tyre.

Turn slip is one of the two components which together form the spin of the
tyre, cf. Fig.3.22. The turn slip is defined here as:

(4.75)nt ' &

ψ0

VNc

' &

1
R

and the total tyre spin, cf. Eq.(3.55) :

(4.76)n ' &

1
VNc

{ψ0 & (1 & g
γ
)Ω sinγ}

with the singularity protected velocity Vc’ . Again, gγ denotes the camber reduction
factor for the camber to become comparable with turn slip. For radial-ply car
tyres this reduction factor gγ may become as high as ca. 0.7 (for some truck tyres
even slightly over 1.0) while for a motorcycle tyre the factor is expected to be
close to zero like with a homogeneous solid ball, cf. discussion below Eq.
(3.117).

In the previous section the effect of camber was introduced. For the side force
this resulted in a horizontal and a vertical shift of the Fy vs α curves, while for
the aligning torque, besides the small effect of the shifted Fy curve, the residual
torque Mzr was added in which a contribution of camber occurs. Furthermore,
changes in shape appeared to occur which were represented by the introduction
of γ in factors like µy , Ey , Kyα , Bt , Dt etc. These changes may be attributed to
changes in tyre cross section and contact pressure distribution resulting from the
wheel inclination angle.

These shifts and shape changes will be retained in the model extension but
will be expanded to cover the complete range of spin in combination with side
slip and also longitudinal slip. The spin may change from zero to ±4 when path
curvature goes to infinity and, consequently, path radius to zero (when the
velocity Vc60). Weighting functions will again be introduced to gradually reduce
peak side and longitudinal forces with increasing spin. Also, cornering stiffness
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Fig. 4.18.  Two basic spin force and moment diagrams.

and pneumatic trail will be subjected to such a reduction. 
The theoretical findings which have been gained from the physical model of

Section 3.3 presented in Fig.3.35d will be used as basis for the model
development. Since these findings hold for only one value of the vertical load and
zero longitudinal slip, the influence of load variations and longitudinal slip have
been structured tentatively.

In Fig.4.18 for the two extreme cases of α = 0 and α = 90E the courses of Fy

and Mz vs ant =!a/R have been depicted. The pure spin side force characteristic
shown in the left-hand diagram (at α =0), also indicated in the lower left diagram
of Fig.3.35d, can be fabricated by sideways shifting of the side force curve
belonging to zero spin (turn slip nt = 0 and γ = 0, upper or middle left diagram)
while at the same time reducing its peak value Dy and its slope at the curve centre
Kyα. For this, we define the reduction functions to be substituted in the previous
Eqs.(4.E22,4.E25,4.E28,4.E29). The peak side force reduction factor:

(4.77)ζ2 ' cos[ arctan{Byn( Ro|nt|%pDyn4 Ro|nt|)}]

with sharpness factor:

(4.78)Byn ' pDyn1(1%pDyn2 dfz) cos[arctan(pDyn3tanα)]

and the slope reduction factor:

 (4.79)ζ3 ' cos[ arctan(pKyn1 R 2
on

2
t )]

Herewith, the condition is satisfied that at nt 64, where the wheel is steered
about the vertical axis at a speed of travel equal to zero (that is: velocity of
contact centre Vc6 0 and path radius R60, leading to ζ2 =ζ3 = 0), the side force
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reduces to zero although a slip angle may theoretically still exist. Considering the
upper or middle left diagram of Fig.3.35d, it seems that the sideways shift
saturates at larger values of spin. To model this phenomenon, which actually
says that beyond a certain negative slip angle no spin is large enough to make the
side force vanish, the sine version of the magic formula is used. We have:

SHyn'DHynsin[CHynarctan{BHynRon&EHyn(BHynRon&arctan(BHynRon))}]

(4.80)
The shape factor CHyn is expected to be equal or smaller than unity. To
expression (4.80) is added the shift due to ply-steer and conicity. Finally, we
subtract the horizontal displacement of the point of intersection of the side force
vs slip angle curve which arises due to the vertical shift of the curve (which for
now is thought to be solely attributed to the camber component of spin). This
leads to a total horizontal shift:

(4.81)SHy ' ( pHy1% pHy2 dfz) @λHy%SHyn&SVyγ /KNyα

in which the vertical shift due to γ  reads:

(4.82)SVyγ ' Fz @ ( pVy3% pVy4 dfz )γ( @ζ2 @λKyγ @λNµy

cf. Eq.(4.E28). The quantity Ky’α is the singularity protected cornering stiffness
defined by Eq.(4.E39). Through this manipulation, the camber/spin stiffness is
solely attributed to the horizontal shift of the point of intersection SHyn , cf.
Eqs.(4.88,4.89). Apparently, the factors ζ in Eq.(4.E27) now read:

(4.83)ζ0 ' 0

(4.84)ζ4 ' 1% SHyn&SVyγ /KNyα

The various factors appearing in (4.80) are defined as follows:

(4.85)CHyn ' pHyn1 ( >0)

(4.86)DHyn ' (pHyn2%pHyn3 dfz) @ sgn(Vcx)

(4.87)EHyn ' pHyn4 (#1)

(4.88)BHyn ' KyRno /{CHynDHyn (Kyαo%gK)}

where the spin force stiffness KyRno is related to the camber stiffness Kyγo (=CFγ)
that is given by (4.E30):

(4.89)KyRno'Kyγo /(1&g
γ
) ('MFyo /MRon at α'γ'n'0) ('CFn /Ro )

for which we may define:
(4.90)g

γ
' p

gγn1 (1 % p
gγn2 dfz)
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Obviously, this parameter governs the difference of the response to camber with
respect to that of turn slip.

For modelling the aligning torque, we will use as before the product of the
side force and the pneumatic trail in the first term of Eqs.(4.E31,4.E71) while for
the second term the residual torque will be expanded to represent large spin
torque. 

The middle right diagram of Fig.3.35d shows that at increasing turn slip the
residual or spin torque increases while the moment due to side slip (clearly
visible at nt = 0) diminishes. This decay is modelled by means of the weighting
function ζ5 multiplied with the pneumatic trail in Eq.(4.E43):

(4.91)ζ5 ' cos[arctan(qDtn1Ront)]

The second term of Eqs.(4.E31,4.E71), the residual torque, which in the present
context may be better designated as the spin moment, is given by
Eqs.(4.E36,4.E75). Its peak value Dr has an initial value due to conicity that is
expected to be taken over gradually by an increasing turn slip. In (4.E47) this is
accomplished by the weighting function ζ2 (4.77). The remaining terms will be
replaced by the peak spin torque Drn. This means that the ζ’s appearing in
(4.E47) become besides according to (4.83):

(4.92)ζ8 ' 1 % Drn

As observed in the middle right diagram of Fig.3.35d, the peak torque (that will
be assumed to occur at a slip angle α =!SHf  where Fy=0) grows with increasing
spin and finally saturates. The magic formula describes this as follows:

Drn'DDrnsin[CDrnarctan{BDrnRon&EDrn(BDrnRon&arctan(BDrnRon))}]

(4.93)
Its maximum value (if CDrn$1) is DDrn. The asymptotic level of the peak spin
torque is reached at n64 or R60, and is denoted as Mzn4 . Consequently, with
the shape factor CDrn the maximum value is expressed by:

(4.94)DDrn ' Mzn4 / sin(0.5πCDrn)

where the moment Mzn4  that occurs at vanishing wheel speed and at constant
turning about the vertical axis is formulated as a function of the normal load:

(4.95)Mzn4 ' qCrn1 µy RoFz Fz /FNzo @λMn ( >0)

This expression may be compared with or replaced by expression (3.117)
formulated by Freudenstein (1961). The shape factors in (4.93) are assumed to
be given by constant parameters:

(4.96)CDrn ' qDrn1 ( >0)

(4.97)EDrn ' qDrn2 (#1)
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while

(4.98)BDrn ' Kzγro /{(CDrnDDrn%gr)(1&gγ
)}

with Kzγro assumed to depend on the normal load as follows:

(4.99)Kzγro' Fz Ro (qDz8%qDz9 dfz)λKzγ

As has been indicated with Eq.(4.E49) we have now for the camber moment
stiffness

(4.100)Kzγo ' Kzγro& Dto Kyγo (' CMγ
)

and consequently for the moment stiffness against spin:

(4.101)KzRno ' Kzγo /(1&g
γ
) (' CMn /Ro )

Now that the formulae for the peak of the spin torque Drn has been developed,
we must consider the remaining course of Mzr with the slip angle α. For this,
Eq.(4.E36) is employed. According to the middle right diagram of Fig.3.35d the
curves become flatter as the spin increases. Logically, for n 6 4 the moment
should become independent of the slip angle. The sharpness is controlled by the
factor Br which we let gradually decrease to zero with increasing spin. For this,
we introduce in Eq.(4.E45) the weighting function:

(4.102)ζ6 ' cos[arctan(qBrn1 Ron)]

The factor Cr controls the asymptotic level which corresponds to the torque at
α = 90E. In that situation the turn slip  which corresponds tont ' &ψ0 /|Vcy|'1/R
the definition given by Eq.(4.76). The moment Mzn90 that is generated when the
wheel moves at α = 90E, increases with increasing curvature 1/R up to its
maximum value that is attained at R = 0 and equals Mzn4 . We use the formula:

(4.103)Mzn90 ' Mzn4 @

2
π

@arctan(qCrn2 Ro|nt |) @Gyκ(κ )

with parameter qCrn2. This quantity may be difficult to assess experimentally; the
value 0.1 is expected to be a reasonable estimate. (In any case, the argument of
(4.104) should remain <1.) This moment at 90E is multiplied with the weighting
function Gyκ (4.E59) to account for the attenuation through the action of
longitudinal slip. 

We obtain for the factor ζ7 = Cr in Eq.(4.E46) using (4.E36) with |αr|64:

(4.104)ζ7 '
2
π

@arccos[Mzn90 / (|Drn|%gr )]

Finally, we must take care of the weighting function ζ1 which is introduced in the
expressions (4.E12,4.E18) for Fx to let the longitudinal force diminish with
increasing spin. We define:

(4.105)ζ1 ' cos[arctan(Bxn Ron)]



196 SEMI-EMPIRICAL TYRE MODELS

with

(4.106)Bxn ' pDxn1(1%pDxn2 dfz) cos[arctan(pDxn3κ)]

With the factors ζ0 , ζ1 ,.....ζ8  determined and substituted in the equations
(4.E9-78) the description of the steady-state force and moment generation has
been completed. To show that the formulae produce qualitatively correct results,
a collection of computed curves have been presented in the diagrams of Fig.4.19.
In Table 4.2 the values of the model parameters have been listed. The diagrams
show that the formulae are perfectly capable to at least qualitatively approximate
the curves that have been computed with the brush simulation model of Chapter
3 (cf. Fig.3.35). It has not been attempted to find a best fit for the parameters.

Table 4.2. Magic Formula hypothetical parameter values. Parameters that govern the influence
of longitudinal slip and changes in vertical load have been given the tentative value
zero

Fz = 3000N    Fzo = 3000N   Ro = 0.3m    Re = Ro   (a = 0.1m) 

pCx1 =  1.65 pDx1 =  1 pDx2 =  0 pEx1 =!0.5 pEx2 =  0 pEx3 = 0 pEx4 = 0
pKx1 =  12 pKx2 =  10 pKx3 =!0.6 pHx1 =  0 pHx2 =  0 pVx1 = 0 pVx2 = 0
pCy1 =  1.3 pDy1 =  1 pDy2 =  0 pDy3 =  0  
pEy1 =!1   pEy2 =  0 pEy3 =  0 pEy4 =  0
pKy1 =  10 pKy2 =  1.5 pKy3 =  0 pKy4 =  2  pKy5 =  0   pKy6 = 2.5 pKy7 = 0
pHy1 =  0 pHy2 =  0 pVy1 =  0   pVy2 =  0 pVy3 =0.15  pVy4 =  0

qBz1  =  6      qBz2 =!4 qBz3 =  0.6 qBz4 =  0 qBz5 =  0 qBz9 = 0 qBz10 = 0.7
qCz1 =  1.05 qDz1 =  0.12 qDz2 =!0.03 qDz3 =  0 qDz4 =!1 qDz6 = 0 qDz7  = 0
qDz8 =  0.6 qDz9 =  0.2 qDz10 =  0 qDz11 =  0 qEz1 =!10 qEz2 = 0 qEz3 = 0 
qEz4 =  0  qEz5 =  0 qHz1 =  0 qHz2 =  0 qHz3 =  0 qHz4 = 0

rBx1 =  5 rBx2 =  8 rBx3 =  0 rCx1 =  1 rHx1 =  0
rBy1 =  7 rBy2  =  2.5 rBy3 =  0 rBy4 =  0 rCy1 =  1 rHy1  = 0.02
rVy1 =  0 rVy2 =  0 rVy3 =!0.2 rVy4 =  14 rVy5  = 1.9   rVy6  = 10
ssz1 =  0 ssz2 =!0.1 ssz3 =!1.0 ssz4 =  0

pDxn1 = 0.4 pDxn2,3 = 0 pKyn1 =  1 pDyn1 = 0.4   pDyn2  = 0     pDyn3,4 =  0
pHyn1 = 1     pHyn2= 0.15 pHyn3 =  0 pHyn4 =!4 pgγn1 = 0   pgγn2 =  0
qDtn1 = 10 qCrn1 = 0.2 qCrn2 =  0.1   qBrn1  = 0.1  qDrn1 = 1    qDrn2 =!1.5
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 Fig. 4.19. Magic Formula results for steady-state response of forces Fx,y and moment Mz to slip
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Fig. 4.20. Side force vs steer angle characteristics at forward and backward rolling showing the
cases of pure conicity, pure ply-steer and a combination of both situations. Below,
the associated foot prints on a frictionless surface have been depicted.

4.3.4.  Ply-Steer and Conicity

In the formulae for the side force Fy and the aligning torque Mz, the vertical shift
SVy , the horizontal shift SHy and the residual torque peak value Dr contain terms
which produce the initial values of side force and aligning torque that occur at
straight ahead running (at α = 0). These initial values are known to be the result
of conicity and ply-steer, which are connected with non-symmetry of the tyre
construction. These two possible sources result in markedly different behaviour
of the tyre when, at geometrically zero side slip, the tyre is rolled forwards or
backwards. If we would have a tyre that exhibits ply-steer but no conicity the
generated side force will point to the opposite direction when the wheel is
changed from forward to backward rolling. This would also be the case when on
a test rig the wheel moves at a small steer angle ψ  and the road surface motion
is changed from backward to forward. For that reason, ply-steer is sometimes
referred to as pseudo side slip. If on the other hand the tyre would show pure
conicity, the side force will remain pointing in the same direction when the wheel
is rolled in the opposite direction. That behaviour is similar to that of a cambered
wheel, which explains the term: pseudo camber. In Fig.4.20 for the different
cases the diagrams for the side force variation resulting from yaw angle
variations  have been depicted. The curved or scewed foot prints of the tyre that
due to non-symmetric construction of carcass and belt would arise on a zero
friction surface explains the resulting characteristics. Definitions of conicity and
ply-steer follow from the forces found at zero steer angle ψ.

The deformations of the tyre rolling on a friction surface resemble those that
would occur with a tyre (free of conicity and ply-steer) that rolls at a small
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Fig. 4.21.  The situation near zero slip angle, force and moment due to conicity and ply-steer.

camber and side slip angle respectively. It is therefore tempting to assume that
in these comparable cases the moment Mz and the force Fy respond at the same
rate which would mean that the associated pneumatic trails are equal for ply-
steer and side slip and for conicity and camber. The assumption is partly
supported by an extensive experimental investigation of Lee (2000), which
assessed a strong linear correlation between conicity and the difference between
slip angles where Fy and Mz become equal to zero. In Fig.4.21 this difference is
designated as δo. Lee found that at δo =0 conicity is almost zero. This means that
for vanishing conicity the remaining ply-steer produces a moment that is
approximately equal to minus the pneumatic trail for side slip times the side
force. With the introduction of the (small) equivalent slip angle αply we have: 

 with   (4.107)Mply . &CMα
αply CMα

' tCFα

and

(4.108)Fply . CFααply

Also according to Lee, the residual torque at zero side force, Mzr0 in Fig.4.21, is
strongly correlated with δo and thus with conicity. We find from the diagram:

(4.109)Mzr0 . CMα
δo

If we may further assume that for the conicity force and moment a similar
correspondence with camber response exists we would have after introducing an
equivalent camber angle γcon:

  with   (4.110)Mcon . CMγ
γcon CMγ

' t
γ
CFγ

where tγ (>0) represents the distance of the point of application of the resulting
camber thrust in front of the contact centre (that is: negative trail). The conicity
force becomes:
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Fig. 4.22. Characteristics of a tyre without ply-steer or conicity near the origin at α = 0, with
and without camber. 

(4.111)Fcon . CFγ
γcon

With these assumptions it is possible to estimate the contributions of ply-steer
and conicity in the initial values of side force and aligning torque (at α = γ= 0)
from a set of tyre parameters that belongs to one direction of rolling.

This enables the vehicle modeller to switch easily from the set of parameter
values of the tyre model that runs on the left-hand wheels of a car to the set for
the right-hand wheels. To accomplish this, the equivalent camber parts of the
left-hand tyre model must be changed in sign for both the aligning moment and
the side force to make the model suitable for the right-hand tyre. Also, it is then
easy to omit e.g. all conicity contributions which were originally present in the
tyre from which the parameters have been assessed through the fitting process.

To develop the theory, we will first consider the case of a tyre without ply-
steer and conicity and study the situation when a camber angle is applied. This
condition is reflected by the diagram of Fig.4.22. Considering the relations
entered in this figure, we may write for the distance δγ

(4.112)δ
γ
'

CMγ

CMα

%

CFγ

CFα

γ

and consequently we can find the camber angle γ from the distance δγ. In a
similar fashion the conicity will be assessed in terms of the equivalent camber
angle and after that, the part attributed to ply-steer can be determined and
expressed in terms of the equivalent slip angle. Figure 4.23 illustrates the
conversion to equivalent angles. We find similar to the inverse of (4.112)

(4.113)γcon '
δo

CMγ

CMα

%

CFγ

CFα
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Fig. 4.23. Characteristics of a tyre with ply-steer and conicity showing conversion to equivalent
camber and slip angle.

The equivalent slip angle can now be obtained from:

(4.114)αply ' ∆αo &
CFγ

CFα

γcon

The four slip and camber stiffnesses are available from
Eqs.(4.E25,4.E30,4.E48,4.E49). The sign of the forward velocity has been
properly introduced.

The next thing we have to do is expressing δo and ∆αo  in terms of the shifts
and the initial residual torque as defined in Section 4.3.2. We obtain with
(4.E38):

(4.115)∆αo ' SHf (γ'φ'0)

and from (4.109) and Fig.4.23:

(4.116)δo '
Fy0

CFα

%

Mz0

CMα

' Mzr0 /CMα

with CMα
according to Eq.(4.E48) and the initial residual torque from (4.E47):

(4.117)Mzr0 ' Dro ' Fz Ro(qDz6%qDz7 dfz) @λMr

Finally,the initial side force and torque are to be removed from the equations by
putting the parameters pHy1, pHy2, pVy1, pVy2, qDz6 and qDz7 or the scaling factors
λHy, λVy and λMr equal to zero and by replacing in Eqs.(4.E20,4.E37) the original
side slip input variable α* = tanα @sgnVx by its effective value:

(4.118)α
(

eff ' (tanα% αply) sgnVx
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Fig. 4.24.  The final diagram with effective side slip and camber variables.

and in Eqs.(4.E27,4.E28,4.E47) the original camber γ* = sinγ by the effective
total camber:

(4.119)γ
(

eff ' sin(γ % γcon)

where it should be realised that both αply and γcon are small quantities. The
resulting diagram of Fig.4.24 shows characteristics that pass through the origin
when the effective camber angle is equal to zero. For the tyre running on the
other side of the vehicle the same model can be used but with γcon in (4.119)
changed in sign.

The theory above is based on considerations near the origin of the side force
and aligning torque vs slip angle diagrams. The introduction of effective slip and
camber angles may, however, give rise to slight changes in peak levels of the side
force and probably also of the aligning torque. For the former, the situation may
be repaired by moving the force characteristic in a direction parallel to the
tangent at Fy = 0 resulting in an additional vertical shift:

  (4.120)∆SVy ' Fz @ (pVy1% pVy2 dfz)& (pVy3% pVy4 dfz )γeff

and an associated additional horizontal shift:

(4.121)∆SHy ' &∆SVy /KNyα

Tyre Pull

If identical tyres would be fitted on the front axle of an automobile but with the
conicity forces pointing in the same direction, and the vehicle moves along a
straight line (that is: side forces are equal to zero) a steering torque must be
applied that opposes the residual torques Mzr0 generated by the front tyres
(Fig.4.21). This is actually only approximately true because we may neglect the
trails connected with ply-steer and conicity with respect to the vehicle wheel
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Fig. 4.25. Tyre at low load and at high load subjected to side slip giving rise to an overturning
couple that may be of opposite sign.

base. (In reality we have a small couple acting on the car exerted by the equal
but opposite side forces front and rear which counteract the small, mainly
conicity, torques front and rear.) The phenomenon that a steer torque must be
applied when moving straight ahead is called: tyre or vehicle pull. If the steering
wheel would be released, the vehicle will deviate from its straight path.

If on the right-hand wheel a tyre is mounted that is identical with the left-
hand tyre one would actually expect that the conicity forces are directed in
opposite directions and neutralise each other (as will occur also with the
moments). This is because of the observation that one might compare the
condition on the right-hand side with an identical tyre rolling backwards with
respect to condition of the left-hand tyre. In contrast, the ply-steer forces of the
left and right tyres act in the same direction but are compensated by side forces
that arise through a small slip angle of the whole vehicle. 

If the ply-steer angles front and rear are not the same, a small steer angle of
the front wheels equal to the difference of the ply-steer slip angles front and rear
is required for the vehicle to run straight ahead. The whole vehicle will run at a
slip angle equal to that of the rear wheels.

4.3.5.  The Overturning Couple

The overturning couple is especially important to investigate the vehicle roll-over
occurrence and the curving behaviour of a motorcycle. In moderate conditions
Eq.(4.E69) may often be sufficient to model the overturning moment. In the
present section we will study cases that require more elaborate modelling.
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Due to Side Slip

Experience with measuring truck tyres, racing tyres and passenger car tyres
shows that a positive overturning couple arises especially at low vertical loads
as a response to positive side slip (situation depicted in Fig.4.25) while camber
remains zero. This is probably in contrast to the behaviour of narrow passenger
car or motorcycle tyres where due to the lateral deflection connected with the
side force Fy, the point of application of the resultant vertical force Fz moves in
the direction of the side force and as a result generates a negative couple Mx. The
observation that a tyre may show a positive moment is expected to be connected
with the belt that is stiff in torsion in the contact zone. This high stiffness
opposes the flattening of the belt  to remain in contact with the road when the
belt is tilted through the action of the side force. This will especially be true
when the contact patch is short, that is: at low load. As a result, the resultant
vertical force vector will move more towards the edge away from the side force
which causes the contact pressure to become relatively high on that side of the
contact patch thereby enabling the overturning couple to become positive. At
higher loads the middle portion of the belt contact range will show less resistance
to remain horizontal and the overturning couple may turn to the more common
negative values. It is of importance to note that the positive  overturning couple
at low loads and the ensuing sign change is observed to occur when
measurements are conducted on e.g. a flat plank or flat trac machine where the
axle height is recorded accurately and in the processing stage proper account is
given to the standard definition of the overturning couple, that is the moment
about the line of intersection of wheel centre plane and ground plane. If the
change in loaded radius is disregarded as is often done in past practice when
measuring with over the road test vehicles, the positive part and the connected
sign change is not observed. Consequently, it is of crucial importance that the
tyre test engineer and the vehicle dynamicist take care of employing, at least, the
same definition for the overturning couple.

The phenomenon may in some way be connected with the negative camber
stiffness that is observed to occur with some type of tyres also especially at low
loads turning to positive at higher loads. The negative camber force generally
changes to positive values when the camber angle becomes sufficiently large. At
moderate loads this also appears to happen with the overturning couple changing
from positive to negative values at larger slip angles, that is: at higher side
forces. The overturning couple response to wheel camber is always negative as
might be expected. Obviously, the associated camber moment stiffness to be
defined as CMxγ = ! MMx/Mγ at zero camber is positive.
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Fig. 4.26. Overturning couple calculated with formulae (4.122-124), cf. Fig.4.30 for similar
measured characteristics. 

To model such a sign changing situation, the overturning couple response to
side slip of the wheel is taken as an example. We will use a formula that is
established by adding two functions:

 (4.122)Mx ' &Fz (y1% y2)

with the two contributions to the moment arm:

 (4.123)y1 ' Ro qx1

Fy

Fzo (4.124)

y2 ' &Ro qx2 cos qx3 arctan(qx4 Fz /Fzo)
2

@sin qx5 arctan(qx6 Fy /Fzo)

The first term y1 increases with the side force. The second term y2 grows, at least
initially, with !Fy and decays with vertical load Fz. For the parameter values
listed in Table 4.3, also containing assumed parameters for the side force
characteristic, Eqs.(4.E19-26), the overturning couple has been calculated.
Figure 4.26 shows the resulting curves. The same tendencies have been found to
occur both with truck tyres and passenger car tyres. For the latter, we may refer
to the diagram given in Fig.4.30. The same figure, which has been reproduced
from the dissertation of Van der Jagt (2000), contains the diagram showing the
decrease of the loaded radius with slip angle. This information is needed to
assess the moment about the longitudinal axis through the wheel centre. In
Chapter 9 a formula is given which assumes that the decrease of the loaded
radius is proportional to the squares of the lateral and the longitudinal deflections
of the carcass, cf. Eq.(9.222). Experiments indicate that also the tyre vertical
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Fig. 4.27. The motorcycle wheel at very large camber angle γ. Two alternative approaches to
define the contact centre C and the associated ‘loaded radius’ rl and as a
consequence the overturning couple Mx. Instead of the circle, the actual section
contour may be taken.

stiffness is affected by horizontal tyre forces, cf. Reimpell (1986), Eq.(9.217).

Table 4.3.  Parameter values for overturning couple computation, cf. Eqs.(4.120-122)

Fzo =4.4 kN Ro = 0.3 m

µy = 1 Cy = 1.4 Ey = !1 pKy1 = 20 pKy2 = 1.5 pKy4 = 2

qx1 = 0.042 qx2 = 0.56 qx3 = 0.955 qx4 = 2.35 qx5 = 1.25 qx6 = 0.46

Due to Camber

The second case to be dealt with concerns the motorcycle tyre. A special problem
can be identified that concerns the possibly very large wheel inclination angle.
Similar situations may be encountered with a car tyre when examining the roll-
over event or when the wheel runs over a locally steep transverse slope. In these
cases, the geometry of the cross section of the tyre with its finite width becomes
of importance and is largely responsible for the overturning couple that arises as
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a result of the wheel inclination angle with respect to the road surface. 
In Fig.4.27 the configuration at very large camber of a motorcycle wheel has

been depicted. For simplicity, the tyre cross section has been assumed to be
purely circular. Alternatively, one may take an ellipse (cf. Fig.7.14). Of course,
if instead of relying on a possibly less precise measurement, the overturning
couple is to be derived from a calculation where the location of the point of
application of the normal force and its distance to the line of intersection (i.e. to
point C) which is the moment arm, is of crucial importance, the actual measured
cross section contour of the undeformed tyre, free radius versus distance to wheel
centre plan ryo(yco), should be utilised. Note that at the point of contact with the
not yet deformed tyre we have: d ryo/d yco= !tanγ. As a consequence of the
definition of the point of intersection or contact centre C which is located on the
line of intersection of the wheel centre plane and the road plane, the loaded radius
rl which by definition is equal to the distance between wheel centre and contact
centre, may become excessively large when the camber angle becomes large. 

Although still perfectly correct, this standard definition may seem less
attractive and one might want to choose for an alternative approach. Two
possible alternatives have been indicated in Fig.4.27. The first one employs a
value for the loaded radius  that remains equal to the value that holds for therl'
upright wheel: rlo which is equal to the free radius ro minus the normal deflection
ρz. It should then be realised that a concurrent (slight) rise !wN of the effective
road plane may not be negligible. This method to acquire the overturning couple
MxN corresponds to the practical procedure often employed when measuring on
the road where the actual height of the wheel centre above the road surface is not
measured. The second alternative is possibly the physically most realistic one.
It defines a contact centre  located above the lowest point of the undeformedC''
tyre. A drawback is that an effective wheel plane has to be defined in the vehicle
dynamic model that is shifted with respect to the wheel centre plane over a
distance yc.

It turns out that the overturning couples that would act about the three
possible virtual contact centres defined above, become quite different from each
other although the moment about the longitudinal axis through the wheel centre
remains, of course, the same. We find successively if the resultant normal force
is assumed to act along a line that passes through the lowest point of the
(assumedly circular) tyre cross section and a through Fy with lateral compliance
induced additional shift is disregarded:

1. Standard definition, using C (for general contour and for circular section):

(4.125)rl ' ryo% yco tanγ& ρz /cosγ' ro& rc% (rc&ρz) /cosγ

(4.126)Mx ' &Fz ( yco /cosγ& ρz tanγ)' &Fz (rc&ρz) tanγ
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2. Practical definition, using :C'

(4.127)r'l ' rlo ' ro & ρz

(4.128)M'x ' &Fz (rc&ρz)sinγ % Fy w'

(4.129)w' ' & (rc&ρz) (1&cosγ)

3. Physically more realistic definition, using :C''

(4.130)rOl ' ry ' ro&rc% (rc&ρz)cosγ

(4.131)MOx ' 0

(4.132)yc ' (rc&ρz)sinγ

The forces act in the points C,  and  respectively. C' C''
The overturning couple Mx according to the standard definition (4.126) is

directly responsible for the lean angle of the motorcycle in a steady turn to
become larger than what would be expected according to the ratio of centrifugal
force and vehicle weight. In the practical definition it would be the combination
of MxN and the effective road surface rise wN  that causes the increase in roll angle,
while with the third definition it would be due to the lateral shift yc of the virtual
wheel plane.

Irrespective of the definition employed, it must be clear how the measured
data have been processed and converted from the wheel axle system of axes
(where in general the forces are measured) to the road and line of intersection
based axes system. An additional conversion may be necessary to suit the
requirements of the vehicle dynamicist. It may be realised that with respect to the
standard definition of the loaded radius rl, Eq.(4.125), the effective rolling radius
re follows a quite different course. Also at large camber angles re will remain
close to the radius rlO= ry defined by (4.130) and shown in Fig.4.27. 

To account for the effect of the lateral tyre deflection and through that the
change in vertical pressure distribution, the part of Mx attributed to wheel camber
and defined by one of the above or similar expressions, should be extended with
the part of the overturning couple described by Eqs.(4.122-124) or, if
appropriate, by a simpler version of that. 

Note on the Aligning Torque at Large Camber

It may be of interest to be aware of another unexpected phenomenon that arises
at large camber angles. One might make a mistake when deriving the aligning
torque from the wheel axle oriented measured forces and moments. If these latter
quantities are denoted with an additional subscript a the aligning torque is
obtained from the moment equilibrium about the vertical axis as follows (cf.
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Fig.4.27):

(4.133)Mz ' Mza cosγ%Mya sinγ&Fxa r sinγ

or alternatively from the moment equilibrium about the wheel radius:

(4.134)Mz ' My tanγ% Mza /cosγ

If the fact is not recognised that at camber a longitudinal force Fx is generated
even at free rolling where Mya is zero or very small, and consequently, Fxa is
disregarded in Eq.(4.133), the calculated aligning torque is incorrect. In (4.134)
the rolling resistance moment My may not be negligible for a cambered wheel
running at a side slip angle. Then, the relatively stiff belt may be axially
deformed in an asymmetric way. This may explain that experiments tend to
indicate that the through camber generated Fx is virtually independent of the slip
angle.

4.3.6.  Comparison with Experimental Data for a Car and a Truck Tyre

In Figs. 4.28,4.29 and 4.31,4.32 the computed and measured characteristics of
a 195/65 R15 car tyre (on the road with Delft Tyre Test Trailer, averaged over
two slip angle and brake pressure sweep cycles) and a 315/80 R22.5 truck tyre
(on Calspan flat track test stand) have been presented. In general, it is observed
that a good agreement between computed and measured curves can be achieved
with the model. An exception is the attempt to (physically) describe the measured
course of the aligning torque at braking. The diagrams concerned, in Figs.4.29
and 4.32, show a rather unpredictable variation of the moment while the brake
pressure is increased until wheel lock is reached. This is assumedly due to the
large direct contribution of the braking force times the moment arm. This
distance between the line of action of Fx and the wheel centre plane is suspected
to vary due to local road camber variations and possibly tyre non-uniformities
while the tyre rolls. 

Figure 4.30 presents the overturning couple and the loaded radius for a
passenger car tyre as reported by Van der Jagt (2000) and measured with the
Ford MTS Flat Trac III tyre testing facility. One may compare the measured
characteristics with the calculated curves shown in Fig.4.26 obtained from Eqs.
(4.122-124) with hypothetical (not optimised) parameter values (Table 4.3).



210 SEMI-EMPIRICAL TYRE MODELS

-15 -10 -5 0 5 10 15
-8

-4

0

4

8

F =z 7000NFy

[kN]

  [deg.]

0 -5

= 5κ o

-1 -0.4 0

-6

-4

-2

0

-8

-0.2-0.8 -0.6 ω [-]

Fx

[kN]

F =z 2000N, 4500N, 7000N

= 0κ

-1 -0.4 0

-6

-4

-2

0

-8 0
-2

-5

2

= -10  o

F =z 7000N

= 0κ

-0.2-0.8 -0.6 ω [-]

Fx

[kN]

-1 0

-4

-2

0

2

-6

= 2

0

-2

-5

-10

  o

F =z 7000N

= 0κ

-0.2-0.8 -0.4-0.6 ω [-]

Fy

[kN]

-15 -10 -5 0 5 10 15
-8

-4

0

4

8

F =z 2000N
4500N
7000N

= 0κ

test data
MF-fit

Fy

[kN]

  [deg.]

-6 -4 0

-4

-2

0

2

-6

0

-2

-5

-10

= 2  o

F =z 7000N

= 0κ

-2-8

Fy

Fx

[kN]

[kN]

Fig. 4.28. Force characteristics of a 195/65 R15 car tyre. Magic Formula computed results
compared with data from measurements (dotted curves) conducted with the Delft
Tyre Test Trailer (2000).
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Fig. 4.30. Overturning couple and loaded radius of a passenger car tyre measured on Ford’s
MTS Flat-Trac III tyre testing machine (V.d. Jagt 2000). Compare with Fig.4.26.

Fig. 4.29. Aligning torque characteristics of a 195/65 R15 car tyre. Magic Formula model
computed results compared with data from measurements (dotted curves) conducted
with the Delft Tyre Test Trailer (2000).
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Fig. 4.31. Force characteristics of a 315/80 R22.5 truck tyre. Magic Formula computed results
compared with data from measurements conducted with the Calspan flat track tyre
test facility (2000) (dotted curves).
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Fig. 4.32. Aligning torque characteristics of a 315/80 R22.5 truck tyre. Magic Formula
computed results compared with data from measurements conducted with the
Calspan flat track tyre test facility (2000) (dotted curves).

Exercise 4.1.  Assessment of off-nominal tyre side force characteristics and
combined slip characteristics with Fx as input quantity

Consider the diagrams of Fig.4.33. For the original (nominal) side force characteristic
Fyo(α) and for the cornering stiffness vs wheel load characteristic CFα(Fz), employ the
formulae as given by Eqs.(4.6-9) using the data indicated in the figure. The variation
of camber stiffness with wheel load CFγ(Fz) is assumed to be linear. To cover the
combined slip situation use Eqs.(4.41-44)  (note: CFα is expressed in N/degree, convert
this first into N/rad to get in line with Eq.(4.42)). In Eq.(4.42a) choose n = 4. In the
nominal condition we have parameter values:

Fzo = 3000N, µo = 0.8, CFαo = 400N/deg, CFγo = 50N/deg.

Use Eqs.(4.45, 4.46) and do the following:
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 (N/rad!)

Eq.(4.44)

Fzo

FzoF =z

0F =x

0F =x

     = 0F = κx

F  = 3000N, µ = 0.8    zo

D  =2400N, E =-2, C =1.2 yo y y
oC    = B  C D   = 400N/yo y yoF 

4n =

Fig. 4.33. On the assessment of off-nominal and combined slip tyre side force characteristics
with longitudinal force as input quantity using the similarity method (Exercise 4.1).

1. Derive and plot the function Fy(α) for the following parameter values describing
the tyre at a different condition: 
Fz = 4000N, µ = 0.9, γ = 4E, Fx = 2000N.

2. Plot the graph for Fy(Fx) for the constant slip angles α = 2, 4, 6 and 8Eat the
condition µ = µo, Fz = Fzo and γ = 0.

Exercise 4.2. Assessment of force and moment characteristics at pure and
combined slip using the Magic Formula and the similarity method
with κ as input

Given are the pure slip force and moment characteristics at nominal vertical load Fzo

= 4000N and the cornering stiffness vs vertical load (cf. Figs.4.34a,b). The problems
are formulated as follows:

1. Determine for the original curves, that is at the nominal load, the values of the
coefficients B, C, D and E from the data indicated in the figures below. The
vertical and horizontal shifts are disregarded. Use the formula (4.49) for the
longitudinal force, the side force and also for the moment. Consider Fig.4.9 and
use the formulae (4.52,4.53) and (4.56). Draw the resulting curves.
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Fig. 4.34a.  Original tyre force characteristics at pure slip (Exercise 4.2). 
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Fig. 4.34b.  Cornering stiffness and original moment characteristics (Exercise 4.2). 

µxo = 1.1 µyo = 1.0
Fx,peak = 4400N Fy,peak = 4000N
Fxa = 3400N Fya = 3400N
κm = 0.07 tanαm = 0.15
CFκo  = CFκ(4000) CFαo    = CFα(4000)

p1 = 110kN/rad !Mz,peak = 100Nm
p2 = 8000N !Mza = !20Nm

further: tanαm = 0.07
 CFκ(Fz) = 40Fz [N] CMαo    = CMα

(4000)
effective compliance parameter t(Fz) = 0.5×10-5 Fz [m]
for Mz , Eq.(4.39): CMα

(Fz) = t.CFα(Fz) [Nm/rad]
c9 = 2×10-5 Fzo/ao c10 = 0

2. For Fz= 2000, 4000 and 6000N with µx= µxo and  µy= µyo while γ= 0 compute and
plot the curves for pure slip Fx(κ), Fy(α) and Mz(α). Employ the similarity
Eqs.(4.21-26).

3. For Fz = 6000N with µx= µxo, µy= µyo and γ= 0 compute and plot the combined
slip curves  Fy(Fx) and Mz(Fx) at two slip angles: α = 2E and 8E. The values of the
longitudinal slip may range from κ = !1 to +1. Use Eqs.(4.27-29) and (4.35-40).



Chapter 5

NON-STEADY-STATE OUT-OF-PLANE
STRING-BASED TYRE MODELS

5.1.  Introduction

The transient and oscillatory dynamic behaviour of the tyre will be discussed in
this and two ensuing chapters. The present chapter is devoted to the model
development of the tyre as an integral component. The stretched string model is
chosen as the basis for the physical description of the out-of-plane (anti-
symmetric) behaviour. This model exhibits a finite contact length that allows the
study of short path wavelength phenomena. The model is relatively simple in
structure and integrates the carcass compliance and contact patch slip properties.
For the moment response to yaw variations the finite width of the contact patch
needs to be introduced which is accomplished by connecting to the string the
brush model featuring only fore and aft tread element compliance. In the more
advanced string model the added tread elements are allowed to also deflect
sideways. The behaviour of this more complex model is expected to be more
realistic. This becomes especially apparent in the treatment of the side force
response to a constant slip angle when the wheel runs over an undulated road
surface. The inertia of the tyre is of importance when running at higher speeds
(gyroscopic couple) and when the frequency of lateral and yaw excitation can no
longer be considered small. Several approximations of the kinematic and
dynamic model will be discussed. In Chapter 6 the theory will be applied in the
analysis of the wheel shimmy phenomenon. In Chapter 7 the model will be
simplified to the single point contact model that restricts the application to longer
wavelength situations but enables the extension of the application to longitudinal
and combined transient slip situations. Chapter 9 treats the more complex model
that includes an approximate representation of the effect of the finite contact
length, the compliance of the carcass and the inertia of the belt. This more
versatile model is able to consider both out-of-plane and in-plane tyre dynamic
behaviour that can be extended to the non-linear slip range also at relatively short
wavelengths. Moreover, rolling over road unevennesses is included.
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5.2.  Review of Earlier Research

In the theories describing the horizontal non-steady-state behaviour of tyres one
can identify two trends of theoretical development. One group of authors
assumes a bending stiffness of the carcass and the other bases its theory on the
string concept.

In principle, the string theory is simpler than the beam theory, since with the
string model the deflection of the foremost point alone determines the path of the
tread for given wheel movements, whereas with the beam model the slope at the
foremost point also has to be taken into account as an additional variable. The
latter leads to an increase in order of the system by one.

Von Schlippe (1941) presented his well-known theory of the kinematics of
a rolling tyre, and introduced the concept of the stretched string model. For the
first time a finite contact length was considered. In the same paper Dietrich
applied this theory to the shimmy problem. Later on, two papers of Von Schlippe
and Dietrich (1942,1943) were published in which the effect of the width of the
contact area is also considered. Two rigidly connected coaxial wheels, both
approximated by a one-dimensional string model, are considered. The strings and
their elastic supports are also supposed to be elastic in the circumferential
direction.

Segel (1966) derived the frequency response characteristics for the one-
dimensional string model. These appear to be similar to response curves which
arise in Saito's approximate theory for the beam model (1962). For the same
string model Sharp and Jones (1980) developed a digital simulation technique
which is capable of generating the exact response of the model. Earlier, Pacejka
(1966) employed an analogue computer and tape recorder (as a memory device)
for the simulation according to the excellent von Schlippe approximation in
which the contact line is approximated by a straight line connecting the two end
points.

Smiley (1958) gave a summary theory resembling the one-dimensional theory
of von Schlippe (1941). He has correlated various known theories with several
systematic approximations to his summary theory.

Pacejka (1966) derived the non-steady-state response of the string model of
finite width provided with tread elements. The important gyroscopic effect due
tyre inertia has been introduced and the non-linear behaviour of the tyre due to
partial sliding has been discussed. Applications of the tyre theory to the shimmy
motion of automobiles was presented. In Pacejka (1972) the effect of mass of the
tyre has been investigated with the aid of an exact analysis of the behaviour of
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a rolling stretched string tyre model provided with mass. This complicated and
cumbersome theory not suitable for dynamic vehicle studies was then followed
by an approximate more convenient theory (Pacejka, 1973a) taking into account
the inertial forces only up to the first harmonic of its distribution along the tyre
circumference. An outline of the theory together with experimental results will
be given in the present chapter.

Rogers derived empirical differential equations (1971) which later were given
a theoretical basis (1972). As a result of Rogers' research, shimmy response of
tyres in the low frequency range (mass effect not included!) can be described
satisfactorily up to rather high reduced frequencies (i.e. short wavelengths) by
using simple second-order differential equations. 

Sperling (1977) conducted an extensive comparative study of different
kinematic models of rolling elastic wheels. Recently, Besselink (2000)
investigated and compared a number of interesting earlier models (Von Schlippe,
Moreland, Smiley, Rogers, Kluiters, Keldysh, Pacejka) in terms of frequency
response functions and step responses to side slip, path curvature (turn slip) and
yaw angle, and judged their performances also in connection with the shimmy
phenomenon. 

Sekula et al. (1976) derived transfer functions from random slip angle input
test data in the range of 0.05 to 4.0 Hz. From this information cornering force
responses were deduced for both radial and bias-ply tyres to slip angle step
inputs. Ho and Hall (1973) conducted an impressive experimental investigation
using relatively small aircraft tyres tested on a 120 inch research road wheel up
to an oscillating yaw frequency of 3 Hz. A critical correlation study with
theoretical results revealed that reasonable or good fit of the experimental
frequency response plots can be achieved by using the theoretical functions
(5.32,5.92,5.93) presented hereafter. It should be pointed out that in testing small
scale tyres certain similarity rules, cf. Pacejka (1974), should be obeyed.

Full scale experimental tyre frequency response tests have been carried out
by several researchers,e.g. by Meier-Dörnberg up to a yaw frequency of 20 Hz.
Some of the latter investigations have been reported on by Strackerjan (1976).
This researcher developed a dynamic tyre model based on a somewhat different
modelling philosophy compared to the model described by Pacejka (1973a) and
discussed hereafter. Both types of models show good agreement with measured
behaviour. The straightforward approach employed by Strackerjan is similar to
the method followed in Chapter 9.

In 1977 Fritz reported on an extensive experimental investigation concerning
the radial force and the lateral force and aligning torque response to vertical axle
oscillations at different constant yaw (side slip) angles of the wheel. Also, the
mean value of side-force and moment have been determined. Earlier, Metcalf
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(1963) conducted small scale tyre experiments and Pacejka (1981) produced
theoretical results in terms of mean cornering stiffness using a taught string tyre
model provided with elastic tread elements. Laerman (1986) conducted extensive
tests on both car and truck tyres and compared results with a theoretical model
in terms of average side force and aligning torque and frequency response
characteristics. The model includes tyre mass (based on Strackerjan 1976) and
allows sliding of tread elements with respect to the ground. Similar experiments
on car tyres have been carried out by Takahashi et al. (1987). They developed
a relatively simple mathematical model suitable for vehicle dynamics studies
including cornering on uneven roads (cf. Chapter 8).

In 2000 Maurice published experimental data up to over 60Hz and a
dynamic and short wavelength non-linear model development that will be dealt
with in Chapter 9. The model is connected with the in-plane dynamic model of
Zegelaar (1998, cf. Chapter 9) and forms a versatile combined slip model that
works with the Magic Formula steady-state functions derived in Chapter 4.

Another aspect of tyre behaviour is the non-steady-state response to wheel
camber variations. Segel and Wilson (1976) found for a specific motorcycle tyre
that after a step change in camber angle about 20 percent of the ultimately
attained side force responds instantaneously to this input. The remainder
responds in a way similar to the response of the side force to a step change in
slip angle although with a larger relaxation length. Higuchi (1997) conducted
comprehensive research on the non-linear response to camber based on the string
model and experimentally assessed responses to stepwise changes of the camber
angle. In Chapter 7 the response to camber changes will be discussed.

The next section treats the essentials of the theory of anti-symmetric tyre
non-steady-state and dynamic tyre behaviour on the basis of the stretched string
model.

5.3.  The Stretched String Model

The tyre model, depicted in Fig.5.1, consists of an (assumedly endless) string
which is kept under a certain pretension by a uniform radial force distribution
(comparable with inflation pressure in real tyres). In the axial direction the string
is elastically supported with respect to the wheel-centre-plane but is prevented
from moving in the circumferential direction. The string contacts the horizontal
smooth road over a finite length. It is assumed that the remaining free portion of
the string maintains its circular shape (in side view).

The model may be extended with a number of parallel strings keeping a
constant mutual distance. As a result of this extension, a finite contact width



220 NON-STEADY-STATE OUT-OF-PLANE STRING-BASED TYRE MODELS

x

y

z

x

y

z

FyMz FyMz

wheel 
plane

string

path

tread
elements

Fig. 5.1. Tyre model with single stretched string and model extended with more parallel strings
provided with tread elements which are flexible in the longitudinal direction.

arises. The strings are thought to be provided with a large number of elastic
tread elements which, for reasons of simplification, are assumed to be flexible
in the circumferential direction only. From the above assumptions it follows that
longitudinal deformations which arise at both sides of the wheel-centre-plane
when the wheel axle is subjected to a yaw rate, are supposed to be taken up by
the tread elements only.

For the theory to be linear, we must restrict ourselves to small lateral
deformations and assume complete adhesion in the contact area. The wheel-
centre-plane is subjected to motions in the lateral direction (lateral displacement
y2) and about the axis normal to the road (yaw angleψ). These motions constitute
the input to the system. The excitation frequency is denoted by ω (= 2πn). With
V representing the assumed constant speed of travel we obtain for the spatial or
path frequency ωs =ω /V and the wavelength of the path of contact points λ =V/n
= 2π /ωs. The distance travelled becomes s = Vt.

Alternative input quantities may be considered which are not related to the
position of the wheel with respect to the road but to its rate of change
characterized by the slip angle α =ψ - dy2/ds and the path curvature or turn slip
φ =!dψ/ds. The force Fy and the moment Mz which act from the ground on the
tyre in the y-direction and about the z-axis respectively form the response to the
imposed wheel plane motion.
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Fig. 5.2.   Lateral equilibrium of deflected tread band element.

5.3.1. Model Development 

To obtain an expression for the lateral deflection v of the string we consider the
lateral equilibrium of an element of the tread band shown in Fig.5.2. The element
is of full tread width and contains elements of the parallel strings with the rubber
in between. In the lateral direction (y), the equilibrium of forces acting on the
element of length dx and width 2b results in the following equation:

(5.1)qydx & ccvdx & D % D %

MD
Mx

dx & S1
Mv
Mx

% S1
Mv
Mx

%

M
2v

Mx 2
dx ' 0

where cc denotes the lateral carcass stiffness per unit length, S1 the circum-
ferential (in the x-direction) component of the total tension force acting on the set
of strings and D the shear force in the cross section of the tread band acting on
the rubber matrix. The shear force is assumed to be a linear function of the shear
angle according to formula:

(5.2)D ' S2
Mv
Mx

With the introduction of the effective total tension S = S1 + S2 we deduce from
Eq.(5.1):
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Fig. 5.3. Top-view of the single string model and its position with respect to the fixed frame.

(5.3)S
M

2v

Mx 2
& ccv ' &qy

In the part of the tyre not making contact with the road the contact pressure
vanishes so that qy = 0 and

      if   (5.4)S
M

2v

Mx 2
& ccv ' 0 *x* > a

The lateral behaviour of the model with several parallel strings and of the model
with a single string will be identical if parameter S is the same. In Fig.5.3 a
top-view of the single string model is depicted. The length σ, designated as the
relaxation length has been indicated in the figure. The relaxation length equals:

(5.5)σ '

S

cc

With this quantity introduced Eq.(5.4) for the free portion of the string becomes:

      if   (5.6)σ
2 M

2v

Mx 2
& v ' 0 *x* > a

If we consider the circumference of the tyre to be much longer than the contact
length we may assume that the deflection v2 at the trailing edge has a negligible
effect on the deflection v1 at the leading edge. The deflections of the free string
near the contact region may then be considered to be the result of the deflections
of the string at the leading edge and at the trailing edge respectively and not of
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V

Fig. 5.4. Two successive positions of the string model. Vanishing regions of sliding at the
leading and trailing edges and the compatibility of sliding speed Vg and frictional
forces F required to maintain a possible kink which apparently can only exist at the
trailing edge (2).

a combination of both. The deflections in these respective regions now read
approximately:

    if   v ' C1 e &x/σ x > a
(5.7)

       if   v ' C2 e x/σ x <&a

which constitute the solution of Eq.(5.6) considering the simplifying boundary
condition that for large *x* the deflection tends to zero. At the edges x=±a where
v = v1 and v = v2 respectively we have for the slope:

         for  
Mv
Mx

' &

v1

σ

x 9 a

(5.8)

          for  
Mv
Mx

'

v2

σ

x 8&a

Because we do not consider the possibility of sliding in the contact zone, a kink
may show up in the shape of the deflected string at the transition points from the
free range to the contact zone. It seems a logical assumption that through the
rolling process the string forms a continuously varying slope around the leading
edge while at the rear, because of the absence of bending stiffness, a
discontinuity in slope may occur. An elegant proof of this statement follows by
considering the observation that in vanishing regions of sliding at the transition
points, cf. Fig.5.4, the directions of sliding speed of a point of the string with
respect to the road and the friction force exerted by the road on the string that is
needed to maintain a possible kink are compatible with each other at the trailing
edge but incompatible at the leading edge. Therefore, it must be concluded that
a kink may only arise at the trailing edge of the contact line. Consequently, the
equation for the slope at the leading edge (first of (5.8)) can be rewritten as:
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       if   (5.9)
Mv
Mx

' &

v1

σ

x8a , x'a , x9a

This equation constitutes an important relationship for the development of the
ultimate expression for the deflection of the string as we will see a little later.

In Chapter 2 we have derived the general differential equations for the
longitudinal and lateral sliding velocity of a rolling body which is subjected to
lateral slip and spin. These equations (2.58,2.59) become if the sliding speed
equals zero as is our assumption here:

(5.10)
Mu
Mx

&

Mu
Ms

' yn

(5.11)
Mv
Mx

&

Mv
Ms

' &α & xn

In these equations s denotes the distance travelled by the wheel centre (or better:
the contact centre) and x and y the coordinates the considered particle would
have with respect to the moving axes system (C, x, y) in the horizontally
undeformed state.

These partial differential equations will be solved by using Laplace trans-
formation. The transforms will be written in capitals. The transformation will not
be conducted with respect to time but with respect to the distance travelled s =
Vt where the speed V is assumed to be a constant. The Laplace transform of a
variable quantity, generally indicated by q, is defined through:

(5.12)L [q(s)] ' Q(p) ' m0

4e &ps q(s)ds

where p is the Laplace variable.
With initial conditions u(x, 0)=v(x,0)=0 at s=0 we obtain from (5.10,5.11)

the transformed equations:

(5.13)
dU
dx

& pU ' yΦ

(5.14)
dV
dx

& pV ' &A &xΦ

The solutions of these ordinary first-order differential equations read:

(5.15)U ' Cu e px
&

1
p

yΦ

(5.16)V ' Cv e px
%

1
p

A %

1
p

1
p
% x Φ

In Eqs.(5.15,5.16) the coefficients Cu and Cv are constants of integration. They
are functions of p and depend on the tyre construction, that is the structure of the



225NON-STEADY-STATE OUT-OF-PLANE STRING-BASED TYRE MODELS

model. For our string model with tread elements which can be deformed in the
longitudinal direction only, we have the boundary conditions at the leading edge
x = a :

      or    (5.17)u ' 0 U ' 0

and

        or    (5.18)
Mv
Mx

' &

v1

σ

dV
dx

' &

V1

σ

with the latter equations (5.18) corresponding to Eq.(5.9).
The constant Cu now obviously becomes:

(5.19)Cu '
1
p

yΦe &pa

For the determination of Cv we have to differentiate Eq.(5.16) with respect to x

(5.20)
dV

dx
' Cv pe px

%

1

p
Φ

With (5.18) we obtain

(5.21)Cv ' &

1
p

1
σ

V1 %
1
p
Φ e &pa

which with (5.16) yields for the deflection at the leading edge

(5.22)V1 '
σ

1 % σp
(A % aΦ)

and for the deflection in the contact zone

(5.23)V '

1
p
&

A % (σ%a%1/p)Φ
1 % σp

e p(x&a)
% A % x%

1
p
Φ

The terms containing ep(x-a) point to a retardational behaviour, which corresponds
to delay terms in the original expressions. Note that a memory effect exists due
to the fact that the non-sliding contact points retain information about their
location with respect to the inertial system of axes (x2, O, y2) as long they are in
the contact zone.

Equation (5.22) transformed back yields the first-order differential equation
for the deflection of the string at the leading edge:

(5.24)
dv1

ds
%

1
σ

v1 ' α % an ' ψ &
dy2
d s

& a
dψ
ds

This equation which is of fundamental importance for the transient behaviour of
the tyre model (note the presence of the relaxation length σ  in the left-hand
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Fig. 5.5.  Equilibrium of forces in the contact region.

member) might have been found more easily by considering a simple trailing
wheel system with trail equal to σ and swivel axis located in the wheel plane a
distance σ +a in front of the wheel axis, cf. Fig.5.3. The equation may also be
found immediately from Eq.(5.14) by taking x = a and considering condition
(5.9). Equation (5.16) may also be transformed back which produces the delay
terms mentioned before. However, we prefer to maintain the expression in the
transformed state since we would like to obtain the result, that is: the force and
moment response, in the form of transfer functions.

The force and moment transfer functions

For the calculation of the lateral force Fy and the moment M'z due to lateral
deflections acting on the string two methods may be employed. According to the
first method used by von Schlippe and Dietrich (1941) and by Segel (1966) the
internal (lateral) forces acting on the string are integrated along the length of the
string extending from minus infinity to plus infinity taking into account the
circular shape of the string from side-view. The latter is important for the
moment acting about the vertical axis. A correct result for the moment is
obtained if not only the lateral forces acting on the string are taken into account
but also the radial forces (the air pressure) which arise due to the string tension
and which act along lines out of the centre-plane due to the lateral deflection of
the string. Surprisingly, a simpler configuration where the string lies in
horizontal plane (without considering the circular shape) appears to produce the
same result. This is proven by considering the second method.

The second method which has been used by Temple (cf. Hadekel 1952) is
much simpler and leads to the same correct result. The equilibrium of only that
portion of the string is considered which makes contact with the road surface. On
this piece of string the internal lateral forces, the string tension force and the
external forces, constituting the force Fy and the moment M'z are acting (cf.
Fig.5.5).
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According to Temple’s method we obtain for the lateral force:

(5.25)Fy ' ccm
a

&a
vdx % S (v1 % v2) σ

and for the moment due to lateral deformations

(5.26)MNz ' ccm
a

&a
vxdx % S (a%σ) (v1&v2) σ

with v1 and v2 denoting the deflections at x = a and !a respectively and S = σ
2cc

according to Eq.(5.5). For a first application of the theory we refer to exercise
5.1.

The moment Mz
* due to longitudinal deformations which in our model are

performed by only the tread elements is derived from the deflection u distributed
over the contact area. With c'px denoting the longitudinal stiffness of the elements
per unit area we obtain:

(5.27)M (

z ' &c'px m
a

&a m
b

&b
u ydxdy

By adding up both contributions the total moment is formed

(5.28)Mz ' MNz % M (

z

The Laplace transforms of Fy , M'z and Mz
*  is now readily obtained using Eqs.

(5.23) and (5.15) with (5.19) and the transformed versions of Eqs.(5.25),(5.26)
and (5.27). In general the transformed responses may be written as

(5.29)
L{Fy} ' HF,α A % HF,nΦ

' HF,y Y % HF,ψΨ

etc. The coefficients of the transformed input variables constitute the transfer
functions. The formulae, for convenience written in vectorial form, for the
responses to α, n and ψ  read (since α = !dy2/ds expressions for the response to y2
have been omitted):

 (5.30)

HF, (α,n,ψ) (p) '
cc

p
2(σ%a) 1 , 1

p
, 0 %

&

1
p

1% σp&1
σp%1

e &2pa 1, σ%a%
1
p

, &(σ%a)p

 (5.31)

HM', (α,n,ψ) (p) '
cc

p
2a σ (σ%a) % 1

3
a 2 (0,1,&p)%

&

a(1%e &2pa)%p σ (σ%a)&1/p 2 (1&e &2pa)
(σp % 1)p

1,σ%a%
1
p

,&(σ%a)p

and furthermore
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Fig. 5.6.  Steady-state response that occurs when swivelling about the σ+ a point.

(5.32)HM(, (α ,n,ψ) (p) ' κ
(

ap
1 & 1

2ap
1 & e &2pa (0, 1,&p)

in which the parameter

(5.33)κ
(

'

4

3
a 2b 3c'px

has been introduced.
The transfer functions of the responses to y2 and ψ are obtained by

considering the relations between the transformed quantities

(5.34)Φ ' &pΨ

(5.35)A ' Ψ & pY

and inserting these in (5.29). We find in general for the transfer function
conversion:

(5.36)Hy ' &pH
α

(5.37)H
ψ
' H

α
& pH

n

By transforming back the expressions such as (5.23,5.29), the deflection, the
force and the moment can be found as a function of distance travelled s for a
given variation of α and n or of y2 and ψ.

An interesting observation may be made when considering the situation
depicted in Fig.5.6. Here a yaw oscillation of the wheel plane is considered
around an imaginary vertical steering axis located at a distance σ +a in front of
the wheel centre. When yaw takes place about this partular point the contact line
remains straight and positioned on the line along which the steering axis moves.
Consequently, the response of the model to such a yaw motion is equal to the
steady-state response. That is, for the force Fy  and the moment M'z , the transfer
functions become equal to the cornering stiffness CFα and minus the aligning
stiffness CMα

 respectively. As we realise that the angular motion about the σ+a
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point is composed of the yaw angle ψ and the lateral displacement y2 = !(σ + a)ψ
and furthermore that the response to dy2/ds is equal to the response to !α , we
find, e.g., for the transfer function of Fy to ψs+a :

(5.38)HF,ψ(σ%a)' CFα' HF,ψ% (σ%a)pHF,α

With the aid of (5.37) the fundamental relationship between the responses to α
and n  can be assessed. We have in general:

(5.39)H
n
'

1
p

H
α
&H

ψss % (σ%a) H
α

where for the responses to Fy and M'z we have the steady-state response functions
denoted by Hψss

(5.40)HF,ψ(σ%a) ' HF,ψss ' CFα

and
(5.41)HM',ψ(σ%a) ' HM',ψss '&CMα

The important conclusion is that we may suffice with establishing a single pair
of transfer functions, e.g. Hα for Fy and M'z, and derive from that the other
functions by using the relations (5.36,5.37,5.39) together with (5.40,5.41). Since
in practice the frequency response functions are often assessed experimentally
by performing yaw oscillation tests we give below the conversion formulae to be
derived from the transfer functions Hψ. Later on, we will address the problem of
first subtracting Mz

* from the measured total moment Mz to retrieve M'z for which
the conversion is valid.

(5.42) H
α
'&

1
(σ%a) p

H
ψ
&H

ψ ss

(5.43) H
n
'

1
p

H
α
&H

ψ

(5.44) Hy '&pH
α

Strictly speaking, the above conversion formulae only hold exactly for our
model. The actual tyre may behave differently especially regarding the effect of
the moment Mz

* that in reality may slightly rotate the contact patch about the
vertical axis and thus affects the slip angle seen by the contact patch. As a
consequence the observation depicted in Fig.5.6 may not be entirely true for the
real tyre.

In the following, first the step response functions will be assessed and after
that the frequency response functions.
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5.3.2.  Step and Steady-State Response of the String Model

An important characteristic aspect of transient tyre behaviour is the response of
the lateral force to a stepwise variation of the slip angle α. The initial condition
at s = 0 reads: v(x) = 0; for s > 0 the slip angle becomes α =αo. From Eq. (5.23)
we obtain for small slip angles by inverse transformation for the lateral deflec-
tion of the string in the contact region:

  for  (5.45)
v
αo

' a & x % σ 1 & e &(s&a%x)/σ x > a & s

while for the old points which are still on the straight contact line the simple
expression holds:

for  (5.46)
v
αo

' s x # a & s

Expression (5.45) is composed of a part (a!x)αo which is the lateral
displacement of the wheel plane during the distance rolled a!x and an
exponential part. The point which at the instant s considered is located at
coordinate x was the point at the leading edge when the wheel was rolled a
distance a!x ago that is at s!a+x. At that instant we had a deflection at the
leading edge v1(s!a+x). The new v = v(s) equals the old v1 = v1(s!a+x) plus the
subsequent lateral displacement of the wheel (a!x)αo. Obviously, the exponential
part of (5.45) is the v1 at the distance rolled s!a+x. This can easily be verified
by solving Eq.(5.24) for v1.

With (5.25), finally, the expression for the force can be calculated for the
two intervals, with and without the old contact points

                  if  s # 2a (5.47)Fy ' ΓF,ααo ' cc {2(σ % a)s & ½ s 2 }αo

        if  s > 2a (5.48)Fy ' ΓF,ααo ' 2cc (σ%a)2
& σ

2 e &(s&2a)/σ
αo

For the aligning torque we obtain by using (5.26):

          if  s # 2a (5.49)MNz 'ΓMN,ααo' cc
1

6
s 3
&

1

2
(σ%a)s 2

αo

  if  s > 2a (5.50)MNz 'ΓMN,ααo'&2cc
1

3
a 3
%σa(σ%a)&σ2ae &(s&2a)/σ

αo

where the quantities Γ (s) designate the unit step response functions. These
functions correspond to the integral of the inverse Laplace transforms of the
transfer functions (5.30,5.31) given above.

The graph of Fig.5.7 shows the resulting variation of Fy and M'z  vs travelled
distance s. As has been indicated, the curves are composed of a parabola (of the
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Fig. 5.7. The response of the lateral force Fy and the aligning torque Mz to a step input of the
slip angle α, calculated for a relaxation length σ = 3a.
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Fig. 5.8.  Steady-state deflection of a side slipping string tyre model (complete adhesion).

second and third degree respectively) and an exponential function. The step
responses have been presented as a ratio to their respective steady-state values.

The steady-state values of Fy and M'z (or Mz) are directly obtained from
(5.25) and (5.26) by considering the shape of the deflected string at steady-state
side slip (Fig.5.8), i.e. a straight contact line at an angle α with the wheel plane
and a deflection at the leading edge v1 = σα through which the condition to avoid
a kink in the string at that point is obeyed, or from Eqs.(5.48,5.50) by letting s
approach infinity. We have:

(5.51)Fy ' CFαα

(5.52)Mz ' &CMα
α

with the cornering and aligning stiffnesses:
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 (5.53)CFα ' 2cc (σ % a)2

 (5.54)CMα
' 2cc a{σ (σ % a) % 1

3
a 2 }

and the pneumatic trail:

(5.55)t '
CMα

CFα

'

a{σ (σ % a) % 1
3

a 2 }

(σ % a)2

The variation of these quantities and of the pneumatic trail t = CMα
/CFα and also

of the relaxation length with wheel load Fz, the latter being assumed to vary pro-
portionally with a2, turns out to be quite unrealistic when compared with
experimental evidence. A variation much closer to reality would be obtained if
tread elements were attached to the string. For more details, also concerning the
non-linear characteristics and the non-steady analysis of that enhanced but much
more complicated model we refer to Section 5.4.3.

The unit step responses Γ  to the other input variable n  and the associated
variables y2 and ψ are of interest as well. They may be derived by inverse
transformation and subsequent integration of the transfer functions (5.30,
5.31,5.36,5.37) or directly by considering the associated string deflections
similar to (5.45,5.46) or from the unit step responses to the slip angle,
corresponding to the coefficients of αo shown in (5.47-50), by making use of the
following relationships analogous to Eqs.(5.39,5.36,5.37):

(5.56)Γ
n
' I Γ

α
&H

ψss ds % (σ%a) Γ
α

(5.57)Γy ' &

d
ds

Γ
α

(5.58)Γ
ψ
' Γ

α
&

d
ds

Γ
n

Figure 5.9 illustrates the manner in which the deflection of the string model
reacts to a step change of each of the four wheel motion variables (slip angle,
lateral displacement of the wheel plane, turn slip and yaw angle). Figure 5.10
presents the associated  responses of the side force and the aligning torque. The
responses have been divided by either the ultimate steady-state value of the
transient response or the initial value, if relevant. For the moment response to
turn slip and lateral displacement both the initial and the final values vanish and
a different reference value had to be chosen to make them non-dimensional. The
various steady-state coefficients and the lateral and torsional stiffnesses read in
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side slip α, lateral displacement yn, turn slip n and yaw angle ψ. Computed for string
model with deflection relaxation length σ = 3a.

terms of the model parameters:

 Lateral stiffness of the standing tyre:

(5.59)CFy ' 2cc (σ % a)

 Cornering or lateral slip stiffness:

(5.60)CFα ' 2cc (σ % a)2

 Aligning stiffness

(5.61)CMα
' 2cc a{σ (σ % a) % 1

3
a 2 }

 Torsional stiffness of (thin) standing tyre

(5.62)CM'ψ ' 2cc a{σ (σ % a) % 1
3

a 2 }
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 Turn slip stiffness for the force

(5.63)CFn ' 2cc a{σ (σ % a) % 1
3

a 2 }

Note that the steady-state response of M'z to n  equals zero. The responses to side
slip have already been presented in Fig.5.7. It now appears that the response of
the side force to turn slip n  is identical to the response of M'z  to α. This
reciprocity property is also reflected by the equality of the slip stiffnesses given
by (5.61,5.63). It furthermore appears that the responses of Fy to ψ and n and
of M'z toα tend to approach the steady-state condition at the same rate. This will
be supported by the later finding that the corresponding frequency responses at
low frequencies (large wavelengths) are similar. The frequency responses at
short wavelengths are mainly governed by the step response behaviour shortly
after the step change has commenced. As appears from the graphs, at distances
rolled smaller than the contact length large differences in transient behaviour
occur. As expected, the initial responses of Fy to yn and of  M'z  to ψ  are
immediate and associated with the respective stiffnesses (5.59,5.62). 

The response of the moment Mz
* due to tread width modelled with the brush

model that deflects only in the longitudinal direction, may be derived by
considering the Laplace transform of the longitudinal deflection u according to
Eq.(5.15) with (5.19). Through inverse transformation or simply by inspection
of the development of this deflection while the element moves through the contact
range the following expressions are obtained:

  for  (5.64)
u
no

' & (a & x) y x > a & s

  for  (5.65)
u
no

' &ys x # a & s

By using Eq.(5.27) the following expressions for the step response of Mz
* to n

result: 

  if  s # 2a (5.66a)M (

z ' ΓM(,nno '
4

3
c'px (as & 1

4
s 2 ) b 3

no

           if  s > 2a (5.66b)M (

z ' ΓM(,nno '
4

3
c'px a 2 b 3

no

The graphical representation of these formulae is given in Fig.5.10. The slip and
stiffness coefficients employed read:
 Turn slip stiffness for the moment, cf. (5.66b):

(5.67)CMn ' κ
(

'

4

3
c'px a 2 b 3

 Torsional stiffness of standing tyre due to tread width, cf. (5.32) with p 64:

(5.68)CM(

ψ
'

1
a

CMn '
4

3
c'px ab 3

Note that the steady-state response of M'z to n equals zero.
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Fig. 5.11. Step response of side force Fy and aligning torque Mz to  slip angle α as measured
on an aircraft tyre with vertical load Fz = 35kN. (From Besselink 2000; test data is
provided by Michelin Aircraft Tire Corporation).

Fig. 5.12. Step response of side force Fy and aligning torque Mz to slip angle α, yaw angle ψ
and turn slip n (α= 0) as measured on a passenger car tyre at load Fz = 4kN. Tests
were conducted on the flat plank machine of TU-Delft, cf. Fig.11.5 (Higuchi 1997).

As a result of a step change in turn slip, longitudinal slip at both sides of the
contact patch occur. The transient response extends only over a distance rolled
equal to the contact length, at the end of which the steady-state response has been
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Fig. 5.13. The string model at steady-state side slip and subjected to yaw oscillations with two
different wavelengths λ.

reached. As indicated in the graph the approach curve has a  parabolic shape.
The response to a step change in yaw angle is immediate (like that of M'z) after
which a decline occurs which for Mz

* is linear (derivative of response to n).
In Figs.5.11,5.12 experimentally obtained step responses have been

presented. The diagrams show very well the exponential nature of the force
response to side slip. Especially the aircraft tyre exhibits the ‘delayed’ response
of the aligning torque to side slip as predicted by the theory (Fig.5.10). Figure
5.12 shows a similar delay in the responses of Fy to yaw and to turn slip also
found in the theoretical results. The peculiar response of the moment to yaw and
turn slip is clearly formed by the sum of the responses of M'z and of Mz

*, although
with a ratio that differs from the assumption adopted in Fig.5.10. Turn slip
results have been obtained by integration of the response to turn slip impulse =
step yaw angle (ψ = !0.5E= !1/115 rad, while α = 0), and division by !Rψ. For
more details, we refer to Pacejka (2004).

Graphs of step response functions may serve to compare the performance of
different models and approximations with each other. This will be done in
Section 5.4. First we will discuss the frequency response functions.

5.3.3. Frequency Response Functions of the String Model 

The frequency response functions for the force and the moment constitute the
response to sinusoidal motions of the wheel and can be easily obtained by
replacing in the transfer functions (5.30,5.31,5.32) the Laplace variable p by iωs.
The path frequency ωs (rad/m) is equal to 2π /λ where λ denotes the wavelength
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of the sinusoidal motion of the wheel. Figure 5.13 illustrates the manner in which
the string deflection varies with travelled distance when the model is subjected
to a yaw oscillation with different wavelengths.

The frequency response functions such as HF,ψ(iωs) are the complex ratios
of output, e.g. Fy, and input, e.g. ψ. In Figs.5.14,5.15 the various frequency
response functions have been plotted as a function of the non-dimensional path
frequency a/λ=½ωs a/π. The functions are represented by their absolute value
*H* and the phase anglek of the output with respect to the input (if negative then
output lags behind input), e.g.

(5.69)HF,ψ ' |HF,ψ|e
ikFψ

'

|Fy|

|ψ |
e

ikFψ

If the variables are considered as real quantities one gets: α = |α| cos(ωs s) and
for its response: Fy = *Fy*cos (ωss +k). In the figure the absolute values have
been made non-dimensional by showing the ratio to their values at ωs = 0, the
steady-state condition. Three different ways of presentation have been used, each
with its own advantage.

The force response to slip angle very much resembles a first-order system
behaviour, as can be seen in the upper graph with a log-log scale. The cut-off
frequency that is found by considering the steady-state response and the
asymptotic behaviour at large path frequencies, appears to be equal to 

(5.70)ωs,Fα,co '
1

σ%a
However, the phase lag at frequencies tending to zero is not equal to ωs(σ+a),
as one would expect for a first-order system, but somewhat smaller. Analysis
reveals that the phase lag tends to:

      for  ωs60 (5.71)&kF,α 6 σFαωs

with the relaxation length for the side force with respect to the slip angle
(5.72)σFα ' σ % a & t

which with (5.55) becomes equal to 3.23a if σ=3a. The phase lag does approach
90E for frequencies going to infinity. The first-order approximation with the
same cut-off frequency has been added in the graph for comparison. The
corresponding  frequency response function reads:

 (5.73)HF,α1 '
CFα

1 % iωs (σ%a)

The frequency response of the force to yaw shows a wavy curve for the
amplitude at higher frequencies (at wavelengths smaller than ca. two times the
contact length). The decline of the peaks occurs according to the same asymptote
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as found for the slip angle response. Consequently, the same cut-off frequency
applies.

(5.74)ωs,Fψ,co '
1

σ%a
When analysing the behaviour at small frequencies it appears that here the phase
lag does tend to:

      for  ωs60 (5.75)&kF,ψ 6 σFψωs

with the relaxation length for the side force with respect to the yaw angle:
(5.76)σFψ ' σ % a

Further analysis reveals that when developing the frequency response function
HF,ω in a series up to the second degree in iωs:

(5.77)
HF,ψ(iωs) ' CFα{1&σFψ iωs (1&bF2 iωs)} % ....

' CFα (1&σFψbF2ω
2
s & σFψ iωs) % ....

and subsequently employing the fundamental relationship (5.42) between α  and
n responses, the  frequency response function HF,α up to the first degree in iωs

becomes:
(5.78)HF,α (iωs) ' CFα(1&σFα iωs) % .... ' CFα(1&bF2 iωs) % ....

which shows that
(5.79)σFα ' bF2

which is an important result in view of assessing σFα from yaw oscillation
measurement data and checking the correspondence with (5.72). 

The aligning torque (!M'z , Fig.5.15) shows a response to the slip angle
which is closer to a second-order system with a phase lag tending to a variation
around 180E and a 2:1 asymptotic slope of the amplitude with a cut-off
frequency equal to: 

(5.80)ωs,Mα,co '
1

t (σ%a)
where t denotes the pneumatic trail, cf. (5.55). Again, the response of Fy to n
turns out to be the same as the response of !M'z to α. As the graph of Fig.5.15
shows, the amplitude of M'z as a response to yaw oscillations ψ  exhibits a clear
dip at (with parameter σ = 3a) a wavelength λ=-12a. This condition corres-
ponds to the situation depicted in Fig.5.13 (third case) and is referred to as the
meandering phenomenon or as kinematic shimmy which occurs in practice when
the wheel is allowed to swivel freely about the vertical axis through the wheel
centre and the system is slowly moved forwards. The nearly symmetric string
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Fig. 5.16.  Complex representation of side force and moment response to yaw oscillations ψ.

deformation explains why the amplitude of the aligning torque almost vanishes
at this wavelength. At higher frequencies the amplitude remains finite and
approaches at ωs64 the same value as it had at ωs = 0 that is: !M'z = CMα

ψ =
CM’ψψ. The phase angle approaches !360E. It is interesting that analysis at
frequencies approaching zero shows that the phase lag both for the response of
!M'z to α and to ψ (and thus also for Fy to n) approach the value ωs(σ+a) that
also appeared to be true for the response of Fy to ψ. So we have:

(5.81)σM'ψ ' σMα
' σFn ' σFψ ' σ % a

Expressions equivalent to (5.70,5.72,5.74,5.79,5.80,5.81) appear to hold for
the enhanced model with tread elements attached to the string, cf. Section 5.4.3.

The torque due to tread width !Mz
* shows a response to yaw angle ψ  that

increases in amplitude with path frequency and starts out with a phase lead of
90E with respect to ψ. At low frequencies the moment acts like the torque of a
viscous rotary damper with damping rate inversely proportional with the speed
of travel V. We find with Eq.(5.67):

for  ωs60 (5.82)M(

z ' &

1
V
κ
(

ψ0

At high frequencies ωs64, that is at vanishing wavelength λ 60 where the tyre
is standing still, the tyre acts like a torsional spring and the moment !Mz

*

approaches CM*ψψ =CMn/a, cf. (5.68). The cut-off frequency appears to become:

(5.83)ωs,M(

n,co '
1
a

The total moment about the vertical axis is obtained by adding the components
due to lateral and longitudinal deformations:

(5.84)Mz ' M'z % M(

z

For the standing tyre one finds from a yaw test the total torsional stiffness CMψ

which relates to the aligning stiffness and the stiffness due to tread width as
follows:
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Fig.5.17. Nyquist plot of the non-dimensional frequency response function of the side force Fy
with respect to the wheel yaw angle ψ. Parameter: σ = 3a.

(5.85)CMψ '
1
a

CMn % CMα

Obviously, this relationship offers a possibility to assess the turn slip stiffness
for the moment CMn.

Due to the action of Mz
* the phase lag of !Mz will be reduced. This appears

to be important for the stabilisation of wheel shimmy oscillations (cf. Chapter 6).
The total moment and its components can best be presented in a Nyquist plot
where the moment components and the resulting total moment appear as vectors
in a polar diagram. Figure 5.16 depicts the vector diagram at a low value of the
path frequency ωs.

By considering the various phase angles at low frequencies we may be able
to extract the moment response due to tread width from the total (measured)
response and find the response of the moment for a ‘thin’ tyre. Since at low
frequencies the moment vector !Mz

* tends to point upwards we find while
considering (5.75,5.81) and (5.82):

(5.86)|M (

z | ' |Mz| (σFψωs % k&Mψ) ' κ
(

ωs|ψ |

With known σFψ and k-Mψ to be determined from the measurement at low
frequency, the moment turn slip stiffness CMn= κ

( may be assessed in this way.
In the diagrams of Figs.5.17,5.18 the non-dimensional frequency response

functions HF,ψ(iωs)/CFα and !HM,ψ(iωs)/CMα with its components !HM’,ψ(iωs)/CMα

and !HM*,ψ (iωs)/CMα have been presented as a function of the non-dimensional
path frequency a/λ. The parameter values are σ = 3a and CMn = aCMα.

The diagram of Fig.5.17 clearly shows the increase in phase lag and decrease
of the amplitude of Fy with decreasing wavelength λ. The wavy behaviour and
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.

the associated jumps from 180E to 0 of the phase angle displayed in Fig.5.14
become clear when viewing the loops that appear to occur when the wavelength
becomes smaller than about two times the contact length.

The aligning torque vector, Fig.5.18, for the ‘thin’ tyre turns over 360E
before from a wavelength of about the contact length the loops begin to show up.
At about λ =12a the curve gets closest to the origin. This corresponds to the
frequency where the dip occurs in Fig.5.15 and is illustrated as the last case of
Fig.5.13. 

For values of κ( sufficiently large the total moment curve does not circle
around the origin anymore. The curve stretches more to the right and ends where
the wheel does not roll anymore and the tyre acts as a torsional spring with
stiffness expressed by (5.85). In reality, the tyre will exhibit some damping due
to hysterisis. That will result in an end point located somewhat above the
horizontal axis.

The calculated behaviour of the linear tyre model has unmistakeable points
of agreement with results found experimentally at low values of the yaw
frequency. At higher frequencies and higher speeds of rolling the influence of the
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Fig. 5.19.  The string tyre model in steady turning state.

tyre inertia and especially the gyroscopic couple due to tyre lateral deformation
rates is no longer negligible. In Section 5.5 and Chapter 9 these matters will be
addressed.

Exercise 5.1.  String model at steady turn slip

Consider the single stretched string tyre model running along a circular path with
radius R anti-clockwise (n = 1/R) and without side slip (α = 0) as depicted in Fig.5.19.

Derive the expression for the lateral force Fy acting upon the model under these
steady-state circumstances. First find the expression for the lateral deflection v(x)
using Eq.(2.61) which leads to a quadratic approximation of the contact line. Then use
Eq.(5.25) for the calculation of the side force.

Now consider in addition some side slip and determine the value of α required to
neutralize the side force generated by the path curvature 1/R. Make a sketch of the
resulting string deformation and wheel-plane orientation with respect to the circular
path for the following values of radius and relaxation length: R = 6a and σ = 2a.

5.4.  Approximations and Other Models

In the present section, approximations to the exact theory will be treated to make
the theory more accessible to applications. Subsection 5.4.2 discusses a number
of other models known in the literature. After that in Subsection 5.4.3 a more
complex model showing tread elements flexible also in the lateral direction will
be treated to provide a reference model that is closer in performance to the real
tyre.
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Fig. 5.20.  Several approximative shapes of the contact line of the string model.

5.4.1.  Approximate Models

In the literature, several simpler models have been proposed. Not all of these are
based on the string model but many do. Figure 5.20 depicts a number of
approximated contact lines as proposed by several authors.The most well known
and accurate approximation is that of Von Schlippe (1941) who approximated
the contact line by forming a straight connection between the leading and trailing
edges of the exact contact line. Kluiters (1969) gave a further approximation by
introducing a Padé filter to approximately determine the location of the trailing
edge. Smiley (1957) proposes an alternative approximation by considering a
straight contact line that touches the exact contact line in its centre in a more or
less approximate way. Pacejka (1966) considered a linear or quadratic
approximation of the contact line touching the exact one at the leading edge; the
first and simplest approximation is referred to as the straight tangent
approximation. A further simplification, completely disregarding the influence
of the length of the contact line, results in the first-order approximation referred
to as the point contact approximation. 

In the sequal we will discuss Von Schlippe’s and Smiley’s second-order
approximation as well as the straight tangent and point contact approximations.
The performance of these models will be shown in comparison with the exact
‘bare’ string model and with the enhanced model with laterally compliant tread
elements. Figures 5.21-27 gives the results in terms of step response, frequency
response Bode plots and Nyquist diagrams.

For some of the other approximate models (Rogers 1972, Kluiters 1969,
Keldysh 1945 and Moreland 1954) only the governing equations will be provided
with some comments on their behaviour. For more information we refer to the
original publications or to the extensive comparitive study of Besselink (2000).
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The simplest models: straight tangent and point contact, can easily be
extended into the non-linear regime. In Chapter 6 this will be demonstrated for
the straight tangent model in connection with the non-linear analysis of the
shimmy phenomenon. In Chapter 7 the non-linear single point contact model will
be fully exploited. These models only show an acceptable accuracy for wheel
oscillations at wavelengths which are relatively large with respect to the contact
length. Chapter 9 is especially devoted to the development of a model that can
operate at smaller wavelengths and non-linear (combined slip) conditions which
requires the inclusion of the effect of the length of the contact zone.

Von Schlippe’s straight connection model

This model which shows results that can hardly be distinguished from the exact
ones, only requires the string deflections at the leading and trailing edges v1 and
v2. We find for the Laplace transforms of these deflections as derived from the
expressions (5.22,5.23) in vectorial form:

(5.87)Hv1, (α,n,ψ) (p) ' σ

1 % σp
(1,a, 1&ap)

Hv2,(α,n,ψ) (p) ' &

1
p

e &2ap

1%σp
1,σ%a%

1
p

,&(σ%a)p %

1
p

1,&a%
1
p

, ap

(5.88)
where the exponential function refers to the retardation effect over a distance
equal to the contact length. The transfer functions to the alternative set of input
variables (y,ψ) may be obtained by using the conversion formulae (5.36,5.37).

The responses to a step change in slip angle become, cf. (5.45,5.46):

(5.89)v1(s) ' Γv1,ααo ' σ 1 & e &s /σ
αo

        if (5.90)v2(s) ' Γv2,ααo ' s αo s # 2a

     if (5.91)v2(s) ' Γv2,ααo ' 2a % σ 1 & e &(s&2a)/σ
αo s > 2a

responses to step changes of other input variables may be determined by using
the conversion formulae (5.56-58).

The side force and the aligning torque are obtained as follows:

(5.92)Fy ' cc (σ%a) (v1%v2) '
1

2
CFα

v1%v2

σ%a

(5.93)MNz ' cc σ (σ%a)% 1

3
a 2 (v1&v2) '

1

2
CMα

v1&v2

a

The first equation shows that the force is obtained by multiplying the average
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lateral deflection with the lateral stiffness, cf. (5.59) with (5.60), and the moment
by multiplying the slope of the connection line with the torsional stiffness of the
‘thin’ tyre (5.62) or (5.61). It may be noted that due to the adopted straight
contact line, the turn slip stiffness for the force becomes slightly less than the
exact one (5.63):

(5.94)CFn ' 2cc aσ (σ % a)

The various diagrams show that only in some particular cases a (small)
difference between ‘exact’ and ‘Von Schlippe’ can be observed. The model can
be easily used in vehicle simulation studies by remembering the (x<,y<) coordinates
of the leading edge with respect to the global axis system (cf. Fig.5.3) and use
these coordinates again after the wheel is rolled a distance 2a further when the
trailing edge has assumed this location.

Smiley’s and Roger’s approximations

Assuming in Fig.5.3 that the wheel moves along the x< axis with only small
deviations in the lateral direction and in yaw, the lateral coordinate y<1 of the
leading edge follows from Eq.(5.24). After realising that

(5.95)y21 ' y2 % aψ % v1

the differential equation for y< becomes: 

(5.96)σ
dy21

ds
% y21 ' y2 % (σ % a)ψ

The problem Smiley has addressed is the assessment of the location of the centre
of the contact line. The lateral coordinate y<0 of this point may be approximated
by using a Taylor series. Starting out from the position of the centre contact
point, the slope and the curvature etc. of the path of contact points, the
relationship between the lateral coordinate of the foremost contact point and that
of the centre point can be written as follows:

(5.97)y21 ' y20 % a
dy20

d s
%

a 2

2!

d 2 y20

d s 2
%

@ @ @ @

Its derivative becomes:

(5.98)
dy21

d s
'

dy20

d s
% a

d 2 y20

d s 2
%

a 2

2!

d 3 y20

d s 3
%

@ @ @ @

After substitution of these series in Eq.(5.96) the following generic formula is
obtained:
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(5.99)

n

i'1

(nσ % a)a n&1

n!

d n y20

d sn
% y20 ' y2 % (σ % a)ψ

The side force and the aligning torque can be found by multiplying the lateral
deflection v0 = y<0 ! y< and the torsion angle β = dy<0 /ds !ψ with the respective
stiffnesses CFy and CM’ψ, cf. Eqs.(5.59,62). We obtain:

(5.100)Fy ' CFy (y20 & y2)

(5.101)M'z ' &CM'ψ

dy20

d s
& ψ

Using the conversion formulae (5.36,5.37) the transfer functions with respect to
α and n can be obtained. For the order n of (5.99) equal to 2, the model becomes
of the second order and one finds the following transfer functions in vector form:

(5.102)HF, (α,n,ψ) (p) ' CFy

a (σ%½a) p%σ%a , a (σ%½ a) , σ%a

a (σ%½a) p 2
% (σ%a)p%1

and

(5.103)HM', (α,n,ψ) (p) ' &CM'ψ

1 , &a (σ%½ a)p , a (σ%½ a)p 2
%1

a (σ%½a) p 2
% (σ%a)p%1

It may be noted that the side force turn slip stiffness for this approximate model
is somewhat larger than according to the exact expression. We have for Smiley’s
model:

(5.104)CFn ' 2cc a (σ %½a) (σ % a)

The step responses of Fig.5.21 show reasonable to very good correspondence for
the different inputs. Also the frequency response functions, shown in Fig.5.23,
indicate that the accuracy of this relatively simple Smiley2 approximation is
quite good. The dip in the M'z response to ψ is well represented and is located at
the ‘meandering’ path frequency (zero of (5.103)) aωs = 2πa/λ= %{a/(σ+½a)}.
The approximation may be considered to be acceptable for wavelengths larger
than about 4 times the contact length (a/λ = 0.125). In his publication, Smiley
recommends to use the order n = 3.

The initial empirically assessed formulae of Rogers (1972) are almost the
same as the functions (5.102,5.103); the terms ½a do not appear in his
expressions but in the numerator of the moment response to turn slip (second
element of 5.103) the empirically assessed term !g is added. Also a connection
with Kluiters’ approximation appears to exist.
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(5.108)

Kluiters’ approximation

Kluiters (1969) (cf. Besselink 2000) adopted a Padé filter to approximate the
position of the trailing edge. The transfer function of y2 with respect to y1 reads
if the order of the filter is taken equal to 2: 

(5.105)Hy2,y1 (p) ' aa 2p 2
&ap%1

aa 2p 2
%ap%1

With
(5.106)y21 ' y2 % aψ % v1

(5.107)v2 ' y22 & y2 % aψ

we obtain with (5.87):

Hv2,(α,n,ψ) (p) ' &

1
p

aa 2p 2
&ap%1

(σp%1)(aa 2p 2
%ap%1)

1,σ%a%
1
p

,&(σ%a)p %

%

1
p

1,&a% 1
p

, ap

The deflection at the foremost point is, of course, governed by transfer function
(5.87). The correspondence of this third-order model with Von Schlippe’s model
is very good for wavelengths larger than about 1.5 times the contact length. The
accuracy is better than even Smiley’s third-order approach. It turns out that
when a first-order Padé filter is used the formulae of Rogers without g arise.

Straight tangent approximation

For this very simple approximation the contact line is solely governed by the
deflection v1 at the leading edge. The approximated shape of the deflected string
corresponds to the steady-state deflection depicted in Fig.5.8 with deflection
angle αN = v1/σ. The side force and aligning torque are found by multiplying the
deflection angle with the cornering stiffness and the aligning stiffness
respectively. 

Using (5.87) we obtain for the transfer functions:

(5.109)HF, (α,n,ψ) (p) ' CFα
1

1 % σp
(1, a ,1&ap)

(5.110)HM', (α,n,ψ) (p) ' &CMα

1
1 % σp

(1,a ,1&ap)

The step responses equal the respective slip stiffnesses multiplied with the
responses of v1/σ  according to (5.89). As expected, the accuracy becomes much
less and from the frequency response functions we may conclude that acceptable
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agreement is attained when the path frequency is limited to aboutψa/λ= 0.04 or
a wavelength larger than about 12 times the contact length. The response of the
aligning torque to path curvature appears to be far off when compared with the
exact responses. Since this particular response is the least important in realistic
situations the straight tangent model may still be acceptable. In the analysis of
the shimmy phenomenon this will be demonstrated to be true for speeds of travel
which are not too low (where the wavelength becomes too short).

Figures 5.24,5.25 clearly show that at least up to a/λ = 0.04 the phase lag
closely follows the exact variation with frequency. The amplitude, however, is
too large, especially for the moment. A combination with a fictive Mz

* (first-order
approximation, see further on) with properly chosen parameter κ( = CMn may
help to reduce the amplitude of the moment to a more acceptable level also for
non-dimensional path frequencies higher than 0.04. Figure 5.27 shows a
considerable improvement if we would choose CMn= 0.6CMα

.
Differential equation (5.125), to be shown later on, governs the straight

tangent approximation. Because we have a deflection shape equal to that
occurring at steady-state side slip motion the extension of the model to non-linear
large slip conditions is easy to establish. We may employ the steady-state
characteristics, e.g. Magic Formulae, and obtain:

(5.111)Fy ' Fy(α') , Mz ' Mz(α')

with the deflection angle 

(5.112)α' '
v1

σ

The amplitude of the self-excited shimmy oscillation appears to become limited
due to the non-linear, degressive, characteristics of the side force and the aligning
torque versus slip angle.  

Single point contact model

This simplest approximation disregards the influence of the length of the contact
line. The lateral deflection at the contact centre at steady-state side slip should
be taken equal to that of the exact model. This requires a model relaxation length
σ 0  equal to the sum of the string deflection relaxation length σ and half the
contact length a. The corresponding transfer function for the deflection v0

become: 

(5.113)Hv 0,(α,n,ψ) (p) '
σ0

1 % σ0 p
(1, 0,1)

with
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(5.114)σ0 ' σ % a

Apparently, the response to turn slip vanishes. A deflection angle may still be
defined: αN = v0 /σ0 . As a result, response functions for the force and the moment
are obtained:

(5.115)HF, (α,n,ψ) (p) ' CFα
1

1 % σ0 p
(1, 0,1)

(5.116)HM', (α,n,ψ) (p) ' &CMα

1
1 % σ0 p

(1,0 ,1)

This function corresponds to the frequency response function  (5.73) that holds
for a first-order system with the same cut-off frequency as the one for the exact
model. With relaxation length σ0 = σ+a the model produces a correct phase lag
for the response to yaw oscillations at large wavelengths as was already assessed
before, cf. (5.81). Except for the moment response to yaw, the amplitudes appear
to become somewhat too small in the probably acceptable wavelength range λ>
ca. 24a. In the Nyquist plot of Fig.5.25 the curve for the moment response
coincides with that of Smiley’s approximation (not the frequency marks!). The
response of the side force to turn slip may be artificially introduced by putting
an ‘a’ instead of the ‘0’ in the input vector of (5.115). This would, however,
require an additional first-order differential equation for the side force.

Differential equation (5.130) governs the single point contact model. 

Approximations of tread width moment response

The transfer function (5.32) for Mz
* may be simplified by following the approach

of Von Schlippe but now for the longitudinal deflections, that is: by assuming a
linear interpolation of the longitudinal deflection u between the exact deflections
at the leading and trailing edges. As the deflection at the first point is equal to
zero, the linear interpolation would lead to an average deflection equal to half the
deflection at the rear most point u2. The corresponding transfer function
becomes:  

(5.117)HM(,(α ,n,ψ) (p) ' κ
(

2ap
1 & e &2pa (0,1,&p)

Figures (5.22,5.26) show the performance of this linear interpolation model
together with the exact response and other approximated model responses. The
approach may be used in connection with the Von Schlippe lateral deflection
approximation where the location of the contact point at the leading edge is
remembered over a distance rolled equal to the contact length when this
information is used to calculate the deflection at the rear edge.
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Expansion of the exact response function (5.32) in a series of powers of p
yields when limiting to the second power (for the response to ψ):

(5.118)HM(, (α ,n,ψ) (p) ' κ
( (1 &bap) (0, 1,&p)

where κ* = CMn . The first-order (only first term in 5.118) and the second-order
(both terms) approximations show responses as presented in the figures. The
first-order response has been indicated in combination with the straight tangent
response for M'z in Fig.5.27. The vectors for !Mz

* point upwards (vertically). The
case of CMn =0.6 aCMα

 generates a response which improves on the straight
tangent bare string response. Especially compared with the enhanced model
provided with tread elements the agreement is satisfactory. To model the foot
print, Chapter 9 uses a first-order differential equation with the relaxation length
equal to a. This corresponds to the cut-off frequency of the exact model (5.83).

Differential equations

From the various approximate transfer functions the governing differential
equations can be easily established by replacing the Laplace variable p with the
differentiation operator d /ds. This is not the case with the exact and the Von
Schlippe transfer functions since these are of infinite order. We may expand
these functions in series of powers of p and truncate at a certain power, after
which p is replaced by d /ds. Truncation after the first degree of the series
expansion of the exact functions (5.30,5.31,5.32) yields the differential equations
written in terms of input variables α  and n (t denoting the pneumatic trail):

(5.119)σ

dFy

d s
%Fy' CFαα%CFnn&CFα (a&t) dα

d s
&CFna

dn
d s

%
@ @ @

(5.120)
σ

dM'z
d s

%M'z' &CMα
α % aCMα

dα
ds

%

%a σ%
1

3
a CMα

%

1

15
a CMα

&aσCFy
dn
d s

%
@ @ @

with coefficients according to (5.55,5.59-63). When using the conversion
formulae (5.34,5.35), equations in terms of input variables y2 and ψ  are obtained:

(5.121)σ
dFy

d s
% Fy' CFα ψ &

dy2
d s

& a
dψ
d s

% (a&t) d2 y2

ds 2
%

@ @ @

(5.122)σ

dM'z
d s

%M'z' &CMα
ψ &

dy2
ds

& a
dψ
ds

% a
d2 y2

d s 2
%

@ @ @

From Eq.(5.118) we, finally, obtain the differential equations for Mz
* :
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 (5.123)M (

z ' CMn n &
2

3
a dn

ds
%

@ @ @

or in terms of the yaw angle:

 (5.124)M (

z ' &CMn
dψ
d s

&

2

3
a

d2
ψ

d s 2
%

@ @ @

The straight tangent approximation remains when  the last term of the right-hand
member of both Eqs.(5.121,5.122) is omitted. The same result is obtained when
the single first-order differential equation (5.24) is used in combination with the
deflection angle αN (5.112) and the cornering and aligning stiffnesses. We have
the following set of equations for the straight tangent approximation:

(5.125)
dv1

ds
%

1
σ

v1 ' ψ &
dy2
ds

& a
dψ
ds

' α % an

(5.126)α' '
v1

σ

(5.127)Fy ' CFαα' , Mz ' &CMα
α'

or in case of larger slip angles:

(5.128)Fy ' Fy(α' ) , Mz ' Mz(α' )

The set may be used in combination with the first-order version of (5.24):

(5.129)M (

z ' &CMn
dψ
ds

' CMnn

or in the non-linear case n may be used as input in the steady-state model
description extended with turn slip (cf. Section 4.3.3).

The single point contact model with transfer functions (5.115,5.116) is
governed by the single first-order differential equation:

(5.130)
dv0

d s
%

1
σ0

v0 ' ψ &
dy2
d s

' α

with the relaxation length

(5.131)σ0 ' σ % a '
CFα

CFy

The ‘transient’ slip angle

(5.132)α' '
v0

σ0

completes the description together with Eqs.(5.127 or 5.128).
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By considering only terms up to the first degree in p of the (transformed)
equations (5.119-122) the following individual first-order differential equations
can be defined which hold exactly for λ64 (p60), if use is made of the notation
for the individual relaxation lengths (5.72) and (5.81):

(5.133)σFα

dFy

d s
%Fy' CFαα

(5.134)σMα

dM'z
d s

%M'z' &CMα
α

(5.135)σFn

dFy

d s
%Fy' CFnn

(5.136)σ
dM'z
d s

%M'z' a σ%
1

3
a CMα

%

1

15
a CMα

&aσCFy
dn
d s

and in terms of the alternative set of inputs:

(5.137)σFα

dFy

ds
%Fy' &CFα

dy2
ds

(5.138)σMα

dM'z
d s

%M'z' CMα

dy2
d s

(5.139)σFψ

dFy

d s
%Fy' CFαψ

(5.140)σM'ψ

dM'z
d s

%M'z' &CMα
ψ

where the respective individual relaxation lengths read (according to the exact
bare string model):   

(5.72)σFα ' σ % a & t

(5.81)σM'ψ ' σMα
' σFn ' σFψ ' σ % a

If also the relaxation length for Fy with respect to α  is taken equal to σ0 =σ+ a
the, with respect to turn slip improved, single contact point approximation arises.

Table 5.1 presents the values of the  individual relaxation lengths as defined
by Eqs.(5.71,5.75, etc.) and assessed numerically for the various models
discussed above, with σ =3a. For the corresponding enhanced model with tread
elements we refer to Section 5.4.3. For all models σFψ= CFα /CFy has been kept
the same.

In practical cases shimmy occurs at path frequencies below the meandering
frequency, even below about half this value. This may correspond to a practical
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Fig. 5.21. Step responses of side force and aligning torque to several inputs for exact and
approximate models: 
ex.:  exact ‘bare’ string model;  vSch.:  Von Schlippe;  Sm2:  Smiley second order;
s.t.:  straight tangent;  a0:  point contact;  ex.tr.el.:  exact with tread elements.
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Fig. 5.22. Step response of the moment due to tread width to turn slip (path curvature) and yaw
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ex.:  exact (brush model);  s.c.:  straight connection (linear interpolation);  
2nd :  second-order approximation;  1st :  first-order approximation.
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Fig. 5.23 a,b,c,d,e,f (including next page).

Frequency response functions of side force and aligning torque to several inputs 
for exact and approximate models: 
ex.:  exact ‘bare’ string model;  vSch.:  Von Schlippe;  Sm2:  Smiley second order;
s.t.:  straight tangent;  a0:  point contact;  ex.tr.el.:  exact with tread elements.
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Fig. 5.23 cont’d.
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Fig. 5.24.  Nyquist plot of the
frequency response function of the
side force Fy with respect to the
wheel yaw angle ψ.    Parameter: σ
= 3a.
ex.: exact ‘bare’ string model;
vSch.: Von Schlippe; 
Sm2: Smiley second order;
s.t.: straight tangent; 
a0: point contact; 
ex.tr.el.: exact with tread elmnts.

Fig. 5.25. Nyquist plot
of the frequency
response function of
the aligning torque
!Mz’ with respect to
the wheel yaw angle ψ.
Curve a0 is hided by
Sm2. Same conditions
as in Fig.5.24.

Fig. 5.26. Nyquist plot
of the frequency
response function of
the torque due to tread
width !M z

*  wi th
respect to the wheel
yaw angle ψ.
ex.: exact (brush );
s.c.:straight connection
 (linear interpolation);
2nd : second-order app.;
1st : first-order approx.
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Fig. 5.27. Nyquist plot of the non-dimensional frequency response function of the aligning
moment Mz with respect to the wheel yaw angle ψ. Contributing components M'z due
to lateral deformations and Mz

* due to tread width and associated longitudinal
deformations. Parameters: σ = 3a and CMn = aCMα

. Exact and approximate models:
ex.:  exact ‘bare’ string model;  vSch.:  Von Schlippe;  Sm2:  Smiley second order;
s.t.:  straight tangent;  a0:  point contact (hidden by Sm2);  ex.tr.el.:  exact w. tr.elmts.
ex.:  exact (brush );  s.c.:  straight connection   (linear interpolation); 
2nd : second-order approximation;  1st :  first-order approx. (also CMn = 0.6 aCMα

).

 Table 5.1.  Individual relaxation lengths for the various models, defined for ωs 60.       

 exact  vSchl. Smiley2 str.tang.    a = 0 ex.tr.el.

σFα /a  3.23  3.25  3.12  3.00  4.00  3.51

σMα
/a  4.00  4.00  4.00  3.00  4.00  4.00

σFn /a  4.00  4.11  4.00  3.00    -  4.00

σFψ /a  4.00  4.00  4.00  4.00  4.00  4.00

σM’ψ/a  4.00  4.00  4.00  4.00  4.00  4.00

upper limit of a/λ=0.04 or for the wavelength λ a lower limit of ca. 12.5 times
the contact length (25a). It turns out that in this practical range the agreement
between the various models is good or reasonable. 



261NON-STEADY-STATE OUT-OF-PLANE STRING-BASED TYRE MODELS

5.4.2. Other Models

Two more models will be briefly discussed. These are the models of Keldysh, cf.
Goncharenko et al. (1981) and Besselink (2000), and of Moreland (1954). The
models are not based on the stretched string concept. They feature two degrees
of freedom: the lateral deflection and the torsion deflection, and disregard the
finite length of the contact zone. The single point or straight tangent
approximations of the string model have a single degree of freedom where the
lateral and the angular deflection at the leading edge are linked through an
algebraic relationship. The additional degree of freedom of Keldysh’s and
Moreland’s single point models with a non-holonomic constraint  (first-order
differential equation) raises the order of the description from one to two. 

Keldysh’s model

This model is known to be used in the Russian aircraft industry and was
published in 1945. Goncharenko employed the model for his research in shimmy
of landing gears. In addition to lateral and torsional stiffnesses, damping has
been included between contact patch and rim. The side force and aligning torque
become expressed in terms of lateral deflection v and torsion angle β :

(5.141)Fy ' ky 0v % cy v

(5.142)Mz ' k
ψ
β0 % c

ψ
β

With the assumption of full adhesion the following relation must hold regarding
the direction of the path of the contact point of the rolling tyre:

 (5.143)ψ % β '
d(v%y2)

ds
Regarding the path curvature a linear equation is introduced:

 (5.144)
d(ψ %β )

ds
' &q

α
v & q

β
β % q

γ
γ

Interesting is that Keldysh did take into account the wheel camber angle γ as an
additional input variable. The transfer functions with respect to α, n, ψ and γ
become:

 (5.145)HF, (α,n,ψ,γ) (p) ' (cy%ky Vp)
p%q

β
, 1 , q

β
, q

γ

p 2
% q

β
p % q

α

and
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(5.146)HM, (α,n,ψ) (p) ' & (c
ψ
%k

ψ
Vp)

q
α

, &p , p 2
%q

α
,&q

γ
p

p 2
% q

β
p % q

α

Surprisingly, it turns out that these transfer functions (except the one with
respect to γ) correspond to the functions of Rogers (with g =0) (Eqs.5.102,5.103
with ½a omitted) if, as Besselink indicated, the following equivalence conditions
hold:

(5.147)q
α
'

1
aσ

, q
β
'

a%σ
aσ

, cy' CFy'
CFα

a%σ
, c

ψ
' CM'ψ' CMα

Furthermore, comparison with the Von Schlippe approximation at steady state,
shows that:

(5.148)q
β
'

CFα

CFn

, q
γ
'

CFγ

CFn

where, as before, CFγ designates the camber force stiffness.

Moreland’s model 

This model, first published in 1954 in the paper “The story of shimmy”, used to
be a popular tool in the U.S. for the analysis of aircraft shimmy. The structure
is  similar to that of Keldysh’s model. The differences are that: the damping
coefficient kψ is omitted and more important: turn slip and camber are not
considered and instead of equation (5.144) the following relation is used:

(5.149)
dβ
d t

' &

1
τ

Fy

CFα

% β

The transfer functions with respect to the slip angle that were established read:

 (5.150)HF,α (p) ' CFα

kyτV 2p 2
% (ky%cyτ) Vp%cy

CFατVp 2
% (kyV%CFα) p%cy

(5.151)HM,α(p) ' &CMα

ky Vp % cy

CFατVp 2
% (kyV%CFα) p%cy

The fact that we are dealing here with a time constant τ gave rise to criticism and
caused difficulties in attempts to fit experimental data. To make the model pure
path dependent τ should be made inversely proportional with speed V; this in
addition to omitting the damping coefficient ky. It may be observed that when
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considering the relations (5.147) the substitution for τ

(5.152)τ '
aσ

(a%σ) V
leads to a transfer functions with respect to α that is identical to the
corresponding functions established by Keldysh and Rogers.

5.4.3. Enhanced String Model with Tread Elements

Although the string model with its simplicity and essential features served us
well in gathering insight and establishing proper mathematical descriptions and
useful approximations, the string model shows a behaviour that in several views
differs considerably from the properties of the real tyre. The relaxation length σ
for the tyre deflection does not change with vertical load, and thus the relaxation
length for the side force to yaw σFψ= σ +a does not vary sufficiently and does not
approach zero when Fz 60 as would occur with the real tyre. The same
discrepancy holds for the cornering stiffness. The pneumatic trail of the string
model is often too large. When considering larger values of slip, that is, when
sliding is allowed to occur in the contact zone, the calculated steady-state
characteristics for the bare string model do not appear adequate as they exhibit
a kink at the slip angle where the force has reached its maximum and the moment
becomes equal to zero where full sliding commences. Also, when at side slip the
lateral force distribution along the contact line is analysed it appears that a
discontinuity occurs at the point of transition from adhesion to sliding. This is
caused by the fact that in the range of adhesion the contact line (that is: the
string) is straight and the external frictional forces are equal to the internal
elastic forces and remain relatively small. From the transition point onwards the
string slides over the ground and the side forces are governed by the vertical
force distribution and the friction coefficient. Here the contact line gets curved
to let the string tension force S contribute to the transmission of the ground
forces to the tyre. Finally, it can be easily assessed that the relaxation length of
the bare string model does not change with increasing slip angle as is observed
to occur in practice. These reasons lead to the desire to develop a model that
shows a better behaviour and when too complex may serve as a reference for
understanding and for the development of simpler models. In the sequel we will
briefly discuss the development of the string model provided with elastic tread
elements; for more information, cf. Pacejka (1966, 1981). The results concerning
this model’s transient and oscillatory out-of-plane behaviour have already been
included in the various graphs of the preceding section. 
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Fig. 5.28. Enhanced string model provided with tread elements.

Steady-state characteristics

Figure 5.28 depicts the structure of the model. The total deflection v is made up
of the lateral deflection of the string (the carcass) vc and the lateral deflection of
the tread element vp. Associated stiffnesses of carcass and tread elements are cc

and cp both per unit length and the latter integrated over the tread width 2b. The
string effective tension force is S, cf. Section 5.3.1. The following model
constants are introduced:

(5.153)σ '

S
cc

, σc '
S

cc%cp

, ε '

σc

σ

'

cc

cc%cp

A parabolic vertical pressure distribution is assumed according to Eq.(3.4). At
the trailing edge a sliding range starts to built up when side slip increases. Also
at the leading edge sliding may occur when the tread element stiffness is
relatively large. The bare string model does show a relatively short sliding range
that grows and ultimately meets the rear sliding range at increasing side slip. We
will assume that the tread element stiffness is sufficiently small to disregard front
sliding.

The total deflection v at steady-state side slip in the range xt <x<a where the
tips of the elements adhere to the ground, follows the differential equation (5.11)
with n = 0:

if    (5.154)
dv
ds

' &α xt < x # a

The deflection of the string outside the contact range is governed by the
differential equation:
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        if   (5.155)σ
2

d 2vc

dx 2
& vc ' 0 *x* > a

And in the contact zone:

      if   (5.156)σc
2

d 2vc

dx 2
& vc ' & (1&ε2) v *x* # a

To solve for the coordinate of the transition point xt and the five constants of
integration in the solutions of Eq.(5.154) and of Eq.(5.156) for the two zones:
adhesion and sliding, we need six boundary conditions. These concern zero tread
element deflection at the leading edge and continuity of deflection and slope of
the string and continuity of the element deflection at the transition point. The
conditions read:

x = a :  (5.157)vc ' v (' v1 ) ,
dvc

dx
' &

vc

σ

x = xt : (5.158)lim
x8xt

dvc

dx
, vc , v ' lim

x9xt

dvc

dx
, vc , v

x = !a :  (5.159)
dvc

dx
'

vc

σ

Once expressions for the deflection vp = v !vc and the transition point xt have
been established, the force and moment can be assessed by integration along the
contact length of qy over the sliding range and of cpvp over the adhesion range.
The resulting formulae  can be found in the original publication. We will restrict
ourselves here with showing the characteristics for the values σ = 3.75a and  cp

/cc = 55. Figure 5.29 depicts the deflected model at a number of slip angles. In
Fig.5.30 the force and moment characteristics have been presented with along the
abscissa the quantity θcα. The composite model parameter θc is defined as:

(5.160)θc '
2

3

cc a 2

µ Fz

For transient tyre analysis the relaxation length for the leading edge: σ  for the
bare string model and σ*  for the model with tread elements here defined as the
distance between leading edge and the point of intersection of wheel plane and
elongation of the straight contact line (Figs.5.8,5.28,5.29) is of importance. We
have: 
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Fig. 5.30.  Steady-state side slip characteristics of the string model with tread elements.
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Fig. 5.29. The enhanced string tyre model at increasing slip angles showing growing sliding
range and decreasing ‘intersection’ length σ(.

(5.161)σ
(

'

v1

α

The variation of this ‘intersection length’ σ( with slip angle has been plotted as
well. The parameters have been chosen such that at α= 0 we have σ( = 3a.

The diagram also contains the curve for the pneumatic trail t =!Mz /Fy. At α
= 0 the value of  the pneumatic trail becomes t=0.49a which is much more in
accordance with experimental findings than what we had with the bare string
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model. The value 0.49a also supports the magnitude that had been found for the
relaxation length for the force to side slip σFα = σ

(+a!t = 3.51a as indicated in
Table 5.1, cf. Eq.(5.72). 

Expressions for the slip stiffnesses, the pneumatic trail and the relaxation
length and their relationship with vertical load will be presented in the
subsequent subsection, where the linear model is discussed.

Non-steady-state behaviour at vanishing sliding range (linear analysis)

We will restrict ourselves to the derivation of the response to the slip angle α and
use conversion formula (5.39), with σ replaced by σ( (5.171) to obtain the
response functions to turn slip n and (5.36,5.37) for the responses to y and ψ.
For the total deflection v, or transformed: V, Eqs.(5.11,5.14) and thus (5.16) hold
in general.With A representing the transformed α we get:

(5.162)V ' Cv e px
%

1
p

A ' CA e px
% 1 1

p
A

With the Laplace transformed version of Eq.(5.156) the differential equation
for Vc is obtained:

(5.163)σ
2
c

d2Vc

dx 2
& Vc ' & 1&ε

2 CA e px
% 1 1

p
A

with solution:

(5.164)Vc' C
%

e
(a&x)/σc

&C
&

e
&(a&x)/σc

% 1&ε 2
CA e px

1&σ 2
c p 2

%1 1
p

A

The three integration constants can be determined by using the boundary
conditions at the leading and trailing edges (5.157,5.159): 

(5.165)C± ' ½ ε (1±ε) 1%σp

1±σc p
CA e pa

% 1

 (5.166)CA ' &

2%B
%
%B

&

B

with

(5.167)B ' (1%σp) B
%

1%σc p
%

B
&

1&σc p
e pa

% 2 1& σp

1&σ 2
c p 2

e&pa

(5.168)B± '
1±ε

1Kε

e
±2

a
σc
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Integration of Vp = V!Vc times the stiffness cp over the contact length yields the
transformed expressions for the force Fy and, after multiplication with x, the
moment M'z. The following formulae are obtained for their transfer functions to
the slip angle α.

(5.169)

HF,α(p) ' cpε
1
p

2εa % 1& σ
2 p 2

1&σ 2
c p 2

epa
&e&pa

p
εCA %

% σ 1&e
2a/σc C

%
% σ 1&e

&2a/σc C
&

(5.170)

HM',α(p) ' cpε
1
p

1& σ
2 p 2

1&σ 2
c p 2

a
epa
%e&pa

p
&

epa
&e&pa

p 2
εCA %

% σ a 1%e
2a/σc

%σ c 1&e
2a/σc C

%
%

% σ a 1%e
&2a/σc

&σ c 1&e
&2a/σc C

&

By letting p60 in the expressions for σ( =V1/A (5.162, x = a) and the transfer
functions (5.169,5.170), the relaxation length and the slip stiffnesses may be
assessed. We find:

(5.171)σ
(

'

σ (1%ε)e
2a/σc

% (1&ε)e
&2a/σc

&2 &4a

1%ε

1&ε

e
2a/σc

%

1&ε

1%ε

e
&2a/σc

%2

(5.172)

CFα ' 2cpε
2 a (σ(%a)%

&
1

4
σσ

( (1%ε) e
2a/σc

% (1&ε) e
&2a/σc

&2 %

%

1

4
σ

2(1&ε 2) e
2a/σc

% e
&2a/σc

&2

(5.173)

CMα
' 2cpε

2 1

3
a 3

%

&
1

4
σ σ

((1%ε)&σ (1&ε 2) a 1%e
2a/σc

%σc 1&e
2a/σc

%

&

1

4
σ σ

((1&ε)&σ (1&ε 2) a 1%e
&2a/σc

&σc 1&e
&2a/σc

(5.174)CFn ' CMα

and the pneumatic trail:
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(5.175)t '
CMα

CFα

It is of interest to examine how these quantities vary with vertical load Fz. For
this purpose, we assume that the contact length varies with the square root of the
radial tyre compression and that the load is a linear function of the compression.
Then we find that, if at the nominal or static load Fzo half the contact length is
denoted with ao , the  Fz vs α  relationship is described by:

(5.176)
a
ao

'

Fz

Fzo

This introduced in the above expressions yields the characteristics shown in the
diagram of Fig.5.31. The various non-dimensional quantities have been presented
both for the bare string model and for the enhanced model. As has been expected,
we now see that the relaxation length for the force and moment responses to yaw,
σ
(+a,vanishes when the load goes to zero. The pneumatic trail’s ratio to half the

contact length is a lot more realistic when the tread elements are added. The
same holds for the cornering and aligning stiffnesses shown in Fig.5.32. With the
enhanced model the curves both start at the origin and exhibit a realistic shape.
The feature, usually exhibited by passenger car tyres, that the cornering stiffness
bends downwards after it has reached the peak (cf. Fig.1.3) may be attributed to
the reduced lateral stiffness of the tyre cross section at higher vertical
compression, cf. Pacejka (1981, p.729 or 1971, p.698) for an analytical formula.

The frequency response functions for the enhanced model are presented in
Figs.5.33 and 5.34. They may be compared with the plots of Figs.5.14 and 5.15
which hold for the bare string model. The model parameters are again: σ =3.75a,
cp/cc = 55. An important result of the analysis is that expressions
(5.70,5.72,5.74,5.79,5.80,5.81) for relaxation lengths and cut-off frequencies are
the same for the bare string model and the enhanced model if in these expressions
F is replaced by σ

( defined by (5.171).
For comparison, the plots for the step responses and for the frequency

response functions have been presented in the Figs.5.21-27 together with results
of other models. Also Table 5.1 (below Fig.5.27) contains data computed with
the new model. The general course of the curves is similar. Important differences
with respect to the bare string model are the considerable shift of the cut-off
frequency of the M'z response to α  and similarly of Fy to n and together with
these: the meandering frequency where the dip of the M'z response to ψ  occurs
The reduction of the pneumatic trail t is responsible for the increase of the cut-
off frequency.
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Experimental results assessed on a 2.5m diameter steel drum have been
presented in Fig.5.35. The responses are depicted in the Nyquist diagram (cf.
Figs.5.17,5.18) as a ratio to their values assessed at steady-state side slip. Two
light truck tyres have been tested at a vertical load of Fz = 10kN. Both tyres
possess the same cross-ply construction but exhibit a different tread design. The
original tyre shows a block tread design (central rib with transverse blocks, oval
foot print), which is relatively weak in the longitudinal direction at the sides of
the contact patch. The modified tyre is provided with circumferential ribs (three
ribs, almost rectangular foot print) making the tread relatively stiff in the
longitudinal direction. As expected, the ribbed tyre generates more resistance
against turning which is reflected by a larger moment due to tread width Mz

* and
consequently a considerably smaller phase lag of the resulting self-aligning
torque !Mz. The side force does not appear to be much affected at least in the
larger wavelength range. In Table 5.2 parameters estimated from the
measurements have been listed. The intersection length or deflection relaxation
length σ( was determined from the formula:

(5.177)σ
(

'

CFα

CFy

& a

When considering the relation a/λ=an/V with Vkm/h=3.6Vm/s the value for the non-
dimensional path frequency at V=10 km/h and an excitation frequency of 1Hz
becomes a/λ=0.0414 which roughly corresponds with that indicated on the thin
tyre model curve of Fig.5.18. 

Table 5.2.  Parameters for two 9.00-16 tyres with different tread patterns

 blocks  ribs  blocks  ribs

ro  0.5m  0.5m  Fz 10 kN 10 kN

a  0.115m  0.08m  CFα 64 kN/rad 53 kN/rad

b  0.092m  0.10m  CMα
3.9 kNm/rad 3.5 kNm/rad

t  0.53a  0.82a  CFy 165 kN/m 175kN/m

σ
(  2.4a  2.8a κ

( 0.25 CMα
a 1.0 CMα

a
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Fig. 5.35. Frequency response plots of Fy and Mz to ψ for two light truck tyres with same bias

ply carcass but different tread patterns. Measurements were performed on a 2.5m
drum at a vertical load of 10kN, a yaw amplitude of 0.75Eat a frequency n=1Hz.

5.5.  Tyre Inertia Effects

It has been found experimentally that higher frequencies and greater speeds of
travel bring about an increasingly important deviation of the response with
respect to the kinematic representation with dynamic influences disregarded.

Figure 5.36 presents an example of response curves obtained experimentally.
The response curves for the moment Mz and the side force Fy to the yaw angle
ψ have been shown as a function of the speed of travel V for fixed values of the
excitation frequency n of the imposed yaw oscillation. The force and moment
outputs are given as a ratio to their steady-state values (at ωs = ω = 0) indicated
by the subscript o.

We observe that for higher frequencies the curves of the moment response
appear to shift upwards. The force response curves, on the other hand, show an
increase in amplitude while the phase lag remains approximately unchanged for
constant wavelength λ=V/n.
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Fig. 5.36. Frequency response plots of Fy and Mz to ψ for light truck tyre with block tread
pattern. Measurements were performed on a 2.5m drum at a vertical load of 10kN,
a yaw amplitude of 0.75Eand at four different time frequencies. 

5.5.1. First Approximation of Dynamic Influence (Gyroscopic Couple)

In the low frequency range, n<10Hz, the aligning torque appears to be affected
most by the inertia of the tyre. A simple addition to the kinematic model may
approximately describe the dynamic changes in the response of the moment. In
this theory the gyroscopic couple due to the lateral deformation rate of the lower
portion of the tyre has been introduced as the only dynamic influence. It is
assumed here that the dynamic forces have a negligible effect on the distortion
of the tyre.

The gyroscopic couple about the vertical axis is proportional to the wheel
rotational speed and the time rate of change of the tilt (camber) distortion of the
tyre, cf. Fig.5.37. Since this distortion is connected with the lateral deflection of
the lower part of the  tyre and the side force Fy is proportional to this deflection,
we have for the gyroscopic couple:

(5.178)Mz gyr ' Cgyr V
dFy

d t
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Fig. 5.37. The average tilt angle of the peripheral line of the deflected tyre.

in which t denotes the time. The tyre constant Cgyr is proportional to the tyre
mass mt and inversely proportional to the lateral stiffness CFy of the standing
tyre. We have with the non-dimensional quantity cgyr introduced:

(5.179)Cgyr ' cgyr

mt

CFy

The total moment which acts upon the wheel is now composed of the moment
due to lateral tyre deformation M'z and that due to longitudinal anti-symmetric
tread deformations M*

z and finally the gyroscopic couple Mz,gyr:

(5.180)Mz ' Mz' % M (

z % Mz,gyr

With this simple addition to the enhanced stretched string tyre model (provided
with tread elements distributed over the assumedly rectangular contact area)
calculations have been performed. Figure 5.38 shows the Nyquist plot of the
responses with along the curves ωsa = 2πna/V = 2πa/λ. It should be noted that
the vector of the gyroscopic couple is directed perpendicularly to the vector of
the lateral force. For the range of frequencies considered, the simple approximate
dynamic extension theory gives a good representation of the effect on the moment
response curves. However, the theory does not account for the dynamic changes
in the force response.

5.5.2. Second Approximation of Dynamic Influence (First Harmonic)

More complex theories as developed by Pacejka (1973a) and by Strackerjan
(1976) and more recently by Maurice (2000), cf. Chapter 9, yield better results
also with respect to the force response and extends to higher frequencies covering
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Fig. 5.38. The influence of the frequency of the yaw oscillation on the dynamic response
according to the simple approximate model extension using the gyroscopic couple
due to the lateral tyre deflection time rate of change.

the first natural frequencies of the out-of-plane tyre dynamic behaviour. In these
theories the tyre circular belt is considered to move not only about a longitudinal
axis but also about a vertical axis and in the lateral direction. The belt rotation
about the vertical axis gives rise to a gyroscopic couple about the longitudinal
axis which on its turn results in a change in slip angle which influences Fy (and
also Mz).

The interesting feature of the approach followed in the first reference
mentioned above is that the kinematic theory and response equations as treated
in Sections 5.3 and 5.4. with tyre inertia equal to zero can be employed. The
kinematic part of the model will be considered to be subjected to a different,
effective, set of input motion variables. Instead of taking the motion of the actual
wheel-plane defined by y2 and ψ (or α and n), an effective input is introduced that
is defined as the lateral and the yaw motion of the line of intersection of the
‘dynamic’ belt plane and the road surface (y2e, ψe). Figure 5.39 depicts the
situation. The dynamic belt plane is defined as the virtual centre plane of the belt
of the tyre that is displaced with respect to the rim through the action of lateral
inertial forces only. These inertial forces distributed along the circumference of
the belt are approximated in such a way that only the forces resulting from the
zeroth and first modes of vibration are taken into account, that is: as if the belt
would remain circular. Harmonics of second and higher order are neglected in
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the dynamic part of the model. We have for the approximate dynamic lateral,
camber and yaw deflections respectively:

(5.181)

ỹ t ' &mt (y2@ % y@t) /Cy

γ̃ t' &{Itγ̈t% ItpΩ (ψ0% ψ0 t)}/C
γ

ψ̃ t ' &{ It (ψ̈% ψ̈t)& ItpΩγ0 t} /C
ψ

with the total tyre deflections composed of dynamic and static parts (the latter
resulting from external ground forces):

(5.182)

yt ' ỹ t% Fy /Cy

γt ' γ̃ t& Fy r /C
γ

ψt ' ψ̃ t% M'z /C
ψ

and stiffnesses of the whole belt with respect to the rim Cy, Cγ and Cψ.
Furthermore the equations contain effective tyre inertia parameters mt, It and



279NON-STEADY-STATE OUT-OF-PLANE STRING-BASED TYRE MODELS

polar moment of inertia Itp. The effective inputs to the kinematic model are
defined by:

(5.183)
ye
2 ' y2% yt

˜ & rγt
˜

ψe ' ψ % ψt˜

With the aid of these equations plus the kinematic tyre equations (e.g. Von
Schlippe’s approximate equations (5.87,5.88,5.92,5.93) with (5.36,5.37) and
(5.32) for M*

z  with inputs (y2, ψ) replaced by effective inputs (y2e, ψe)) the
frequency response functions of the ground force Fy and moment Mz = M'z+ M*

z

with respect to the actual inputs (y2, ψ) may be readily established.
For applications in vibratory problems associated with wheel suspension and

steering systems, it is of greater interest to know the response of the equivalent
force and moment that would act on the assumedly rigid wheel with tyre inertia
included at the contact centre. The equivalent force and moment are obtained as
follows:

(5.184)

Fy,eq ' Fy& mt y@t

Mz,eq ' M'z % M(

z & Itψ̈t% ItpΩγt
0

This result should correspond to the force and moment measured in the wheel
hub, Fy,hub and Mz,hub, after these have been corrected for the inertial force and
moment acting on the assumedly rigid wheel plus tyre (inertia between load cells
and ground surface). With inertia parameters of wheel plus tyre we find for this
correction:

(5.185)
Fy,eq ' Fy,hub% mwt y2@

Mz,eq' Mz,hub% Iwtψ̈

When lifted from the ground, the equivalent ground to tyre forces vanish if the
frequency of excitation is not too high (low with respect to the first natural
frequency of the tyre).

For the set of parameter values measured on a radial ply steel-belted tyre
listed in Table 5.3, the amplitude and phase of the equivalent moment as a
response to yaw angle have been computed and are presented in Fig.5.40 as a
function of the excitation frequency n = ω /2π. Experimentally obtained curves
up to a maximum of 8 Hz (on 2.5m drum) have been added. The phase lag that
occurs in the lower frequency range is largely responsible for the creation of self-
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Table 5.3. Parameters for car tyre model with dynamic belt extension (2nd approximation) 

                 Bias-ply tyre               Radial-ply steel belted 

 a 0.066 m Cψ=Cγ 29 Nm   a 0.063 m Cψ=Cγ 18.1 Nm

σ 0.230 m  Cy 270 kN/m  σ 0.377 m  Cy 360 kN/m

r 0.324 m  mt 4.5 kg   r 0.322 m  mt 5.7 kg

CFα 35.5kN  It 0.235kgm2 CFα 49.0 kN  It 0.295kgm2

CMα 1.22kNm  Itp 0.47 kgm2  CMα 1.4 kNm  Itp 0.59 kgm2

κ
* 80Nm2  (mtyre   = 8.9 kg)  κ* 104Nm2  (mtyre   = 8.5 kg)

excited wheel shimmy. The influence of tyre inertia is evident: the phase lag
changes into phase lead at higher values of speed (similar as in Fig.5.38). In
contrast to the dynamic response depicted in Fig.5.41 the kinematic model
response (without the inclusion of tyre inertia) would produce the same response
at equal wavelengths, λ=V/n, irrespective of the value of the speed of travel V.

The resonance frequencies, which at speeds close to zero approach a value
somewhat larger than the natural frequency of the free non-rotating tyre, noo,
appear to separate at increasing speed. Vibration experiments performed on a
free tyre (not contacting the road) for the purpose of obtaining the values of
certain tyre parameters, gave a clear indication that a considerable reduction of
the lowest resonance frequency arises when the wheel is rotated around the wheel
spin axis at higher speeds of revolution.

Nyquist plots for the Mz,eq and Fy,eq responses to ψ have been presented in
Figs.5.42 and 5.43. Both for the bias-ply and for the radial steel-belted tyre of
Fig.5.40 theoretical and experimental results are shown. Parameters are
according to Table 5.3. For each of the curves the excitation frequency remains
constant while the speed varies along the curve.

An increase in frequency tends to raise the moment curves while the force
response curves appear to expand with the phase angle at given wavelength
remaining not much changed. The typical differences between the two types of
tyres, notably in the shape of the upwards ends of the moment curves where the
speed assumes high values, are well represented in the theoretical diagrams.

We may conclude, that the simple first approximation appears to give a
considerable improvement for the moment response in the lower frequency range
while for the force response and the higher frequency excitations the inclusion
of the dynamics of the belt up to the first modes of vibration is required.
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Since we have here a dynamic model extension that allows the use of existing
kinematic (mass less) models we have been able to investigate the effect of tyre
inertia on these models. However, for the sake of simplicity these models have
been restricted to a linear description allowing straightforward frequency
response analysis. Extension into the non-linear regime in the time domain is
cumbersome for models including a finite contact length (retardation) effect,
(although an approximate non-linear Von Schlippe model may be established by
attaching non-linear springs to the wheel plane at the leading and trailing edges
the tips of which follow the path as if we had full adhesion) but also because in
the dynamic extension, Eqs.(5.181-183), the function Fy = Fy(αN) would be
needed in an inverse form. 

To further develop mathematical models that can be used under conditions
that include short wavelengths, higher frequencies and large (combined) slip a
different route appears to be more promising. The adopted principle is: separate
modelling of the flexible belt with carcass and the contact patch with its transient
slip properties. The theory of the non-steady state rolling and slipping properties
of the brush model helps in this modelling effort. In Chapter 9 this advanced
model will be discussed.

For less demanding cases (large wavelength, low frequency) the straight
tangent or single point contact models may be employed. Such models may be
used in combination with the approximate dynamic extension that accounts for
the gyroscople couple due to the lateral deflection velocity. Furthermore, these
simple models can be easily adapted to cover large slip non-linear behaviour, cf.
Eqs.(5.125,5.126,5.128) or (5.130,5.131,5.132) and Eq.(5.178) with Fy replaced
by CFyv0. Chapter 7 is devoted to the treatment of the very useful and relatively
simple, possibly non-linear, single contact point transient slip models. With that
single point contact model the problem of cornering (and braking) on undulated
road surfaces can be made more accessible for vehicle simulation studies. First,
we will address this difficult subject in the subsequent section using exact string
models with and without tread elements which shows the deeper cause of the
associated loss in cornering power. 
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5.6.  Side Force Response to Time-Varying Load

In studies by Metcalf (1963), Pacejka (1971) and more recently by Laermann
(1986) and by Takahashi (1987) and Pacejka (1992) it was found that the
average value of the side force generated by a constant slip angle is reduced as
a result of a periodical change of the vertical load. This reduction may be
considerable and appears to depend on the amplitude of the vertical load
variation as a ratio to the static load, on the wavelength of the motion, the speed
of travel and on the magnitude of the slip angle. In Chapter 7 a more practical
approach based on the single contact point model (that means: for accuracy
limited to relatively large wavelengths) is adopted to model the non-steady-state
behaviour  at varying vertical load including high levels of slip. To lay the basis
for that theory we will employ the advanced string model with tread elements
that was developed in Section 5.4.3 for the case of a constant vertical load. The
presence of tread elements turns out to be crucial to properly model the loss of
side force when cornering on an undulated road surface. As in Section 5.4.3,
only small slip angles will be considered allowing the theory to remain linear.
First, we will develop the model based on the advanced string model with tread
elements. Then, to simplify the model description, an adapted bare string model
will be introduced and used in the further calculations.  

5.6.1.  String Model with Tread Elements Subjected to Load Variations

Figure 5.44 shows the tyre model in two successive positions while the wheel
moves at a constant (small) slip angle over an undulated road surface which
causes the contact length to vary with distance travelled s. When the contact
centre C is moved a distance ∆s, the following changes occur simultaneously:
lateral shift of the wheel plane, forward rolling and change in contact length.
These changes influence the position of the leading and trailing edges of the
string. The x2 coordinates of these points are:

(5.186)

the changes of which become:

(5.187)
∆x21 ' ∆s % ∆a
∆x22 ' ∆s & ∆a

The changes in front and rear lateral string deflections vc1,2 are composed of

x21 ' s % a
x22 ' s & a
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various contributions.  For the increment of the deflection at the leading edge
∆vc1 we obtain:

1. due to lateral wheel displacement α∆s:

(5.188a)∆vc1 ' A(a) @α∆s

2. due to loss of contact at the trailing edge (∆x22 > 0):

(5.188b)∆vc1 ' &B(a)
v2&vc2

σc

∆x22

3. due to loss of contact at the leading edge  (∆x21 < 0):

(5.188c)∆vc1 ' &B((a)
v1&vc1

σc

∆x21

4. due to longitudinal displacement of leading edge (∆x21):

(5.188d)

Similar expressions are obtained for the contributions to the change of the lateral
deflection at the rear  ∆vc2 . The contact length dependent coefficients appearing
in the equations are:

(5.189)A(a) ' &2ε% (1%ε)e
2a/σc

& (1&ε) e
&2a/σc P(a)

∆vc1 ' &
vc1

σ
∆x21
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(5.190)B(a) ' 2 P(a)

(5.191)B((a) ' (1%ε)e
2a/σc

% (1&ε) e
&2a/σc P(a)

(5.192)P(a) ' 1%ε

1&ε

e
2a/σc

&

1&ε

1%ε

e
&2a/σc

They are derived from solutions of the differential equations for the shape of the
string deflection Eqs.(5.155-156). For the parameters employed we refer to the
Eqs.(5.153). From the increments (5.187,5.188) the following differential
equations are established for the unknown string deflections vc1 and vc2:

(5.193)

dvc1

ds
' & 1% da

ds

vc1

σ

& B(a) 1& da
ds

v2&vc2

σc

%

% B((a) 1% da

d s

v1&vc1

σc

% A(a)α

(5.194)

dvc2

ds
' 1& da

ds

vc2

σ

% B(a) 1% da
ds

v1&vc1

σc

%

&B((a) 1& da

ds

v2&vc2

σc

% A(a)α

The two remaining unknowns v1 and v2 representing the total lateral deflections
and consequently the distances between wheel plane and contact line at the
leading and trailing edges, are found by considering the following. In the rolling
process of a side slipping tyre with a continuously changing contact length, in
general, three intervals can be distinguished during the interval of the loading
cycle where contact with the road exists. In Fig.5.45 the load variation together
with the corresponding variation of the contact length 2a of a side slipping tyre
that periodically jumps from the road  has been shown in the road plane (x2,y2) for
the interval that contact exists. Immediately after the first point touches the road,
the contact line grows in two directions (interval I). This growth continues until
the second interval II is reached, where growth of contact takes place only at the
front, and at the rear loss of contact occurs. Finally, in the third interval III, loss
of contact at both ends takes place until the tyre leaves the road. When the tyre
does not leave the road, an additional interval II occurs before interval I is
reached again and the cycle starts anew. In less severe cases, intervals I and III
may not occur. We then have the relatively simple situation of continuous growth
of contact at the front and loss of contact at the rear.

The unknowns v1 and v2, and the y2 coordinate of the contact points in the (x2,y2)
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plane are obtained as follows (cf. Fig.5.45):

Interval I:   x20 1 > 0 , x20 2 < 0 da
ds

>1

v1 ' vc1 , v2 ' vc2

(5.195a)
&y2c1 ' sα & vc1 , &y2c2 ' sα & vc2

Interval II:  x20 1 > 0 , x20 2 > 0 &1 < da
d s

< 1

v1 ' vc1 , v2 ' sα % y2c2

(5.195b)&y2c1 ' sα & vc1

Interval III:  x20 1 < 0 , x20 2 > 0 da
ds

<&1

(5.195c)v1 ' sα % y2c1 , v2 ' sα % y2c2
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ρ ' ρo& ρ
^ sinωss

By means of numerical integration, Eqs.(5.193,5.194) have been solved with the
aid of the equations (5.195) and the expressions (5.189-192) for the case
formulated below in which the vertical tyre deflection ρ has been given a periodic
variation with amplitude  greater than the static deflection ρo , so that periodicρ̂

loss of contact between tyre and road occurs. The static situation will be
indicated with subscript o. The tyre radius is denoted with r. The vertical
deflection and the contact length are governed by the equations:

(5.196)

(5.197)a 2
' 2rρ & ρ2

The numerical values of the parameters of the system under consideration are:

ao' 0.25 r , (ρo' 0.03175 r) , ρ^' 0.1r , ωs' π /(4ao) , (λ' 8ao)

 (5.198)σ' 3ao , ε' 0.25 , (σc' 0.75ao , cp' 15cc )

In Fig.5.46 the calculated variation of contact length 2a (oval curve), the path
of the contact points (lower curve AB) and the course of the points of the string
at the leading and trailing edge (AC and BC) have been indicated. Two positions
of the tyre have been depicted, one in interval II and the other in interval III.

It is necessary that the calculations in the numerical integration process be
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carried out with great accuracy. A small error gives rise to a rapid build up of
deviations from the correct course. In the case considered above, the integration
time is limited and accurate results can be obtained. In cases, however, where
continuous contact between tyre and road exists, a long integration time is
needed before a steady state situation is attained, which is due to the fact that the
exact initial conditions of a periodic loading cycle are not known. For this sort
of situation, the exact method described above is difficult to apply due to strong
drift of vc2 in particular.

For further investigation of the effect of a time varying load we will turn to
an approximate method based on the string model without tread elements.

5.6.2.  Adapted Bare String Model

The use of this model is much simpler since the deflections at both edges are
independent of each other. Drift does not occur in the calculation process. In
Fig.5.47 the deflected model has been shown in interval II. For the three intervals
the following sets of equations apply:

growth of contact at leading edge:

(5.199a)x20 1 > 0 da
d s

>&1

(5.199b)
dv1

ds
' α & 1% da

d s

v1

σ

(5.199c)x21 ' s % a

(5.199d)y2c1 ' & sα % v1

growth of contact at trailing edge:

(5.200a)x20 2 < 0 da
d s

>1

(5.200b)
dv2

ds
' α & 1& da

d s

v2

σ

(5.200c)x22 ' s & a

(5.200d)y2c2 ' & sα % v2
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loss of contact at leading edge:

(5.201a)x20 1 < 0 da
d s

<&1

(5.201b)y2c1 ' y2c (x2' s%a)

 (5.201c)v1 ' sα % y2c1

loss of contact at trailing edge:

(5.202a)x20 2 > 0 da
d s

<1

(5.202b)y2c2 ' y2c (x2' s&a)

 (5.202c)v2 ' sα % y2c2

Solutions of the above equations show considerable differences from the results
obtained using the more advanced model with tread elements. The most
important difference is the fact that with the simple model the lateral force does
not gradually drop to zero as the tyre leaves the ground.

In order to get better agreement, we will introduce a non-constant relaxation
length σ =σ((a) that is a function of the contact length 2a and thus of the vertical
load. We take σ( equal to the relaxation length of the more advanced model
according to Eq.(5.171). Figure 5.48 presents the variation of relaxation length
and contact length as a function of the vertical load as calculated for the current
parameter values (5.198).
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Fig. 5.48. The calculated variation of half the contact length and the relaxation length as a ratio
to the static half contact length versus the vertical load ratio for the model with tread
elements using Eq.(5.171).

In Fig.5.49 a comparison is made between the results of the three models:
without tread elements, with tread elements (exact) and according to the
approximation with varying σ =σ((a). The calculations have been carried out for
the parameter values (5.198). The approximate path of contact points shows
good agreement with the path for the exact model with tread elements. When the
tread elements are omitted we have the bare string model for which the path
becomes wider and the lateral deflections greater. 

5.6.3.  The Force and Moment Response

The lateral force Fy and the moment Mz which act on the tyre can be assessed
with good approximation through the following simplified formulae. In their
derivations we have replaced the contact line by the straight line connecting the
beginning and end points of the contact line (Von Schlippe’s approach). For the
model with tread rubber elements we obtain:

(5.203)Fy '
2cccp

cc%cp

{a%σA(a)}v0

(5.204)Mz ' &
2cccpa

cc%cp

{aa 2
%σ (σ%a)C(a)}α0

and for the model without tread elements:
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Fig. 5.49.  Paths of contact points and variations of the side force according to three models.

(5.205)Fy ' 2cc(a%σ) v0

(5.206)Mz ' &2cca{aa 2
%σ (σ%a)}α0

In these expressions the following quantities have been introduced:

(5.207)v0 ' ½(v1%v2) , α0 ' ½(v1&v2) a

and
(5.208)C(a) ' A(a)& σ

a
εB((a)% 2% σ

a
εB(a)

in which A, B and B* are given by expressions (5.189-192).
For the sake of completeness the formulae for the moment have been added.

However, we will restrict ourselves to the discussion of the variation of the force.
For the three models considered, the variation of the cornering force has been
shown in the same Fig.5.49. As expected, the approximate and exact theories
drop to zero at the point of lift-off, whereas the force acting on the simple string
model remains finite, at least under the here assumed condition of no sliding. The
correspondence between exact and approximate solutions of the path and of the
side force are satisfactory, and we will henceforth use the approximate method
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Fig. 5.51. Computed variation of average cornering stiffness with amplitude of the vertical tyre
deflection (ρ) and path frequency (1/λ) using the adapted bare string model that
approximates the string model with tread elements.
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Fig. 5.50. Computed variation of average cornering stiffness with amplitude of the vertical tyre
deflection, ρ, and path frequency, 1/λ, for the bare string model.

according to the adapted bare string model for the investigation of the model with
tread elements.

For a series of deflection amplitudes and wavelengths λ, the variation ofρ̂

the cornering force, or rather of the cornering stiffness, has been calculated.
Since during loss of contact the vertical load remains zero, the period of the total
loading cycle must become longer in order to keep the average vertical load
unchanged. This change in period has been taken into account in the calculation
of the average side force or cornering stiffness .C̄Fα

Figures 5.50 and 5.51 show the final result of this investigation, viz. the
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cornering stiffness averaged over one complete loading cycle as a function of the
vertical deflection amplitude   and the path wavelength λ  for both models withρ̂

and without tread elements, that is: with the adapted bare string model and with
the original bare string model. With the parameter values σ = 3ao and cp = 15cc

the relaxation length of the more advanced model with tread elements at the static
load becomes σo

( = 1.7ao. For the model without tread rubber the relaxation
length has been taken equal to σ = 2ao.

The figures clearly illustrate the unfavourable effect of increasing the
amplitude  and the path frequency (decreasing the wavelength λ). The curveρ̂

at zero path frequency is purely due to the non-linear variation of the cornering
stiffness CFα versus vertical load Fz shown in Fig.5.32 (cf. Fig.1.3 and discussion
on the effect of load transfer in Chapter 1, Fig.1.7) and reflects the ‘static’ drop
in average cornering stiffness. A pronounced difference between the response of
both types of models is the sudden drop in average cornering stiffness that shows
up in the curves of the bare string model when the frequency is larger than zero
and the deflection amplitude reaches the value of the static deflection. This is in
contrast to the gradual variation in average cornering stiffness which is observed
to occur with the more advanced model, and no doubt also with the real tyre.
Furthermore, the more advanced model with tread elements, already shows a
noticeable decrease in average cornering stiffness before the tyre starts to
periodically leave the ground. The ‘dynamic’ drop is represented by the dotted
curves along which the path frequency changes and the deflection amplitude
remains the same. The very low level to which the average stiffness is reduced,
once loss of contact occurs, is of the same order of magnitude for both tyre
models.



Chapter 6

THEORY OF THE WHEEL SHIMMY
PHENOMENON

6.1.  Introduction

As an application of the theory developed in the previous chapter we will study
the self-excited oscillatory motion of a wheel about (an almost) vertical steering
axis. This type of unstable motion is usually designated as the wheel shimmy
oscillation. Shimmy is a violent and possibly dangerous vibration that may occur
with front wheels of an automobile and with aircraft landing gears. Wobble of
the front wheel of a motorcycle is an oscillatory unstable mode similar to
shimmy. This steering vibration will be discussed in Chapter 11.

To investigate the shimmy phenomenon, the boundary of stability is
established for system models of different degrees of complexity and we will
examine the effect of employing different tyre models. The linear stability
analysis is extended to non-linear systems which enables us to determine the limit
of the shimmy amplitude (limit-cycle) and the magnitude of initial disturbance
or unbalance to initiate the self-excited oscillation. Much of the contents of the
present chapter is based on the work of Von Schlippe and Dietrich (1941),
Pacejka (1966,1981) and Besselink (2000).

Fromm, cf. Becker, Fromm and Maruhn (1931) is one of the first
investigators who developed a theory for the shimmy motion of automobiles.
Besides his advanced theoretical work, as a result of which the gyroscopic
coupling between the angular motions about the longitudinal axis and about the
steering axis was found to be the main factor causing shimmy, he has carried out
and described, together with his co-workers Becker and Maruhn, some tests on
a system with a rigid front axle.  Also Den Hartog (1940) and Rocard (1949)
have treated this ‘gyroscopic’ shimmy for systems with live axles. The
phenomenon was experimentally examined by Olley (1947). 

Another kind of shimmy is closely related to tyre and suspension lateral
compliance and has been observed to occur with aircraft landing gears and
automobiles equipped with independent front wheel suspensions. Many of the
authors mentioned in connection with the development of non-steady-state out-
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Fig. 6.1. Simple trailing wheel system that is capable of showing shimmy. Two ways of
realising the mechanical caster length e of the contact centre with respect to the
steering axis (king-pin) have been indicated.

of-plane tyre models in Chapter 5 have used their model in connection with the
analysis of the shimmy problem.

6.2. The Simple Trailing Wheel System
with Yaw Degree of Freedom

First, the simplest system that can generate shimmy will be discussed. Consider
the trailing wheel system depicted in Fig.6.1. The vertical swivel axis moves
along the 2x axis with speed V. The motion variable is the yaw angle ψ of the
wheel plane about the swivel axis. This axis intersects the road plane at a
distance e (mechanical trail or caster length) in front of the contact centre. The
system is provided with a rotation damper with viscous damping coefficient k
and possibly with a torsional spring with stiffness cψ. The moment of inertia
about the swivel axis is denoted with I. This quantity varies with caster length
e. However, we may consider a constant value of I if caster is accomplished by
inclining the swivel axis about the wheel spin axis. If the caster angle remains
relatively small, the camber angle that arises through steering may be neglected
and the equations assuming a vertical axis will hold with good approximation.

The tyre will be considered massless and the contact line is approximated by
a straight line tangent to the actual contact line at the leading edge (straight
tangent approximation) for which the Eqs.(5.125-127) hold or by a single point,
Eqs.(5.130-132), with and without the effect of tread width. The results will be
compared with those obtained when using the almost exact Von Schlippe tyre
model. We have the equations:
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(6.1)Iψ̈ % kψ0 % c
ψ
ψ ' &Fy e % Mz

(6.2)Fy ' CFαα'

(6.3)Mz ' M'z % M(

z

(6.4)M'z ' &CMα
α'

(6.5)M(

z ' &κ
(

dψ
d s

(6.6)α' '
v1

σ

(6.7)
dv1

d s
%

v1

σ
' ψ & a

dψ
ds

&

dȳ

d s

(6.8)s ' x̄ ' Vt

(6.9)ȳ ' &eψ

where a=0 when the single contact point tyre model is considered. To reduce the
number of governing system parameters we will introduce the following
non-dimensional quantities with the reference length ao representing the actual
or the nominal half contact length:

a '
a

ao

, s '
s

ao

, e '
e

ao

, t '
CMα

ao CFα

, σ ' σ

ao

, v1 '
v1

ao

, ω
s
' ωsao

V' V
I

CFαa 3
o

, κ(' κ
(

CFαa 2
o

'

κ
(t

CMα
ao

, k '
k

ICFαao

, c
ψ
'

c
ψ

CFαao

(6.10)
which includes the non-dimensional pneumatic trail t = t/ao . After elimination of
the time and all the variables except ψ and v1  in Eqs.(6.1-9) and using the
conversions (6.10) we obtain the non-dimensional differential equations:

(6.11)

V 2 d2
ψ

d s2
% (kV % κ

() dψ
ds

% c
ψ
ψ % (e% t)

v
1

σ
' 0

dv1

d s
%

v1

σ
' (e&a) dψ

d s
% ψ
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The system is linear and of the third order. It is assumed that the tyre deflection
relaxation length σ =3a or non-dimensionally: σ =3. In case of the single contact
point tyre model a must be taken equal to zero and σ  must be given the value of
σ + a = 4a. In the non-dimensional notation σ takes the value of σ +a = σ +1 =
4. For the pneumatic trail we assume t = 0.5a or t = 0.5.

The characteristic equation of system (6.11) becomes:

(6.12)/00000
/00000

V 2p 2
% (kV % κ

() p % c
ψ

e % t

(e&a) p % 1 &(σ p%1)
' 0

or

(6.13)
σ V 2p 3

% {V 2
% σ (kV% κ

()}p 2
%

% {kV % κ
(

% σc
ψ
% (e% t) (e&a)}p % e % t % c

ψ
' 0

In general we may write:

(6.14)a0 p 3
% a1 p 2

% a2 p % a3 ' 0

According to the criterium of Hurwitz  the conditions for stability of the motion
of the third-order system read:

• all coefficients ai of the characteristic equation must be positive:

(6.15)a0 >0 , a1 >0 , a2 >0 , a3 >0

• the Hurwitz determinants Hn-1, Hn-3 etc. must be positive, which yields for the
third order (n =3) system:

(6.16)H2 '
/0000

/0000
a1 a0

a3 a2

> 0

The first two coefficients of Eq.(6.13) are always positive. For the remaining
coefficients the conditions for stability become:

(6.17)a2 ' kV % κ
(

% σc
ψ
% (e% t) (e&a) > 0

(6.18)a3 ' e % t % c
ψ

> 0

while according to (6.16):
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(6.19)H2' a2{V 2
%σ (kV%κ()} & σV 2 (e% t%c

ψ
) > 0

It can be easily seen that, if the last two conditions are satisfied, the first one is
satisfied automatically. If the condition an = a3 > 0 is the first to be violated then
the motion turns into a monotonous unstable motion (divergent instability that
is: without oscillations). Consequently, if e < !(t + cψ) meaning that the steering
axis lies a distance !e behind the contact centre that is larger than t+cψ /CFα , the
wheel swings around over 180 degrees to the new stable situation. If Hn-1 =H2 is
the first to become negative, the motion becomes oscillatorily unstable. The
boundaries of the two unstable areas are: a3 = 0 and H2 = 0.

In the case of vanishing damping (k = κ
 * = 0) condition (6.19) reduces to:

(6.20)(e % t ) ( e & a & σ ) > 0

Apparently, in the (e, V) parameter plane the boundaries of (6.19) reduce to two
parallel lines at e = σ + a and e =! t. When the caster lies in between these two
values the yaw angle performs an oscillation with exponentially increasing
amplitude at any speed of travel. Apparently, when the damping is zero, the
speed and the torsional stiffness do not influence the extent of the unstable area.
They will, however, change the degree of instability and the natural frequency
(eigenvalues).  

If we have damping, the limit situation may be considered where the speed
V tends to zero. The condition for stability then becomes:

(6.21)κ
(

% σc
ψ
% ( e% t ) (e&a) > 0

which shows that the values for e become complex if σ cψ + κ
* > ¼(t!a)2 + t a.

This implies that in that case the unstable area becomes detached from the e axis.
In Fig.6.2 the unstable areas have been shown for different values of the

viscous steer damping k and with steer stiffness cψ =0. Damping reduces the size
of the unstable area and pushes the extreme right-hand edge to lower values of
speed. The curves resulting from the application of the straight tangent and the
single contact point tyre model approximations have been displayed together with
the shaded curves representing the boundaries according to the almost exact Von
Schlippe approximation. For a more detailed study of the situation at small
values of V (<ca. 2) where at very low damping alternative stable and unstable
ranges appear to arise when the exact theory is applied, we refer to Stepan
(1997). 

Appreciable deviations appear to occur at low values of speed V where the
path frequency ωs is relatively high and thus the wavelength λ relatively short.
This is in accordance with findings in Fig.5.23-27 where the frequency response
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Fig. 6.2. Areas of instability for the trailing wheel system of Fig.6.1 without steer stiffness at
different levels of viscous steer damping. Consequences of using different tyre
models can be observed.

functions according to various approximations have been compared. The straight
tangent approximation shows a tendency to predict a shimmy instability that is
somewhat too strong. On the other hand, the single point contact model turns out
to be too stable: for k = 0.6 the unstable area vanishes all together. When
employing the straight tangent approximation we at least appear to be on the safe
side. For the case k= 0.5 a curve has been added in Fig.6.2 to show the effect of
artificially introducing a proper value of κ( to improve the performance of the
straight tangent model. The value κ( = CMn = 0.6aCMα

 that corresponds to κ(=
0.3 indeed produces a better result. This is in accordance with the curve added
in the Nyquist diagram of Fig.5.27 for CMn = 0.6 aCMα

 that shows an improved
aligning torque frequency response.

The non-dimensional path frequencies shown in the figure occur on the
boundaries computed for the system with straight tangent approximation. Here
the motion shows an undamped oscillation. Then, the solution of (6.13) contains
a pair of purely imaginary roots. By replacing p by iωs in the characteristic
equation and then separating the imaginary and the real terms we get two equa-
tions which can be reduced to one by eliminating the total damping coefficient
k V + κ(. The resulting relationship between V and e has been shown for a
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Fig. 6.3. Areas of instability for the trailing wheel system of Fig.6.1 without steer stiffness.
Influence of tread width damping at different levels of viscous steer damping.

number of values of ωs. At path frequency ωs = 1/%{σ(1+t)}=0.47 a special case
arises where the frequency curve reduces to a straight line originating from
(0,!t). By using one of the two equations, an expression for the non-dimensional
path frequency may be obtained:

(6.22)ω
2
s '

a3

a1

'

e % t % c
ψ

V 2
% σ ( kV% κ

()

Figure 6.3 presents the diagram indicating the influence of damping due to
tread width κ(. This type of damping is especially effective at low speed. This is
understandable because we have seen that the equivalent viscous damping
coefficient decreases inversely proportionally with the forward velocity. The
boundaries now have a chance to become closed at the left-hand side, cf.
Eq.(6.21).

As Fig.6.4 depicts, the steer torsional stiffness reduces the unstable shimmy
area in size especially when sufficient damping is provided. At vanishing
damping, the area of oscillatory instability appears to remain limited by the
horizontal lines obtained from (6.20). The area of divergent instability is reduced
through the restoring action of the torsional spring about the steering axis. Its
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Fig. 6.4. Influence of steer stiffness cψ on shimmy instability and on divergent instability at
different levels of steer damping without tread width damping.

upper boundary shifts downwards according to the negative trail !e = t + cψ.
The influence of tyre inertia has not been indicated in the diagrams. As may

be expected from the diagram of Fig.5.38, that shows that the phase lag of the
moment response is reduced through the action of the gyroscopic couple Mz,gyr

especially at higher speeds, the area becomes limited at the right-hand side even
in the absence of damping. Exercise 6.1 given below addresses this problem.

If the moment of inertia about the steering axis can not be considered as a
constant but rather as a function of the trail e, e.g. replace I by Iz + me2, then,
considering the non-dimensionalisation defined by (6.10), the curves of the
various diagrams must be reinterpreted: at a constant k the actual damping
coefficient k is not a constant along the curve but increases with increasing e
while at a given V the actual speed V diminishes at increasing e.
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Example

Consider the system with parameters:

a = ao = 0.14 m,  t = 0.5, σ = 3, e = 0,
I = 5.4 kgm2 , CFα = 70000 N/rad, κ( = 0.25 t = 0.125.

Speed of travel:

6 V = 6 V   [m/s] = 21 V   [km/h]V ' V
I

CFαa 3

Shimmy wavelength:
ωs = aωs 6 ωs = 7.14ωs   [rad /m]
λ= 2π /ωs = 0.88 /ωs    [m]

so that at
ωs = 0.3  6 λ= 2.9m = 21 a

and at
ωs = 0.1  6 λ= 8.8m = 63 a

Shimmy frequency:
ω=ωsV     [rad/s]
n = V/λ=ω /(2π)    [Hz]

at V = 5.6 we have V = 33 m/s and according to the stability graph of Fig.6.3
(cψ=0) we have at this speed and caster e= 0 a non-dimensional path frequency
ωs . 0.12 so that ωs . 0.85 rad/m, λ. 7.3m, ω. 28 rad/s and n. 4.5 Hz. This
would be the case at the boundary of stability where k. 0.25 with κ( = 0.3. At
about the same point in the diagram of Fig.6.4 we would have with a non-
dimensional steer stiffness cψ = 1 and damping coefficient k = 0.25 a non-
dimensional path frequency ωs . 0.2 which yields ωs . 1.4rad/m, a wavelength
λ. 4.4m and a frequency n. 7.5 Hz.

Exercise 6.1. Influence of the tyre inertia on the stability boundary

Consider the wheel system of Fig.6.1. Derive the stability conditions for this system
with the inclusion of the effect of tyre inertia approximated by the introduction of
Mz,gyr (5.178). In non-dimensional form the gyroscopic couple becomes

(6.23)M z,gyr '
Mz,gyr

CFαa
' &CgyrV 2 dFy

d s

with
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(6.24)Cgyr ' Cgyr

aCFα

I
' cgyr

mt

CFy

aCFα

I
' cgyr

mt

I
a (σ%a)

cf. Eqs.(5.59,5.60) and (5.179).
Determine how the stability boundaries for the system without damping (κ* = k =

cψ = 0) are changed due to the inclusion of the gyroscopic couple. Consider the
following parameter values

t ' 0.5 , σ ' 3 , Cgyr ' 0.04

Draw in the (e, V) diagram the boundaries for Cgyr = 0 and sketch the new stability
boundary by calculating at least the boundary values for V at e =!t, e = 0 and e = 1 and
moreover the boundary on the e-axis. Indicate where the system is stable.

6.3.  Systems with Yaw and Lateral Degrees of Freedom

The additional degree of freedom that allows the king-pin to move sideways,
leads to a system which is of the fifth order. Figure 6.5 depicts the system with
lateral compliance of the wheel suspension possibly associated with a torsional
(camber) compliance with (virtual) axis of rotation assumed to be located at a
height h above the ground (right-hand diagram). The inertia of the system (m, Iz)
may be represented by two point masses mA and mB and a residual moment of
inertia I* about the vertical axis. The two mass points are connected by a
massless rod with length e, and are located on the wheel axis and the steer axis
respectively. Lateral damping will not be considered.

The following set of equations hold for the dynamics of the system of Fig.6.5
assuming a vertical steering axis and adopting the straight tangent tyre model,
Eqs.(5.125-127,6.7):
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(6.25)&mA(eψ̈& ÿ) % mBÿ % cy y ' Fy

(6.26)mAe(eψ̈& ÿ) % I(ψ̈ % kψ0 % c
ψ
ψ ' &Fy e % Mz

(6.2)Fy ' CFαα'

(6.3)Mz ' M'z % M(

z

(6.4)M'z ' &CMα
α'

(6.5)M(

z ' &κ
(

dψ
d s

(6.6)α' '
v1

σ

(6.27)
dv1

ds
%

v1

σ
' α & a

dψ
d s

(6.8)s ' x̄ ' Vt

where the slip angle α is obtained from:

(6.28)α ' ψ &
1
V

(y0 &eψ0 )

Before further studying the fifth-order system let us try to reduce the system to
a lower order while retaining the lateral compliance. 

Yaw and lateral degrees of freedom with rigid wheel/tyre (third order)

It can be shown that the lateral compliance of the wheel suspension has an effect
that is similar to the effect of tyre lateral compliance. The basic effect of lateral
compliance of the suspension may be isolated by considering the wheel and tyre
as a rigid disc. As a result, a non-holonomic constraint equation arises that
reduces the order of the system to three. Through this first-order differential
equation the condition that the wheel is unable to perform lateral slip is obeyed.
We obtain the constraint equation from (6.28) with wheel slip angle α  forced to
be equal to zero: 

(6.29)α ' ψ &
1
V

(y0 &eψ0 ) ' 0

In addition, we assume that for the rigid disc the aligning torque and the contact
length vanish:

(6.30)Mz' 0 , a ' 0
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After elimination of Fy from the Eqs.(6.25,6.26) and expressing  in terms of0y
ψ and its derivative we find a third-order differential equation. Its characteristic
equation with variable s in [rad /s] reads:

(6.31)(I(%mBe 2) s 3
% (k%mB eV) s 2

% (c
ψ
%cye

2) s % cy eV ' 0

The trivial condition against (divergent) instability that results from the last term
of (6.31) which must remain positive becomes:

(6.32)e > 0
The condition for stability H2 > 0, cf. (6.16), reads:

(6.33)(k%mB eV) (c
ψ
%cy e 2) > (I(%mB e 2)cy eV

For the undamped case (k= 0) this reduces to the simple condition for stability,
if e >0:

(6.34)mBc
ψ

> I(cy

Apparently, a negative residual moment of inertia (I* < 0) will ensure stability.
When f defines the location of the centre of gravity behind the steer axis and i(

denotes the radius of inertia of the combination (mA , mB , I* ) or only of the
steerable part, a negative residual moment of inertia would occur if i(2 < f(e!f).
For such a system, an increase of the lateral stiffness strengthens the stability.

If on the other hand I* > 0 a sufficiently large steer stiffness is needed to
stabilise the system. It is surprising that a larger lateral stiffness may then cause
the system to become unstable again. 

The conclusion that the freely swivelling wheel system (that is: cψ= k= 0) is
stable if the residual moment of inertia I* < 0 entails that when caster is realised
by inclining the steering axis backwards (Fig.6.1 right-hand diagram) we have
the situation that mA =0 so that I*= I which is always positive. Consequently, for
such a freely swivelling system equipped with a rigid thin tyre the motion is
always oscillatorily unstable.

The fifth-order system

The gyroscopic coupling terms that arise due to the angular camber velocity of
the wheel system about the longitudinal axis located at a height h above the
ground will be added to the Eqs.(6.25,6.26). For this, the coefficient βgyr is
introduced:

(6.35)βgyr '
Ip

mrh

where Ip denotes the polar moment of inertia of the wheel. Furthermore the ratio
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of distances with respect to the camber torsion centre is introduced:

(6.36)ζh '
h

h&r
Moreover, to fully account for the effects of the angular displacement about the
longitudinal axis, that also arises when steering around an inclined king-pin (to
provide caster), one may include the camber force in Eq.(6.2), and the small
(negative) stiffness effects resulting from the lateral shift of the normal force Fz.
Because of the fact that these effects are relatively small and appear to partly
compensate each other we will neglect the extra terms.

The differential equations that result when returning to the set Iz and m that
replaces the equivalent set mA , mB and I*, and eliminating all variables except y,
ψ and αN read:

(6.37)m( ÿ& fψ̈)%ky 0y%cy y&mβgyrVψ0 ' ζhCFαα'

Izψ̈% (k%κ(/V)ψ0 %c
ψ
ψ%mβgyr V 0y% f ky 0y% f cy y ' &CFα (e%t&f)α'

(6.38)
(6.39)σα0 '% Vα' ' &ζh 0y% (e&a)ψ0 % Vψ

In the equations the lateral suspension damping, ky, has been included. In the
further analysis this quantity will be left out of consideration. To study the pure
gyroscopic coupling effect, the ratio ζh will be taken equal to unity which would
represent the case that the centre of gravity and the lateral spring are located at
ground level. For the special case that the centre of gravity lies on the (inclined)
steer axis, distance f = 0, the system description is considerably simplified.  Our
analysis will mainly be limited to this configuration. Besselink (2000) has carried
out an elaborate study on the system of Fig.6.5 with the mass centre located
behind the (vertical) steering axis (f > 0), even behind the wheel centre (f > e).
For the complete results of this for aircraft shimmy important analysis we refer
to the original publication. One typical result, however, where f = e will be
discussed here. 

The complete set of non-dimensional quantities, extended and slightly
changed with respect to the set defined by Eqs.(6.10), reads:

a'
a

ao

, e'
e

ao

, f '
f

ao

, t'
CMα

ao CFα

, σ' σ

ao

, i
z
'

iz

ao

, y
55

'

y

ao

, ω s'ωsao ,

κ
(

'

κ
(

CFαa 2
o

'

κ
(t

CMα
ao

, k'
k

IzCFαao

, c
ψ
'

c
ψ

CFαao

, cy'
cy ao

CFα

,
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m55 '
ma 2

o

Iz

'

1

i 2
z

, V' V
Iz

CFαa 3
o

, ω55 ' ω
Iz

CFαao

, s ' s
Iz

CFαao

(6.40)
Here, s denotes the non-dimensional Laplace variable. The non-dimensional
differential equations follow easily from the original equations (6.37-39). For the
stability analysis we need the characteristic equation which reads in non-
dimensional form:

(6.41)a550 s555
% a551 s554

% a552 s553
% a553 s552

% a554 s55% a555' 0

The coefficients of (6.41) with f = ky = 0 are:

a550' mσ

a551' mV% mσ (k%κ(/V )

a552' mσcψ% σcy% ζh% m(e% t)(e&a)%σ (mβgyr V)2
% m (k%κ(/V )V

a553' mc
ψ

V% cy V% m (e%t)V% (ζh%σcy) (k%κ(/V)%

& (a%ζh t&mβgyrV 2)mβgyrV

a554' (σcy%ζh) c
ψ
% (e% t)(e&a)cy%mβgyr V 2

% cy (k%κ(/V )V

a555' cy (c
ψ
% e% t)V

(6.42)

The influence of a number of non-dimensional parameters will be
investigated by changing their values. The other parameters will be kept fixed.
The values of the fixed set of parameters are: 

(6.43)a ' 1 , σ ' 3 , t ' 0.5 , m ' 0.5 , ζh ' 1

For the fifth-order system the Hurwitz conditions for stability read:
• all coefficients ai of the characteristic equation must be positive:

(6.44)a0 >0 , a1 >0 , a2 >0 , a3 >0 , a4 >0 , a5 >0

• the Hurwitz determinants Hn-3 and Hn-1 must be positive, which yields:

(6.45)H
552 '

/00000
/00000

a1 a0

a3 a2

> 0 , H
554 '

/00000000000000000

/00000000000000000

a1 a0 0 0

a3 a2 a1 a0

a5 a4 a3 a2

0 0 a5 a4

> 0
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It turns out that for the case without damping and gyroscopic coupling terms
( k=κ

* =βgyr =0), a relatively simple set of analytical expressions can be derived
for the conditions of stability.  It can be proven that when a5 >0, H2 >0, H4 >0 the
other conditions are satisfied as well. Consequently, the governing conditions for
stability of the system without damping and gyroscopic coupling read:

(6.46)
a555

cy V
' (c

ψ
% e% t) > 0

(6.47)
H
552

m2 V
' (e% t) (e&a&σ)% 1

m
> 0

(6.48)
H
554

m3 V 2
' (e% t) c

ψ
&

cy

m
c
ψ
&

cy

m
(e&a&σ)%

H
552

m2 V
> 0

We may ascertain that for the special case of a rigid wheel where CFα64 and a,
σ, t 60 the condition (6.46) corresponds with (6.32) and the condition

(6.49)c
ψ
&

cy

m
> 0

that results from (6.48) corresponds with condition (6.34) if we realise that in the
configuration studied here we have: mA =0 and I*= Iz.

For the case with an elastic tyre with stability conditions (6.46-48) we will
present stability diagrams and show the effects of changing the stiffnesses. In
addition, but then necessarily starting out from Eqs.(6.42,6.44,6.45), the
influence of the steer and tread damping and that of the gyroscopic coupling
terms will be assessed.

First, let us consider the system with lateral suspension compliance but
without steer torsional stiffness, cψ=0 , that is: a freely swivelling wheel possibly
damped (governed by the combined coefficient k+κ*/V) and subjected to the
action of the gyroscopic couple (that arises when the lateral deflection is
connected with camber distortion as governed by a non-zero coefficient βgyr).
From the above conditions it can be shown that for the simple system without
damping and camber compliance stability may be achieved only at the academic
case of large caster e > a + σ when the lateral stiffness of the wheel suspension
is sufficiently large:

    while     (6.50)cy > m(e% t) % 1
e&a&σ

e > a%σ

The minimum stiffness where stability may occur is:
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(6.51)cy,crit ' m (a%σ% t%2iz)

with iz representing the radius of inertia:

(6.52)i 2
z '

1
m
'

Iz

ma 2

The value of the caster length ec where stability commences (at cy,crit) is:

(6.53)ec ' a%σ% i z

Consequently, it may be concluded that with respect to the third-order system of
Fig.6.2 the introduction of lateral suspension compliance shifts the upper
boundary of the area of instability to values of caster length e larger than a +σ.
At the same time a new area of instability emerges from above. When the lateral
stiffness becomes lower than the critical value (6.51) the stable area vanishes
altogether at e = ec.

The case with steer and tread damping shows ranges of stability that vary
with speed of travel V. In Fig.6.6 areas of instability have been depicted for
different values of the lateral stiffness. The upper left inset illustrates the case
without damping. At vanishing lateral stiffness a narrow range of stability
appears to remain in the negative trail range with a magnitude smaller than the
pneumatic trail t.

When a finite height h of the longitudinal torsion axis is considered,
parameter βgyr defined by (6.35) obtains a value larger than zero. For βgyr = 0.2
the diagram of Fig.6.7 arises. An important phenomenon appears to occur that
is essential for this two degree of freedom system (not counting the ‘half’ degree
of freedom stemming from the flexible tyre). A new area of instability appears
to show up at higher values of speed. The area increases in size when the lateral
(camber) stiffness decreases. At the same time the original area of oscillatory
instability shrinks and ultimately vanishes. Around zero caster stable motions
appear to become possible for all values of speed when a (near) optimum lateral
stiffness is chosen. The high speed shimmy mode exhibits a considerably higher
frequency than the one occurring in the lower speed range of instability. This is
illustrated by the non-dimensional frequencies indicated for the case cy =2 at e =

0.5. The corresponding non-dimensional wavelength λ =λ/a is obtained by using
the formula: λ = 2πV/ω. In Table 6.1 the non-dimensional frequencies ω,
wavelengths λ, and path frequencies 1/λ = a/λ have been presented as computed
for the four different values of non-dimensional velocities where the transition
from stable to unstable or vice versa occurs. Also, the mode of vibration is quite
different for this ‘gyroscopic’ shimmy exhibiting a considerably larger lateral
motion amplitude of the wheel contact centre with respect to the yaw angle
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amplitude than in the original ‘lateral (tyre) compliance’ shimmy mode. To
illustrate this, the table shows the ratio of amplitudes of the lateral displacement
ȳ of the contact centre (cf. Fig.6.5) and the yaw angle multiplied with half the
contact length: aψ. For the two lower values of speed the lateral displacement
appears to lag behind the yaw angle with about 135E while for the two higher
speeds the phase lag amounts to about 90E.

 Table 6.1. Non-dimensional frequencies, wavelengths and ratio of amplitudes of lateral
displacement ȳ at contact centre and yaw angle ψ  times half contact length a for
speeds at stability boundaries as indicated in Fig.6.7 at trail e = 0.5    

V = 1.24 ω = 0.50 λ = 15.5 1/λ = a/λ = 0.065 | ȳ/aψ | = 0.45

4.45        0.84       33.3                   0.030                0.14

9.60        2.40       25.2                   0.040                2.51

28.50        4.50       39.8                   0.025                1.64

Figure 6.8 depicts the special case of vanishing damping for a number of
values of the lateral stiffness. At caster near or equal to zero limited ranges of
speed with stable motions appear to occur. These speed ranges correspond with
the stable ranges in between the unstable areas of Fig.6.7 (if applicable). For the
indicated points A and B and for a number of neighbouring points the
eigenvalues and eigenvectors have been assessed and shown in Figs.6.22,6.23 in
Section 6.4.1 where the energy flow is studied.

The system will now be provided with torsional steer stiffness cψ. For the
undamped case the conditions (6.46-48) hold to ensure stability. It can be
observed that except for the condition (6.46) cψ appears in combination with cy

in the factor cψ!cy /m. We may introduce an effective yaw stiffness and an
effective lateral stiffness:

       and      (6.54)c(
ψ
' c

ψ
&

cy

m
c(y ' cy & mc

ψ

and establish a single diagram for the ranges of stability for the two effective
stiffnesses as presented in Fig.6.10. The way in which the boundaries are formed
may be clarified by the diagram of Fig.6.9. The parabola represents the variation
of the second Hurwitz determinant H2 divided by m2V , cf. Eq.(6.47), as a
function of the caster length e. This same term also appears in the expression for
the fourth Hurwitz determinant H4 according to (6.48). For both cases c

ψ

* >0 and
cy

* >0 the straight line originating from the point (σ + a, 0) at a slope c
ψ

*  and cy
* /m

respectively have been depicted. The points of intersection with the parabola
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correspond to values of e where H4=0. Depending on the signs of factor e+ t and
of H2 and a5 the ranges of stability can be found. Five typical cases A-E have
been indicated. They correspond to similar cases indicated in Fig.6.10. Case D
at small negative e lies inside the small stable triangle of Fig.6.10.  Here c

ψ

* > 0,
e+ t > 0 and H2 /m2V > c

ψ

* (σ+ a!e). Case C shows a range of e where H4 > 0 but
at the same time H2 < 0 so that instability prevails. For larger negative values of
the caster stability arises because e + t changes sign while a5 remains positive.
Also for larger values of c

ψ

*  a stable area appears to show up for e<!t. For cases
like D and E stability occurs for large values of the mechanical trail e (not very
realistic for our present assumption that f = 0 which means: c.g. on (inclined)
steering axis). In a similar large range of e stability occurs for large effective
lateral stiffness, e.g. case A. This case has already been referred to previously
when discussing the situation without steer stiffness, cf. Fig.6.6 upper left inset,
Eq.(6.50). Case B shows instability for all values of e. As has been indicated in
Fig.6.10, we can establish the abscissa cψ by shifting the vertical axis to the left
over a distance cy /m. At the left of the shifted axis the steer stiffness must be
considered equal to zero so that cy

* = cy. The stability boundary a5=0 shifts to the
left together with the cψ= 0 axis. 

In Fig.6.11 the diagram of Fig.6.10 is repeated but only for the version with
cψ as abscissa and for one fixed value of cy. Figures 6.12 and 6.13 clearly show
the influence of damping. The stable areas increase in size, while the unstable
area tends to split itself into two parts, the higher stiffness part of which (cψ >
-cy /m) appears to vanish at sufficient damping. Also in the low yaw stiffness
range the instability is suppressed especially in the lower range of speed. For a
caster length close to zero it appears possible to achieve stability through
adapting the steer stiffness (making it a bit larger than cy /m, cf. Case D of
Fig.6.10) and/or by supplying sufficient damping.

The more complex situation where gyroscopic coupling is included has been
considered in Figs.6.14-16. For vanishing steer stiffness, cψ60, the situation of
Figs.6.8,6.7 is reached again. In Fig.6.14 where the damping is zero, the curve
at low speed resembles the graph of Fig.6.11. As was observed to occur in the
zero yaw stiffness case, we see that in the lower yaw stiffness range (cψ<-cy /m)
an optimum value of the speed appears to exist where the unstable e range
becomes smallest or vanishes altogether (at sufficient damping). In the higher
stiffness range increasing the speed promotes shimmy except in the negative e
range where the opposite may occur. In this same range of yaw stiffness an
increase of the stiffness appears to lower the tendency to shimmy.

Besselink (2000) has analysed the more general and for aircraft landing gears
more realistic configuration where the centre of gravity of the swivelling part is
located behind the steering axis. Notably, the case where f = e and the peculiar
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case with f > e which may be benificial to suppress shimmy. For the
configuration that f = e and damping and gyroscopic coupling are disregarded,
the following conditions for stability hold:

(6.55)a5 > 0 : c
ψ

> c
ψ1' & (e% t)

(6.56)H2 > 0 : i 2
z '

1
m

> (σ%a) t

(6.57)H4 > 0 : min(c
ψ2 , c

ψ3) < c
ψ

< max(c
ψ2 ,c

ψ3)

with the two parabolic functions of e:

(6.58)cψ2 '
1&ecy

m(σ%a)
%

cy

m
%cy e(σ%a)&cy e2

& t

 (6.59)c
ψ3 '

cy(e% t) (1&emt)

mt

Figure 6.17 depicts the boundaries of stability according to the above functions.
The ordinates of two characteristic points have already been given in the figure.
For the three other points we have the e values:

(6.60)e1 ' &

i 2
z

σ%a

(6.61)e2 '
t

cy(σ%a% t)

(6.62)e3 '
i 2

z

t

The appearance of the stability diagram is quite different with respect to that
of  Fig.6.11 where f = 0. Still, an area of instability exists in between the levels
of the trail: !t < e < σ + a. Like in the f = 0 case (clearly visible in Fig.6.12) we
have two different ranges of instability: area 1 and area 2 where different modes
of unstable oscillations occur. In the range of the caster length !t<e<σ+a these
areas correspond to the lower and the higher yaw stiffness regions. 

For the points A and B which lie on the boundaries of the lower and the
higher stiffness instability areas respectively, the modes of vibration have been
analysed. The conditions for stability (6.55-57) of the undamped system without
gyros are independent of the speed. When changing the speed of travel the
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damping of the mode that is just on a boundary of instability remains equal to
zero. The other mode shows a positive damping which changes with speed as
does the frequency of this stable mode. In the Figures 6.18 and 6.19 (from
Besselink 2000) the damping, frequency, amplitude ratio and phase lead of the
lateral displacement of the contact centre ȳ with respect to the yaw angle ψ have
been presented for the two modes of vibration; in Fig.6.18 for case A and in
Fig.6.19 for case B of Fig.6.17. Using a reference tyre radius rref  the quantities
y* and V* have been defined as follows: y* = y/rref [-], V* = V/rref [1/sec]. From the
graphs can be observed that the lower yaw stiffness case A shows a mode on the
verge of instability (mode 1) that has a lower frequency and a larger amplitude
ratio |y*/ψ| than mode 2 in case B. Evidently case B exhibits a more pronounced
yaw oscillation whereas the motion performed by mode 1 of case A comes closer
to a lateral translational oscillation. The next section discusses the mode shapes
of these periodic motions in relation with the energy flow into the unstable
system. 
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Besselink has analysed the effects of changing a number of parameters of a
realistic two-wheel, single axle main landing gear model configuration (of civil
aircraft, also see Van der Valk 1993). Degrees of freedom represent: axle yaw
angle, strutt lateral deflection, axle roll angle and tyre lateral deflection (straight
tangent). This makes the total order of the system  equal to seven. Important
conclusions regarding the improvement of an existing system aiming at
avoidance of shimmy have been drawn. Two mutually different configurations
have been suggested as possible solutions to the problem, with the c.g. position
f assumed to remain equal to the trail e.

• large positive trail (e>0):
‘An increase of the mechanical trail and a reduction of the lateral stiffness are

required to improve stability at high forward velocity. Increasing the yaw
stiffness will generally improve the shimmy stability of a gear with a positive
mechanical trail provided that some structural damping is present. A limited
reduction of the roll stiffness improves the stability at high forward velocities.
The yaw moment of inertia should be kept as small as possible in case of a large
positive mechanical trail’.

• small negative trail (e<0):
‘For a landing gear with a negative trail an upper boundary exists for the yaw

stiffness. The actual value of this stiffness may be quite low: for the baseline
configuration the yaw stiffness would have to be reduced almost by a factor 3
to obtain a stable configuration with a negative trail. A relatively small increase
in track width relaxes this requirement considerably. If the absolute value of the
negative trail equals the pneumatic trail, there exists no lower limit for the yaw
stiffness to maintain stability. The effect of increasing the lateral stiffness is
quite similar to increasing the track width and improves the shimmy stability in
case of negative trail’.

In comparison with the baseline configuration the proposed modifications
result in a major gain in stability. This illustrates that it may be possible to
design a stable conventional landing gear, provided that the combination of
parameter values is selected correctly.

For detailed information also on the results of simulations with a multi-body
complex model in comparison with full scale experiments on a landing aircraft
exhibiting shimmy we refer to the original work of Besselink (2000).   
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6.4. Shimmy and Energy Flow

To sustain the unstable shimmy oscillation, energy must be transmitted ‘from the
road to the wheel’. We realise that, ultimately, the power can only originate from
the vehicle’s propulsion system. The relation between unstable modes and the
self-excitation energy generated through the road to tyre side force and aligning
moment is discussed in detail in Subsection 6.4.1. The transition of driving
energy (or the vehicle forward motion kinetic energy) to self-excitation energy
is analysed in Subsection 6.4.2. Obviously, besides for the supply of self-
excitation energy, the driving energy is needed to compensate for the energy that
is dissipated through partial sliding in the contact patch.

6.4.1.  Unstable Modes and the Energy Circle 

To start out with the problem matter let us consider the simple trailing wheel
system of Fig.6.1 with the yaw angle ψ  representing the only degree of freedom
of the wheel plane. If the mechanical trail is equal to zero it is only the aligning
torque that exerts work when the wheel plane is rotated about the steering axis.
If the yaw angle varies harmonically

(6.63)ψ (s) ' ψo sin(ωs s)

the moment response becomes for small path frequency ωs approximately:

(6.64)Mz' (s) ' &CMα
ψo sin(ωs s%k)

where the phase angle follows for instance from transfer functions (5.110) or
(5.113) or Table 5.1 (below Fig.5.27):

(6.65)k ' k
&M'ψ ' &σM'ψωs ' & (σ%a)ωs

the negative value of which corresponds to the fact that the moment lags behind
the yaw angle. The energy transmitted during one cycle can be found as follows
(θ =ωss):

(6.66)
Apparently, because of the negative phase angle the work done by the aligning
torque is positive which means that energy is fed into the system. As a result, the
undamped wheel system will show unstable oscillations which is in agreement
with our earlier findings. It is of interest to note that in contrast to the above

W' m
λ

s'0
Mz' dψ' CMα

ψ
2

o m
2π

0
cos(θ%k ) sinθ dθ'&πCMα

ψ
2

o sink (>0)
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result that holds for a tyre, a rotary viscous damper (with a positive phase angle
of 90E) shows a negative energy flow which means that energy is being
dissipated.

If we would consider a finite caster length e, more self-excitation will arise
due to the contribution of the side force that also responds to the yaw angle with
phase lag. At the same time, however, a part of Fy will now respond to the slip
angle and, consequently, damps the oscillation. The slip angle arises as a result
of the lateral slip speed which is equal to the yaw rate times the caster length.
Finally, at e=σ + a the moment and the side force are exactly in phase with the
yaw angle (cf. situation depicted in Fig.5.6) and the stability boundary is
reached. At e = !t the moment about the steer axis vanishes if the simplified
straight tangent or single contact point model is used. This also implies that the
boundary of oscillatory instability is attained.

We will now turn to the much more complicated system with lateral
compliance of the suspension included. The two components of the periodic
oscillatory motion of the wheel that occurs on the boundary of (oscillatory)
instability may be described as follows: 

(6.67)y2(t) ' amηsin(θ%ξ )

(6.68)ψ (t) ' amsin(θ )

The quantity η  represents the amplitude ratio, ξ indicates the phase lead of the
lateral motion with respect to the yaw motion and θ equals ωt or ωss. The energy
W that flows from the road to the wheel during one cycle is equal to the work
executed by the side force and the aligning torque that act on the moving wheel
plane. Hence, we have:

(6.69)W '

2π

0

Fy
dy2
dθ

% Mz'
dψ
dθ

dθ

When W > 0 energy flows into the system and if the system is considered to be
undamped (k=κ(=0) the conclusion must be that the motion is unstable.
Ultimately, the energy must originate from the power delivered by the vehicle
propulsion system. How this transfer of energy is realised will be treated in the
next section. 

To calculate the work done, the force and moment are to be expressed in
terms of the wheel motion variables (6.67,6.68). For this, a tyre model is needed
and we will follow the theory developed by Besselink (2000) and take the
straight tangent approximation of the stretched string model, which is governed
by the Eqs.(6.2,6.4,6.6,6.7). For the periodic response of the transient slip angle
αN to the input motion (6.67,6.68) the following expression is obtained:
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(6.70)
α' (θ ) '

am

1%σ 2ω2
s

&(σ%a)ωscos(θ )&ηωscos(θ%ξ )%

% (1&aσω2
s)sin(θ )&ησω2

s sin(θ%ξ )

With the expressions (6.2,6.4) for the force and the moment the integral (6.69)
becomes:

W'

πa 2
m CFαωs

1%σ 2ω2
s

&η2
%(σ%a) t%(t&a&σ)ηcosξ& 1

ωs
&(a%t)σωs ηsinξ

(6.71)
On the boundary of stability W = 0 and for a given path frequency ωs or
wavelength λ = 2π/ωs a relationship between η and ξ results from (6.71). To
establish the functional relationship it is helpful to switch to Cartesian
coordinates:

(6.72)xp ' η cosξ , yp ' η sinξ

The expression for the energy now reads:

(6.73)
Apparently, for a given value of W this represents the description of a circle. For
W = 0 and after the introduction of the wavelength λ as parameter the function
takes the form:

(6.74)x 2
p%y 2

p% (σ%a&t) xp%
λ

2π
&(a%t)σ 2π

λ
yp& (σ%a) t ' 0

When the mode shape of the motion of the wheel plane defined by η  and ξ or by
xp and yp is such that (6.74) is satisfied, the motion finds itself on the boundary
of stability. The centre of Besselink’s energy circle is located at:

(6.75)(xpc , ypc) ' &
1
2

(σ%a&t) , λ

2π
&(a%t)σ 2π

λ

From (6.74) it can be ascertained that independent of λ the circles will always
pass through the two points on the xp axis: xp = !(σ+ a) and xp = t. We have now
sufficient information to construct the circles with λ as parameter. In Fig.6.20
these circles have been depicted together with circles that arise when different
tyre models are used. As expected, the circles for the more exact tyre models
deviate more from those resulting from the straight tangent tyre model when the
wavelength becomes smaller.  That circles arise also for other massless models

W'&

πa 2
m CFαωs

1%σ 2ω2
s

x 2
p%y 2

p% (σ%a&t)xp%
1
ωs
&(a%t)σωs yp& (σ%a) t
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of the tyre can be easily proven when considering the fact that at a given
wavelength we have a certain amplitude and phase relationship of the force Fy

and the moment Mz’ with respect to the two input motion variables ȳ and ψ. That
the circles pass through the point (!σ !a, 0) follows from the earlier finding that
the response of  all ‘thin’ tyre models when the wheel is swivelled around a
vertical axis that is positioned a distance σ + a in front of the wheel axle (cf.
Fig.5.6) are equal and correspond to the steady-state response.

When parameters of the system are changed and the mode shape is changed
so that the end point of the phasor with length η and phase angle ξ moves from
outside the circle to the inside, the system becomes oscillatory unstable. It
becomes clear that depending on the wavelength a whole range of possible mode
shapes of the wheel plane motion is susceptible to forming unstable shimmy
oscillations. 

As an example, the situation that arises with the cases A and B of Figs.6.17-
19 have been depicted in Fig.6.21. In case A mode 1 is on the verge of becoming
unstable. The mode shape corresponds to the motion indicated in Fig.5.6 and
remains unchanged when the speed is varied. The circles, however, change in
size and position when the speed is changed which correspond to a change in
wavelength. Mode 2 appears to remain outside the circles indicating that this
particular mode is stable. In case B mode 1 is stable and mode 2 sits on the
boundary of stability. This is demonstrated in the right-hand diagram where the
end point of the phasor of mode 2 remains located on the (changing) circles when
the speed is changed.

As a second example we apply this theory to the configuration with f =0 with
the gyroscopic coupling included. In Fig.6.8 the cases A and B have been
indicated at a trail e = 0. Because of the gyroscopic action the condition for
stability is speed dependent although damping is assumed equal to zero. This
makes it possible to actually see that the zero energy circle is penetrated or exited
when the speed is increased. 

In Figs.6.22 and 6.23 the phasors (here considered as complex quantities)
have been indicated for a number of values of the non-dimensional speed V. The
non-dimensional wavelength and eigenvalue of the mode considered change with
speed as have been indicated in the respective diagrams. Cases A and B (with
respectively mode 1 and 2 on the boundary of stability) have been marked. When
the speed is increased from 6 to 14 two boundaries of stability (A and B) are
passed in between which according to Fig.6.8 a stable range of speed exists. In
Fig.6.22 we see that in accordance with this the phasor of mode 1 first lies inside
the circle (belonging to V = 6 with frequency ω = 0.66 and corresponding
wavelength λ = 57a) then crosses the circle at V = 9.05 (A) and finally ends up
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at a speed V= 14 outside the circle meaning that this mode is now stable. At the
same time, following mode 2 in Fig.6.23, we observe that first the mode point
lies outside the circle at V = 6 (now for the different frequency ω = 2.99 and
wavelength λ = 12.6a), crosses the circle at V= 11.2 (B) and moves to the inside
of the circle into the unstable domain. From the eigenvalues s the change in
damping and frequency can be observed. The mode shapes are quite different for
the two modes. Mode 1 shows a relatively small lateral displacement ȳ with
respect to the yaw angle multiplied with half the contact length aψ. At first ȳ
slightly lags behind ψ  which turns into a lead at higher speeds. Mode 2 shows
a higher frequency and smaller wavelength while ȳ is relatively large and lags
behind ψ.

Exercise 6.2. Zero energy circle applied to the simple trailing wheel system 

Consider the third-order system of Fig.6.1 described by the Eqs.(6.1-9) but without
damping: k =κ

(= 0. Establish the reduced expression for the work W from the general
formula (6.69). Show that the stability condition H2 > 0 corresponds to W < 0 which
means that the mode shape point lies outside the zero energy circle.

6.4.2. Transformation of Forward Motion Energy into Shimmy Energy 

The only source that is available to sustain the self-excited shimmy oscillations
is the vehicle propulsion unit. The tyre side force has a longitudinal component
that when integrated over one shimmy cycle must be responsible for an average
drag force that is balanced by (a part of) the vehicle driving force.

In the previous section we have seen that the work done by the side force and
the aligning torque is fed into the system to generate the shimmy oscillation. The
link that apparently exists between self-excitation energy and driving energy will
be examined in the present section. For this analysis dynamic effects may be left
out of consideration. The wheel is considered to roll freely (without braking or
driving torques).

During a short span of travelled distance ds of the wheel centre, the wheel
plane moves sideways over a distance dy2 and rotates about the vertical axis over
the increment of the yaw angle dψ. At the same time, the tyre lateral deflection
is changed and, when sliding in the contact patch is considered, some elements
will slide over the ground. Consequently, we expect that the supplied driving
energy dE is equal to the sum of the changes of (self-) excitation energy dW, tyre
potential energy dU and tyre dissipation energy dD.

In Fig.6.24 the tyre is shown in a deflected situation. We have the pulling
force Fd acting in forward (x2) direction from vehicle to the wheel axle and



328 THEORY OF THE WHEEL SHIMMY PHENOMENON

O xx

_

y
_

y
_

C

 ψ
V

F
Mz

y

x

y

s

 α

Fg

 α'

Me

Fe

Fd

Vg φg

_

adhesion zonesliding
zone

pulling force
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furthermore the lateral force Fe and yaw moment Me from rim to tyre. These
forces and moment are in equilibrium with the side force Fy and aligning torque
Mz which act from road to tyre. A linear situation is considered with small angles
and a vanishing length of the sliding zone. For the sake of simplicity, we consider
an approximation of the contact line according to the straight tangent concept.

Energy is lost due to dissipation in the sliding zone at the trailing edge of the
contact zone. To calculate the dissipated energy we need to know the frictional
force and the sliding velocity distance. For the bare string model we have the
concentrated force Fg that acts at the rear edge and that is needed to maintain the
kink in the deformation of the string. This force is equal to the difference of the
slopes of the string deflection just behind and in front of the rear edge times the
string tension force S = ccσ

2. For the straight tangent string deformation with
transient slip angle or deformation gradient αN, the slope difference is equal to kg

= 2(σ+a)αN/s. The force becomes: Fg = 2ccσ (σ+a)αN. The average sliding speed
Vg over the vanishing sliding range is equal to half the difference in slope of the
string in front and just passed the kink times the forward speed V. This
multiplied with the time needed to travel the distance ds gives the sliding distance
sg. We find for the associated dissipation energy:

(6.76)
The same result appears to hold for the brush model. When considering the
theory of Chapter 3, we find for small slip angle αN a length of the sliding zone
at the trailing edge: 2aθ αN and a slope of the contact line in this short sliding
zone with respect to the wheel plane βg = 1/θ. The average sliding speed
becomes: Vg=V(βg +αN) which makes the sliding distance equal to sg =(βg +αN)ds.
The average side force acting in the sliding range appears to be: Fg = CFαθαN

2.
This results in the dissipated energy (considering that βg is of finite magnitude

dD' Fgsg'
1

2
Fgφg ds' 2ccσ (σ%a)α'

σ%a
σ

α' ds' CFαα' 2 ds' Fyα' ds
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and thus much larger than αN ):

(6.77)dD ' Fg sg ' CFαθα'2βg ds ' CFαα'2 ds ' F 2
y /CFαds ' Fyα'ds

which obviously is the same expression as found for the string model, Eq.(6.76).
At steady-state side slipping conditions with constant yaw angle ψ = αN = α

we obviously have a drag force Fd =Fyψ. The dissipation energy after a distance
travelled s equals D = Fy

2/CFα s = FyαNs = Fyψs = Fds which is a result that was to
be expected.

The increment of the work W done by the side force and aligning torque
acting on the sideways moving and yawing wheel plane (considered in the
previous subsection) is:

(6.78)dW ' Fe dy2% Me dψ ' Fy
dy2

d s
% Mz

dψ
d s

ds

The change in tyre deflection (note that the tyre almost completely adheres to
the ground) arises through successively moving the wheel plane sideways over
the distances dy2 and ψds and rotating over the yaw angle dψ and finally rolling
forwards in the direction of the wheel plane over the distance ds. These
contributions correspond with the successive four terms in the expression for the
change in potential energy:

(6.79)dU ' Fy &

dy2

d s
%ψ d s & Mz

dψ
ds

ds& Fyα' ds

The increase in driving energy is:

(6.80)dE ' Fyψ ds

In total we must have the balance of energies:

(6.81)dE ' dW % dU % dD

which after inspection indeed appears to be satisfied considering the expressions
of the three energy components (6.76/6.77,6.78,6.79).  

Integration over one cycle of the periodic oscillation will show that U = 0 so
that for the energy consumption over one cycle remains :

(6.82)E ' W % D
At steady-state side slip with slip angle α =ψ the excitation energy W=0 and the
driving energy becomes:

(6.83)E ' D ' F 2
y /CFα s ' Fyψ s ' Fd s

The result presented through Eq.(6.81) demonstrates that the propulsion energy
is partly used to compensate the energy lost by dissipation in the contact patch
and partly to provide the energy to sustain the unstable shimmy oscillations.
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6.5. Non-Linear Shimmy Oscillations

Non-linear shimmy behaviour may be investigated by using analytical and
computer simulation methods. The present section first gives a brief description
of the  analytical method employed by Pacejka (1966) that is based on the theory
of the harmonic balance of Krylov and Bogoljubov (1947). The procedure that
is given by Magnus (1955) permits a relatively simple treatment of the
oscillatory behaviour of weekly non-linear systems. Further on in the section
results obtained through computer simulation will be discussed.

Due to the degressive nature of the tyre force and moment characteristics the
system which was found to be oscillatory unstable near the undisturbed
rectilinear motion (result of linear analysis) will increase in amplitude until a
periodic motion is approached which is designated as the limit-cycle. The
maximum value of the steer angle reached during this periodic motion is referred
to as the limit-amplitude. For weakly non-linear systems this oscillation can be
approximated by a harmonic motion. At the limit-cycle a balance is reached
between the self-excitation energy and the dissipated energy.

In the analytical procedure an equivalent linear set of equations is established
in which the coefficient of the term that replaces the original non-linear term is
a function of the amplitude and the frequency of the oscillation. For example, the
moment exerted by the tyre side force and the aligning torque about the steering
axis: f*(αN)= Fye !Mz may be replaced by the equivalent total aligning stiffness
multiplied with the transient slip angle: C*

αN. If dry friction is considered in the
steering system, the frictional couple m*( ) = Ksgn( ) may be replaced by theψ0 ψ0

equivalent viscous damping couple k* . The equivalent coefficients C* and k*ψ0

are functions of the amplitudes of αN and  (or of ωψ) respectively. Theψ0

functions are determined by considering a harmonic variation of αN and ψ and
then taking the first harmonic of the Fourier series of the periodic response of the
corresponding original non-linear terms. 

We have with αN = αNo sinτ and ψ = ψo sinθ :

 (6.84)C(

'

1
παo m

2π

0

f ((α') sinτ dτ

and

(6.85)k('
1

πωψo m
2π

0

m((ψ0 ) cosθ dθ '
4K

πωψo

As expected, the function of the equivalent total aligning stiffness C*(αNo ) starts
for vanishing amplitude at the value CFαe+ CMα

 at a slope equal to zero and then
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gradually decays to zero with the amplitude αNo tending to infinity. The equivalent
damping coefficient k*(ωψo) (6.85) appears to vary inversely proportionally with
the steer angle amplitude, which means that it begins at very large damping
levels and decreases sharply with increasing swivel amplitude according to a
hyperbola. If clearance in the wheel bearing about the steer axis would be
considered (in series with the steer damper) the matter becomes more complex
and an equivalent steer stiffness  c( must be introduced. If the total angle of play
is denoted by 2δ  the equivalent coefficients k* and c( are found to be expressed
by the functions:

(6.86)k (

'

4K
πωψo

1& δ

ψo

(ψo >δ )

and

(6.87)c (

'

4K
πψo

δ

ψo

1& δ

ψo

(ψo >δ )

If ψo <δ the oscillation takes place inside the free space of the clearance and the
equivalent damping and stiffness become equal to zero. Obviously, the clearance
alleviates the initial strong damping effect of the dry friction.

If not all non-linearities are considered, we may, e.g., replace k* by k and c(

by zero or cψ.
For the third-order system of Section 6.2 the non-linear version of Eqs.(6.11)

is replaced by equivalent linear differential equations containing the coefficients
C*, c( and k*. The damping due to tread width is kept linear. The characteristic
equation, which is similar to (6.13), becomes:

(6.88)
σ V 2p 3

% {V 2
% σ (k(V% κ()}p 2

%

% {k(V % κ(% σc( % C( (e&a)}p % C(

% c( ' 0
with non-dimensional quantities according to (6.10): C*, c( and k* being treated
like CMα, cδ and k respectively. When the shimmy motion has been fully
developed and the limit-cycle is attained, the solution of the equivalent linear
system represents a harmonic oscillation with path frequency ωs and amplitudes
αNo and ψo. The amplitudes are obtained by using the condition that at this
sustained oscillation the Hurwitz determinant Hn-1=0. Consequently we have for
our third-order system at the limit-cycle: H2 = 0. Hence, the equation that is
essential for finding the magnitude of the limit-cycle reads:

(6.89)  
{V 2

% σ ( k(V% κ()}{k(V % κ(% σc( % C( (e&a)} '

' σ V 2 (C(

% c()
The frequency of the periodic oscillation that occurs when the relation (6.89) is
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satisfied can easily be found when in (6.88) p is replaced by iωs. We obtain:

 (6.90)ω
2
s '

C(

% c(

V 2
% σ (k(V% κ

()
Moreover, we need the ratio of the amplitudes αNo and ψo. From the second
equation of (6.11), which is not changed in the linearisation process, we get with
"N = v1/σ :

(6.91)
αo'

ψo

'

1 % (a&e)2
ω

2
s

1 % σ 2
ω

2
s

Equations (6.89-91) provide sufficient information to compute the amplitude and
the frequency of the limit-cycle.

The stability of the limit-cycle of the weakly non-linear system may be
assessed by taking the derivative of the Hurwitz determinant with respect to the
amplitude. If dH2 /dψo > 0 the limit-cycle is stable and attracts the trajectories, if
negative, the limit-cycle is unstable and the oscillations deviate more and more
from this periodic solution. In the original publication more information can be
found on the analytic assessment of the solutions.

For the four different cases investigated, Fig.6.25 shows the basic motion
properties. Figure 6.26 gives for the three non-linear cases the variation of the
limit-amplitudes with damping parameter. The left-hand diagram shows that,
with just non-linear tyre behaviour, in the range of the damping coefficient below
the critical value as obtained in the linear analysis, the motion is unstable and the
shimmy oscillation develops after a minute disturbance. The degressive shape of
the tyre force and moment characteristics causes an increase in self-excitation
energy that is less than the increase of the dissipation energy from the viscous
damper. When the limit-amplitude is reached, the two energies become equal to
each other. If through some external disturbance the amplitude has become larger
than the limit-amplitude, the dissipation energy exceeds the self-excitation energy
and the oscillation reduces in amplitude until the limit-cycle is reached again but
now from the other side. 

If dry friction is considered instead of the viscous damping we observe that
the centre position is stable. In fact, the system may find its rest position away
from the centre (at a small steer angle) if the dry frictional torque is sufficiently
large. We now need a finite external disturbance (running over an asymmetric
obstacle) to overcome the dry friction. If that has happened, the motion develops
itself further and the stable limit-cycle is reached. If the initial conditions are
chosen correctly we may spend a while near the unstable limit-cyle before either
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the rest position or the large stable limit-cycle is approached. Figure 6.27 shows
for this case the solutions in the three-dimensional state space. The unstable
limit-cycle appears to lie on a tube shaped surface which is here the separatrix
in the solution space. We see that when the initial conditions are taken outside
the tube, the stable limit-cycle is reached. When the starting condition is inside
the tube, one of the indicated possible rest positions will be ultimately attained.
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Fig. 6.28. Limit-cycles and trajectories for the system with non-linear tyre, dry friction and play
in the wheel bearings (Case 2 of Fig.6.26).
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positions, unstable and stable limit-cycle. Tube shaped separatrix separating space
of trajectories leading to a rest position from the space of solution curves leading to
the stable limit-cycle.
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steer angle ψ as function of speed for system with non-linear tyre and viscous
damping (left and right) and dry friction (right) (σ = 3, cf. Fig.6.3).

The introduction of play about the steering axis with δ being half the
clearance space, appears indeed to be able to relax the action of the dry friction.
For small play and enough dry friction (case 2 in Fig.6.26) the small stable limit-
cycle is reached automatically. An additional disturbance may cause the motion
to get over the ‘nose’ and reach the large stable limit-cycle. The plot of Fig.6.28
shows for this case the three limit-cycles and trajectories as projected on the ( ,ψ0

) plane. If the play is larger or the damping less, the large limit-cycle is reachedψ

without an external disturbance.
It is of interest to see how the limit-amplitudes ψo vary with the speed of

travel V. Figure 6.29 depicts two cases: viscous damping and dry friction. The
area inside which the amplitude increases due to instability may be designated
as the area of self-excitation. The diagrams show the courses of the limit-
amplitude for the two configurations with linear damping (K = δ = 0) with
unstable ranges of speed indicated in Fig.6.3. The right-hand diagram also gives
the (smaller) area of self-excitation when dry friction is added. When the
damping is linear, shimmy arises when the critical speed is exceeded. The
amplitude grows as the vehicle speeds up. In the left-hand diagram, a maximum
is reached beyond which the amplitude decreases and finally, at the higher
boundary of stability, the oscillation dies out. With dry friction, the stable limit-
cycle cannot be reached automatically. A sufficiently strong external disturbance
may get the shimmy started. 
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Fig. 6.30. The response of the tenth-order system, representing a light truck with non-linear

tyre and dry friction, to wheel unbalance moment. The area of self-excitation of the
autonomous system has been indicated. At nearly 75km/h violent shimmy develops.
Then a range of speed with so-called synchronous oscillations occur. When the
system is detuned too much, combined oscillations (beats) show up.

Another way of initiating the shimmy in the case of dry friction may be the
application of wheel unbalance. Beyond a certain speed the imposed unbalance
couple may have become large enough to overcome the dry friction. Then, when
the forcing frequency is not too much apart from the shimmy natural frequency,
the amplitude rises quickly and a state of synchronous motion may arise as
depicted in Fig.6.30. In that state the system oscillates with a single frequency
which corresponds to the wheel speed of revolution. When from that point
onwards the vehicle speed is increased or decreased the synchronous oscillation
may persist until the difference between the two frequencies becomes too large
(or in other words: until the difference between free shimmy wavelength and
wheel circumference is too great, that is: the system is detuned too much). Then,
the unbalance torque is no longer able to drag the free shimmy motion along. The
picture of the oscillation is now changed considerably. We have a motion with
a beat character that consists of oscillations with two frequencies: one is the
unbalance forcing frequency and the other will be close to the free shimmy
frequency at the current speed. The shaded areas shown in the diagram indicate
the speed ranges where these combination vibrations show  up. The upper and
lower boundaries of these areas represent the limits in between which the
amplitude of the motion varies. When at decreasing speed the point at the vertical
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Fig. 6.31. Front wheel steer oscillation amplitude as a response to wheel unbalance as

measured on a light truck. The speed is gradually reduced after violent shimmy was
developed at ca. 75km/h. After a short range of speed exhibiting synchronous
oscillations (single frequency), combined vibrations occur with two distinct
frequencies. 

tangent to the area of self-excitation is reached the shimmy oscillation
disappears. At increasing speed, the combination oscillations may pass to a
forced vibration with a single frequency. This occurs when the degree of self-
excitation has become too low. A similar phenomenon of synchronous motions
and combined oscillations has been treated by Stoker (1950, p.166). He uses an
approximate analytical method to investigate the second-order non-linear system
of Van der Pol that is provided with a forcing member.   

The diagram of Fig.6.30 represents the result of a computer simulation study
with a relatively complex model of the 10th order. The model is developed to
investigate the violent shimmy vibration generated by a light military truck
equipped with independent trailing arm front wheel suspensions. For details we
refer to the original publication, Pacejka (1966). The model features degrees of
freedom represented by the following motion variables: lateral displacement and
roll of the chassis, lateral and camber deflection of the suspension, steer angle
of the front wheel (same left/right), rotation of the steering wheel and lateral tyre
deflection. The degree of freedom of the steering wheel has been suppressed in
the depicted case by clamping the steering system in the node that appears to
occur in the free motion with the front wheels and the steering wheel moving in
counter phase. The other lower frequency mode with front wheels and steering
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wheel moving in phase occurs at lower values of speed and partly overlaps the
range of the counter phase mode. It is expected that the in-phase mode is easily
suppressed by loosely holding the steering wheel. This was more or less
confirmed by experiments on a small mechanical wheel suspension/steering
system model. The full scale truck only showed shimmy with counter oscillating
front wheels and steering wheel. 

Finally, Fig.6.31 presents the results of measurements performed on the truck
moving over a landing strip. The front wheels were provided with unbalance
weights. Shimmy appeared to start at a speed of ca. 75 km/h. Synchronous
oscillations were seen to occur as can be concluded by considering the
frequencies that appear to coincide in the small range of speed just below the
speed of initiation of 75 km/h. Further downwards, the frequencies get separated
and  follow independent courses. This strengthens the impression that here the
motion may be able to sustain itself. Afterwards, another test was conducted
with only one wheel provided with an unbalance weight. The weight was
attached to a cable that made it possible to remove the unbalance during the test
run. After having the unbalance detached at the instant that the shimmy was fully
developed, the shimmy remained to manifest itself with about the same intensity.
This constituted the proof that we dealt with a self-sustained oscillation. The
correspondence between the diagrams of Figs.6.30 and 6.31 is striking. Also the
frequency of the autonomous vibration of the model (along the upper boundary
of the area of self-excitation shown in Fig.6.30) was close to that according to
the test results.  The model frequency appears to vary from 6.1Hz at the low end
of the speed (40-45 km/h) to 7Hz at the initiation velocity of 70-75km/h.  



Chapter 7

SINGLE CONTACT POINT TRANSIENT
TYRE MODELS

7.1.  Introduction

For relatively low frequency and large wavelength transient and oscillatory
vehicle motions, tyre inertia and the effect of the finite length of the contact patch
may be neglected or taken care of in an approximative manner. In Chapter 5 a
thorough treatment has been given of the out-of-plane stretched string tyre model
together with a number of approximate models. One of these models did ignore
the contact length. For the aligning torque the effect of tread width and the
gyroscopic couple were introduced. 

The present chapter deals with the further development of this type of model
which in its simplest form has been and still is very popular in vehicle dynamics
studies. Both in-plane and out-of-plane models will be discussed for small slip,
linear and for large slip, non-linear conditions. The concept of the relaxation
length is central in the model structure. The development of the single point
contact models follows an essentially different and much simpler line compared
with the theoretical approach on which the string model is based. Because of its
simplicity it is possible to enhance the model to cover the full non-linear
combined slip range including rolling from standstill or even change direction
from forwards to backwards rolling. Camber and turn slip may be included.

With the linear and non-linear models, to be developed in this chapter,
various vehicle dynamics problems may be approximately analysed such as the
shimmy phenomenon (cf. curve for single point model in Fig.6.2), transient
vehicle motions with oscillatory steer inputs, motion over undulated road
surfaces at side slip and camber, steering vibrations induced by wheel imbalance
and tyre out-of-roundness. In these studies the effect of tyre lag may be
ascertained. In a number of applications to be treated in Chapter 8 we will
address these problems (except wheel shimmy, which was the subject of Chapter
6).
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Fig. 7.1. Single contact point tyre model showing lateral and longitudinal carcass
deflections, u and v (top view).

7.2.  Model Development

The model consists of a contact patch (point) that is suspended with respect to
the wheel rim by a longitudinal (circumferential) and a lateral spring. These
springs represent the compliance of the tyre carcass. The contact point may
move (slip) with respect to the ground in lateral and longitudinal directions.
Through this relative motion the side force, longitudinal force and aligning
torque are generated. To determine these forces and moments, contact patch
lateral slip (possibly including ply-steer) and longitudinal slip are defined. In
addition, contact line curvature, due to camber possibly including conicity and
due to turn slip, is assumed to be detected. These contact patch slip quantities
may then be used as input in the steady-state tyre slip model, e.g. the Magic
Formula, to calculate the transient force and moment variation that act upon the
contact patch. 

7.2.1.  Linear Model

Figure 7.1 depicts the model in top view. At the instant considered, the wheel slip
point S (attached to the wheel rim at a level near the road surface) and the
contact point S= are defined to be located in the plane through the wheel axis and
normal to the road. These points (which may be thought to lie on two parallel
slip circles) move over the road surface with the wheel and contact patch slip
velocities respectively. In the figure, the x and y components of the slip velocities
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have been shown as negative quantities. The difference of the velocities of the
two points cause the carcass springs to deflect. Consequently, the time rates of
change of the longitudinal and lateral deflections u and v read:

(7.1)
du
d t

' & Vsx & V'sx

and

(7.2)
dv
d t

' & Vsy & V'sy

If we assume small values of slip we may write for the side force acting from
road to contact patch with CFα denoting the cornering or side slip stiffness:

(7.3)Fy ' CFαα' ' &CFα

V'sy

|Vx |

It is assumed here that the difference between the wheel centre longitudinal
velocity Vx  and the longitudinal velocity Vcx of the contact centre is negligible.

(7.4)Vcx . Vx

Consequently, we may employ Vx in the present chapter. With the lateral tyre
stiffness at road level CFy we have for the elastic internal force that balances the
side slip force:

(7.5)Fy ' CFyv

and we can write for Eq.(7.2) with (7.3,7.5) after having introduced the
relaxation length for side slip σ

α
:

(7.6)σ
α
'

CFα

CFy

the differential equation for the lateral deflection due to side slip v
α
 (later on we

will also have a lateral deflection due to camber):

(7.7)
dv

α

d t
%

1
σ
α

|Vx|vα ' |Vx|α ' &Vsy

Where α is the wheel slip angle: α .!Vsy/|Vx|. The side force is obtained by
multiplying v

α
 with CFy.

In a similar  way we can deal with the longitudinal force response. With the
longitudinal tyre stiffness CFx at road level and the longitudinal slip stiffness CFκ

we obtain for the relaxation length σ
κ
:

(7.8)σ
κ
'

CFκ

CFx
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and we can derive with Eq.(7.1) the differential equation for the fore and aft
deflection u

(7.9)
du
d t

%

1
σ
κ

|Vx|u ' |Vx|κ ' &Vsx

with κ  the longitudinal wheel slip ratio: κ.!Vsx/|Vx|. The longitudinal force may
be obtained by multiplying u with the stiffness CFx.

Next, we consider wheel camber as input. For a suddenly applied camber
angle γ (about the line of intersection at ground level!), we assume that a contact
line curvature and thus the camber thrust CFγγ is immediately felt at the contact
patch. As a reaction, a contact patch side slip angle αN is developed that builds
up the lateral carcass deflection v=vγ. Again Eq.(7.5) applies. The side force that
acts on the wheel now becomes:

(7.10)Fy ' CFyv
γ
' CFγγ % CFαα'

With wheel side slip kept equal to zero, Vsy=0, and VsNy= !|Vx|αN Eq.(7.2) can be
written in the form:

(7.11)
dv

γ

d t
%

1
σ
α

|Vx|vγ
'

CFγ

CFα

|Vx|γ

This equation shows that according to this simple model the camber force
relaxation length σγ is equal to the relaxation length for side slip σα. This
theoretical result is substantiated by careful step response experiments,
performed by Higuchi (1997) on a flat plank test rig (cf. Sec.7.2.3).

A similar equation results for the total spin n including turn slip and camber:

(7.12)
dv

n

d t
%

1
σ
α

|Vx|vn '
CFn

CFα

|Vx|n

with according to Eq.(4.76):

(7.13)n ' &

1
Vx

{ψ0 & (1 & g
γ
)Ω sinγ}

that shows that the turn slip velocity  can be converted into an equivalentψ0

camber angle. 
The forces and moment are obtained from the deflections u and v by first

assessing the transient slip quantities αN, κN and γN  and from these with the slip
stiffnesses the forces and moment. 

According to the adopted steady-state model, Eq.(4.E71), the moment
response to camber (and turn slip) is the sum of the residual torque, Mzr,
assumedly mainly due to finite tread width, and !t

α
Fy, assumedly caused by

camber induced side slip, cf. discussion later on (below Eq.(7.40)). A first-order
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approximation for the response of Mzr with the short relaxation length equal to
half the contact length a may be employed. This, however, will be saved for
Chapter 9 where short wavelengths responses are considered. Here we suffice
with the assumption that the moment due to tread width responds instantaneously
to camber and turn slip.

 For the linear, small slip condition we find:

 ,   , (7.14)α' . tanα' '
v
α

σ
α

Fyα ' CFαα' Mzα'&CMα
α''&t

α
Fyα

 , (7.15)κ' '
u
σ
κ

Fx ' CFκκ'

 , , (7.16)γ' '
CFα

CFγ

v
γ

σ
α

Fyγ ' CFγγ' Mzrγ' (CMγ
% t

α
CFγ) γ

and similar for n. The pneumatic trail due to side slip is denoted here with t
α
.

The total aligning torque becomes (cf. Eq.(4.E71) and Fig.4.21):

(7.17)Mz ' &t
α
(Fyα % Fyγ) % Mzrγ

In an alternative model, used for motorcycle dynamics studies, the terms with
t
α
CFγ or tαFyγ in (7.16,7.17) are omitted, cf. discussion below Eq.(7.40).

The equations (7.7,7.9,7.11) may be written in terms of the transient slip
quantities. For example, we may express vα in terms of αN by using the first
equation of (7.14). Insertion in (7.7) gives:

(7.18)σ
α

dα'
d t

% |Vx|α' ' |Vx|α ' &Vsy

If we recognise the fact that the relaxation length is a function of the vertical load
and if the average slip angle is unequal to zero, an additional term shows up in
the linearised equation (variation of αN and of Fz(t) are small!) which results from
the differentiation of vα = σααN with respect to time. Then, Eq.(7.7) becomes:

 (7.19)σ
α

dα'
d t

% |Vx| %
dσ

α

dFz

dFz

d t
α' ' |Vx|α ' &Vsy

Obviously, when using Eq.(7.18) a response to a variation of the vertical load
can not be expected. If the load varies, Eq.(7.18) is inadequate and the original
equation (7.7) should be used or the corresponding equation (7.19). 

With (7.5) equation (7.7) may be written directly in terms of Fy. If we may
consider the carcass lateral stiffness CFy virtually independent of the wheel load
Fz we obtain by using Eq.(7.6) :

(7.20)σ
α

dFy

d t
% |Vx|Fy ' |Vx|Fyss

Since we have the same relaxation length for both the responses to side slip and
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Fig. 7.2.  Mechanical model of transient tangential tyre behaviour.

camber, this equation appears to hold for the combined linear response to the
inputs α and γ or n. In the right-hand member Fyss denotes the steady-state
(instantaneous) response to these inputs and possibly a changing vertical load at
a given slip condition. Multiplication with the pneumatic trail produces the
moment  (if γ =n =0). A similar differential equation may be written for the&Mz'
Fx response to κ.

The equations (7.7,7.9) have been written in the form (Vx not in denominator
and Vsx,y used as right-hand member) that makes them applicable for simulations
of stopping and starting from zero speed occurrences. At speed Vx = 0 Eq.(7.9)
turns into an integrator: u = -IVsxdt. With Eq.(7.15) the longitudinal force
becomes: Fx = CFκκN = CFκ u/σ

κ
 which with (7.8) is equal to: CFx u. This is the

correct expression for the tyre that at standstill acts like a longitudinal or
tangential spring. When the wheel starts rolling, the tyre gradually changes into
a damper with rate: CFκ /|Vx|. Figure 7.2 depicts a corresponding mechanical
model with spring and damper in series. It shows that at low speed the damper
becomes very stiff and the spring dominates. At higher forward velocities the
spring becomes relatively stiff and the damper part dominates the behaviour of
the tyre. A similar model may be drawn for the transient lateral behaviour. It
may be noted that the equation (7.20) is not suited for moving near or at Vx = 0.
In Section 8.6 the use of the transient models for the response to lateral and
longitudinal wheel slip speed at and near zero speed will be demonstrated. 

Apparently, Eq.(7.12) with (7.13) fails to describe the response to variations
in wheel yaw angle ψ at vanishing speed. Then, the lateral deflection becomes vn
= !(CFn /CFα)Idψ. With nN= (CFα /CFn)vn /σ

α
 we have nN= !ψ /σ

α
 indicating an

instantaneous response of Fy which, however, should remain zero! We refer to
Chapter 9, Section 9.2.1, Eq.(9.56 etc.), that suggests a further developed model
that can handle this situation correctly. Consequently, it must be concluded that
the present transient model cannot be employed to simulate parking manoeuvres
unless Fy is suppressed artificially in the lower speed range.
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7.2.2. Semi-Non-Linear Model

For the extension of the linear theory to cover the non-linear range of the slip
characteristics, it may be tempting to employ Eq.(7.20) and use the instantaneous
non-linear force response as input in the differential equation. The input steady-
state side force is calculated, e.g. with the Magic Formula, using the current
wheel slip angle α. This method, however, may lead to incorrect results as due
to the phase lag in side force response, the current (varying) wheel load may not
correspond to the calculated magnitude attained by the side force. In limit
conditions the tyre may then be predicted to be still in adhesion while in reality
full sliding occurs. A better approach is the utilisation of the original equation
(7.7) and calculate the side force afterwards by using the resulting transient slip
angle αN as input in the Magic Formula.

In general, we have the three equations (7.7,7.9,7.11) and possibly (7.12) and
the first equations of (7.14-16) producing αN, κN and γN or nN which are used as
input in the non-linear force and moment functions (γ or n directly in the
expressions for Mr), e.g. the equations of the Magic Formula tyre model
(Chapter 4). 

(7.21)Fx ' Fx (κ',α', Fz)

(7.22)Fy ' Fy (α',γ',κ',Fz)

(7.23)M'z ' & t
α

Fy

(7.24)Mzr ' Mzr (γ,α',κ', Fz)

(4.E71)Mz ' MzN % Mzr% s @Fx

where if required, γ may be replaced by n as the spin argument.
This non-linear model is straightforward and is often used in transient or low

frequency vehicle motion simulation applications. Starting from zero speed or
stopping to standstill is possible. However, as has been mentioned before, at Vx

equal or close to zero the equations (7.7,7.9) act as integrators of the slip speed
components Vsx,y, which may give rise to possibly very large deflections. The
limitation of these deflections may be accomplished by making the derivatives
of the deflections u and v equal to zero, if (1) the forward wheel velocity has
become very small (<Vlow) and (2) the deflections take values larger than
physically possible. This can be seen to correspond with the combined equivalent
side slip value exceeding the level αsl where the peak horizontal force occurs.
Approximately, we may adopt the following limiting algorithm with the
equivalent slip angle according to Eq.(4.E78):
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if:  and    |α'r,eq| > αsl |Vx | < Vlow

then:      else: Eq.(7.9) appliesif: (Vsx% |Vx|u/σ
κ
)u<0 : 0u ' 0

  else: Eq.(7.7) appliesif: (Vsy% |Vx|v/σ
α
)v<0 : 0v ' 0

else: Eqs.(7.7,7.9) apply (7.25)
with roughly:

αsl ' 3Dy /CFα

Experience in applying the model has indicated that starting from standstill gives
rise to oscillations which are practically undamped. Damping increases when
speed is built up. To artificially introduce some damping at very low speed,
which with the actual tyre is established through material damping, one might
employ the following expression for the transient slip κN, as suggested by
Besselink, instead of Eq.(7.15):

(7.26)κ ' '
u
σ
κ

&

kVlow

CFκ

Vsx

The damping coefficient kVlow should be gradually suppressed to zero when the
speed of travel Vx approaches a selected low value Vlow. Beyond that value the
model should operate as usual. In Chapter 8, Sec.8.6 an application will be
given. A similar equation may be employed for the lateral transient slip.

Another extreme situation is the condition at wheel lock. At steady state
Eq.(7.9) reduces to:

(7.27)
1
σ
κ

|Vx|u ' &Vx

which indicates that the deflection u according to the semi-linear theory becomes
as large as the relaxation length σ

κ
. Avoiding the deflections from becoming too

large, which is of importance at e.g. repetitive braking, calls for an enhanced
non-linear model. Another shortcoming of the model that is to be tackled
concerns the experimentally observed property of the tyre that its relaxation
length depends on the level of slip. At higher levels of side slip, the tyre shows
a quicker response to additional changes in side slip. This indicates that the
relaxation lengths decrease with increasing slip.

7.2.3.  Fully Non-Linear Model

Figure 5.29, repeated here as Fig.7.3 shows the deflected string model provided
with tread elements at various levels of steady-state side slip. Clearly, this model
predicts that the ‘intersection’ length σ( decreases with increasing α that is: when
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tread elements κ
*

y

x

Fig. 7.3. The string tyre model with tread elements at increasing slip angles showing growing
sliding range and decreasing ‘intersection’ length σ*.

the sliding range grows. In the single point contact model we may introduce a
similar reduction of the corresponding length. The intersection length σ

α

( is
defined here as the ratio of the lateral deflection v

α
 and the transient lateral slip

tanαN :

(7.28)σ
(

α
'

v
α

tanα'
In Eq.(7.7) the relaxation length σ  is replaced by σ( and we get:

(7.29)
dv

α

d t
%

1

σ
(

α

|Vx|vα ' |Vx| tanα ' &Vsy

with apparently:

 (7.30)σ
(

α
'

1
CFy

Fy

tanα'
'

σ
αo

CFα

Fy

tanα'
.

σ
αo

CFα

|F'y|%CFαεF

|tanα'f |%εF

with the initial relaxation length (at αN = 0):

(7.31)σ
αo '

CFα

CFy

to which σ
α

( approaches when αN 60. To avoid singularity, one may use the last
expression of (7.30) with small εF and add to αN the shift ∆α to arrive at αNf  as
indicated in Fig.4.22. Figure 7.4 presents the characteristic of the intersection
length together with the side force characteristic from which it is derived. Also
in the equation for the camber deflection response (7.11) the relaxation length σ

α
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Fig. 7.4.  Characteristics of tyre side force, ‘intersection length’ σ
α

( and relaxation length σ
α
.

is replaced by σ
α

(.
A more direct way to write Eq.(7.29) is yielded by eliminating σ

α

( with the use
of Eq.(7.28):

(7.32)
dv

α

d t
% |Vx| tanα' ' |Vx| tanα ' &Vsy

The transient slip angle αN is obtained from the deflection v
α
 by using the inverse

possibly adapted FNy(αN) characteristic, cf. Higuchi (1997):

(7.33)v
α
'

F'y (α')

CFy

To avoid double valued solutions a for this purpose adapted characteristic for
FNy(αN) in (7.30) or (7.33) may be required showing a positive slope in the slip
range of interest. The value for αN or for σ

α

( when Eq.(7.29) is used, is obtained
through iterations or by using information from the previous time step, cf.
Higuchi(1997), Pacejka and Takahashi (1992), Takahashi and Hoshino (1996).
The ultimate value of the force Fy is finally obtained from Eq.(7.22) by using the
computed tanαN (= v

α
/σ

α

().
Writing the equation (7.32) entirely in terms of the transient slip angle by

using (7.5) with v = v
α
 and remembering that Fy = Fy(αN,Fz) directly yields:

(7.34)
1

CFy

MFy

M tanα'
d tanα'

d t
% |Vx| tanα' ' &Vsy &

1
CFy

MFy

MFz

dFz

d t

The additional input dFz /dt requires information of the slope MFy /MFz at given
values of the slip angle. If the vertical load remains constant the last term
vanishes and we have the often used equation of the restricted fully non-linear
model:
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(7.35)σ
α

dtanα'
d t

% |Vx|tanα' ' &Vsy

with

(7.36)σ
α
'

1
CFy

MFy

M tanα'

If we consider an average slip angle αo and a small variation  of tanα and theα
~

corresponding lateral slip velocities, Eq.(7.35) becomes after having subtracted
the average part:

(7.37)σ
α

dα'~

d t
% |Vx|α'~

' &V
~

sy

which indicates that the structure of (7.35) is retained and that σ
α
 (7.36)

represents the actual relaxation length of the linearised system at a given load
and slip angle. Its characteristic has been depicted in Fig.7.4 as well. Obviously,
the relaxation length is associated with the slope of the side force characteristic.
It also shows that the relaxation length becomes negative beyond the peak of the
side force characteristic which makes the solution of (7.35) but also of the
original equation (7.29) or (7.32) unstable if the point of operation lies in that
range of side slip. We may, however, limit σ

α
 downwards to avoid both

instability and excessive computation time: σ
α

= max(σ
α
, σmin). The transient

response of the variation of the force proceeds in proportion with the variation
of  as .α'~ F

~
y'(MFy /M tanα)α'~

When the Eq.(7.35) is used, an algebraic loop does not occur as is the case
when Eq.(7.29) is employed. The relaxation length σ

α
 can be directly determined

from the already available tanαN. However, since the last term of (7.34) has been
omitted, equation (7.35) has become insensitive to Fz variations.

Similar functions and differential equations can be derived for the transient
response to longitudinal slip. We obtain for the distance factors:

 (7.38)σ
(

κ
'

1
CFx

Fx

κ'
'

σ
κo

CFκ

Fx

κ'
.

σ
κo

CFκ

|Fx|%CFκεF

|κ' |%εF

and

 (7.39)σ
κ
'

1
CFx

MFx

Mκ'

It is of interest to note that the extreme case of wheel lock can now be handled
correctly. As we have seen below Eq.(7.27), the deflection then becomes equal
to minus the relaxation length which according to the fully non-linear model
becomes: u = !σ

κ

(. With (7.38) and κN = !1 the deflection takes the value that
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would actually occur at wheel lock: u = Fx /CFx.
The use of Eqs.(7.29,7.32) is attractive for simulation purposes because the

solution contains the transient effect of changing vertical load. However, we may
have computational difficulties to be reckoned with which may require some
preparations. Using Eq.(7.35) proceeds in a straightforward manner if the
derivative of the force vs slip characteristic is known beforehand. This requires
some preparation and may become quite complex if the general combined slip
situation is to be considered. Approximations using equivalent total slip
according to Eq.(4.E78) may be realisable. A drawback, of course, is the fact
that Eq.(7.35) does not respond to changes in Fz. In Chapter 9 this equation is
used to handle the transient response of the tread deflections in the contact patch.

Figures 7.5-12 present results obtained by Higuchi (1997) for a passenger car
205/60R15 tyre tested on a flat plank machine (TU-Delft, cf. Fig.12.5). Figure
7.5 shows the response of the side force to step changes in slip angle at the
nominal load of 4000N. The diagram clearly indicates the difference in
behaviour at the different levels of side slip with a very rapid response occurring
at α= 10E. The fully non-linear model according to Eqs.(7.32) or (7.29) or as in
this case, with constant vertical load, Eq.(7.35), in conjunction with
Eqs.(7.22,7.23) gives satisfactory agreement. The measured response curves
have been corrected for the side force variation that arises already at zero slip
angle. The test is performed by loading the tyre after the slip angle (steer angle)
has been applied. Subsequently, the plank is moved. The aligning torque behaves
in a similar manner although a little initial delay in response occurs as correctly
predicted by the string model and shown in Fig.5.12. At larger slip angles
(beyond the level where the Mz peak occurs) the aligning torque first shows a
peak in the response after which the moment decays to its steady-state value.
This behaviour is nicely followed by the model. Figure 7.6 shows the side force
response to small increments in slip angle. The experiment is conducted by, after
having stopped the plank motion, steering the wheel half a degree further and
continue the forward motion. It was first ascertained that the response of the side
force to a step steer input was hardly influenced by having first lifted the tyre
from the road surface or not. Of course, the aligning moment response, in the
latter case, is quite different because of initial torsion about the vertical axis. The
resulting side force responses as depicted in Fig.7.6 have been compared with the
exponential response of the side force increment as predicted by the solution of
Eq.(7.37) with (7.36). Fitting with a least square procedure gave the relaxation
length σ

α
 as presented in Fig.7.7. The resulting variation of σ

α
 with slip angle

level is compared with the slope of the steady-state side force characteristic, both
normalised making their values equal to unity at vanishing slip angle. 
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The excellent agreement supports the theoretical findings. Additional
experiments have been conducted by Higuchi investigating the response to small
increments in vertical load at constant slip angle. As shown by Eq.(7.34) the
partial derivative MFy/MFz plays the role as input parameter. Figure 7.9 shows its
variation with slip angle level. Figure 7.10 compares the resulting relaxation
length values with those associated with changes in slip angle at constant load.
Apparently, the relaxation length for slip angle change is larger than the one
belonging to load change. However, due to the finite magnitude of the increments
(0.5E and 400N respectively) the actual differences are expected to be smaller.
In the diagram, the curve for ∆α may be better shifted to the left over 0.25E while
the curve for ∆Fz may be reduced a little in height using information from Fig.7.8
accounting for a decrease of the average load level of 200N. 

Higuchi also investigated the responses to changes in camber angle, and to
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a limited extent also to the related turn slip. The change in camber was correctly
established by rotating the road surface (the plank) about the line of intersection
of wheel centre plane and plank surface (Fig.12.5, steer angle is kept equal to
zero). The step response to turn slip nt = !1/R is obtained by integrating the
response to a pulse change in turn slip, that is: load tyre, twist (ψ) and then roll
in the new wheel plane direction, and multiply the result with 1/(Rψ). The
responses to camber and turn slip show quantitatively similar responses, cf.
Pacejka (2004). The small initial delay of the response of the car tyre side force
to camber and turn slip (cf. Figs.5.12,5.10) will effectively increase the
relaxation length a little. Figures 7.11a and 7.11b show the responses of side
force and moment to step changes in camber angle. The side force behaves in a
manner similar to the response to side slip, Fig.7.5. Since we have a camber
stiffness much smaller than the cornering stiffness, the camber force
characteristic remains almost linear over a larger range of the camber angle
(meaning: there is less sliding in the contact patch). Therefore, the difference in
step responses remains relatively small. This is reflected by the diagram of
Fig.7.12 showing the variation of the resulting relaxation length. Comparison
with Fig.7.8 reveals that the relaxation lengths assessed for the responses to side
slip (at small side slip) and camber have comparable magnitudes. This supports
the theory of Eq.(7.11). 

Comparison of the Figs.5.12 (lower left diagram) and 7.11a may reveal the
quantitative difference in steady-state side force response to turn slip and camber
angle. According to Eq.(3.55) the relationship between turn slip stiffness and
camber stiffness will be: CFγ= (1!gγ)CFn/re. With the tyre effective rolling radius
equal to approximately 0.3m and the estimated steady-state levels reached in
Figs.5.12 and 7.11a for R = 115m and γ = 2E respectively, we find for the
reduction factor approximately: gγ  = 0.5.

The response of the aligning torque to camber is similar to the response to
turn slip (cf. Fig.5.12). The moment quickly reaches a maximum after which a
slower decay to the steady-state level occurs. The string model with tread width
effect predicts the same for the response to turn slip as can be concluded by
adding the curves for  and Mz

* (response to n, Fig.5.10) in an appropriateMz'
proportion. The model developed in the present chapter generates a similar
response but through a different mechanism. Equation (4.E71) that for Fx = 0
takes the form:

(7.40)Mz ' MzN % Mzr ' &t
α

Fy% Mzr

is used after having computed the transient slip and camber angles αN and γN.
As can be seen in Fig.4.13 or 4.21, the aligning torque caused by camber at

zero slip angle is attributed to the residual torque Mzr and to the counteracting 



354 SINGLE CONTACT POINT TRANSIENT TYRE MODELS 

-2o

o

Fy

λσσ=

[m]s0 2.5
-800

0.5 1 1.5 2

-600

-400

     0

[N]

-200

-15

o
-10

o
-5

 200

F = 4000Nz

1: F , 2: λz

Fig. 7.11a. Side force response to step change in camber angle.

0.5 1 1.5 2.52[m]s0

-2
o

oλσσσ=-15

o
-10

o
-5

0

-50

-30

-10

[Nm]

Mz

-20

-40

F = 4000N
1: F , 2: λz

z

Fig. 7.11b. Moment response to step change in camber angle.

+
+

+

-15 -10
0

0.2

0.4

0.6

-5 0

0.8

1.0

λσ

[  ]o

[m]

+
κλ

Fz 4000N
6000N

2000N

+

Fig. 7.12. Relaxation length for step responses to different camber angles (abscissa) at various
wheel loads (camber after loading).



355SINGLE CONTACT POINT TRANSIENT TYRE MODELS 

moment equal to the aligning stiffness CMα
 times ∆αγ which is the same as !tαFy

at α = 0. The residual torque responds quickly with a relatively short relaxation
length (about equal to half the contact length) or as has been suggested above for
the present model: instantaneously. As the side force responds slowly with
relaxation length σα, and !tαFy is opposite in sign with respect to the residual
torque, a similar response as depicted in Fig.7.11b will be developed by the
model represented by Eq.(7.40). The mechanism behind this response is
supported by the physical reasoning that the moment due to tread width, that
responds relatively fast to changes in camber and turn slip, gives rise to a yaw
torsion of the carcass/belt in the contact zone which acts as a slip angle. This
side slip generates a side force that acts in the same direction as the camber force
generated by the camber induced spin. In addition, an aligning moment is
generated that acts in a sense opposite to that of the tread-width camber (spin)
moment. Ideally, in Fig.4.21, the moment due to camber spin is equal to the
residual torque Mzr while !CMα∆αγ= tαFy is equal to the moment due to the yaw
torsion induced side slip. However, in reality, only a part of the camber force Fy

results from camber spin induced side slip. It is expected that the above analysis
is partly true. Perhaps even for an appreciable part. The remaining part that is
responsible for the ‘hump’ in the moment response must then be due to the
transient asymmetric lateral tyre deformation that vanishes when the steady-state
condition is reached. Figure 5.9 depicts the nature of this transient deflection.

In an alternative model, used for motorcycle dynamics studies dealing with
possibly large camber angles, the other extreme is used and the term tαFy is
replaced by tαFyα, that is: with the side force attributed to the (transient) side slip
angle alone (cf. Chapter 11).  

7.2.4. Non-Lagging Part

The force response to a change in camber exhibits a peculiar feature. From low
velocity experiments conducted on the flat plank machine (cf. Fig.12.5), it turns
out that directly after that the wheel is cambered (about the line of intersection),
a side force is developed instantaneously. This, obviously, is caused by the non-
symmetric distortion of the cross section of the lower part of the tyre. This initial
‘non-lagging’ side force that occurs at a distance rolled s = 0, as shown in Fig.
7.11a, appears, for the tyre considered, to act in a direction opposite to the
steady-state side force. Equal directions turn out to occur also: e.g. for a
motorcycle tyre, cf. Segel and Wilson (1976). Also in these reported
experiments, the camber angle is applied after the tyre has been loaded. Figure
7.13 gives the percentage of the non-lagging part with respect to the steady-state
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side force for three wheel loads and for three different ways of reaching the
loaded and cambered condition before rolling has started. In case (Z) the free
wheel is first cambered and then loaded by moving it towards the horizontal road
surface in vertical direction. This sequence appears to result in a somewhat
larger non-lagging part. In the second case (R) the road surface is cambered first
after which the tyre is loaded vertically. It turns out that now a response arises
with the same sign as the steady-state response. The diagram indicates that also
in case (C) the sign may remain unchanged if the wheel load is sufficiently high.

To simulate the development of the non-lagging side force, the following
model is suggested. The tyre response that arises due to loading and/or tilting of
the wheel while Vx = 0, is considered to be the result of the integrated lateral
horizontal velocity of the lower part of the wheel. Beside the lateral velocity Vsy

of the contact centre C, the lateral velocity Vsy1 of a newly introduced slip point
Sy1 that is thought to be attached to the wheel at a radius rsy, is used as an
additional component of the effective lateral slip speed Vsy,eff. The upper right
diagram of Fig.7.13 depicts the situation. We define:
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          (take Vsy,eff = 0 if Fz = 0) (7.41)Vsy,eff ' εc Vsy% (1&εc)Vsy1

with gc the participation factor. The effective lateral slip speed replaces Vsy in
Eq.(7.7). In case of a horizontal flat road surface the velocities of the two points
C and Sy1 become:

 (7.42a)Vsy ' Vay% Vaz sinγ & rl
dγ

d t
1

cosγ
 (7.42b)Vsy1 ' Vay& rsy

dγ

d t
cosγ

The location of Sy1 is defined through the proposed function for the slip radius:

(7.43)rsy ' rl&A1

ρz

cosγ
1&A2

Fz

Fzo

&A3γ
2

The participation factor gc is defined by the proposed function:

 (7.44)εc '
1&A4 |γ|

1%A5 Fz /Fzo%A6 (Fz /Fzo)
2

It may be seen from Eqs.(7.42a,b) that at constant camber angle and a purely
vertical axle motion (case Z),  Vsy1 = Vay = 0, and Vsy = Vaz tan γ is the governing
component of the effective slip speed (7.41). If the loading is conducted by a
radial approach of the road surface (case R) we have Vsy = 0, and the governing
part is Vsy1 = Vay = !Vaz tan γ. The third case C is achieved by first vertical
loading of the upright tyre, Vsy =Vsy1=0, and subsequently tilting the wheel about
the line of intersection that is: about point C. In the latter phase the lateral slip
velocity components become Vsy = 0 and Vsy1 = (rl - rsy)(dγ/dt)cos γ.

For the tyre parameter values: CFz =200kN/m, CFy=130 kN/m, Fzo = 4 kN, ro

= 0.3 m, rc = 0.15 m, and for Eqs.(4.E19-4.E30) with ζ’s and λ’s = 1: pCy1 = 1.3,
pDy1 = 1, pEy1 = !1, pKy1 = 15, pKy2 = 1.5, pKy3 = 6, pKy4 = 2, pKy6 = 1, pVy3 = 1 and
remaining p’s = 0, the following values for A1 ... A6 were assessed through a
manual fitting process: A1 = 2.5, A2 = 0.8, A3 = 3, A4 = 2, A5 = !2.5, A6 = 10.
With these values, the responses computed for the non-lagging part of the side
force show reasonable correspondence with the experimental results of Fig.7.13.

The vertical load has been calculated using a tyre model with a circular
contour of the cross section with radius rc. For the more general case of an
elliptic contour, cf. Fig.7.14, the following equations apply. We have for the
coordinates of the lowest point:

(7.45)ζ ' b 1% a
b

2

tan2γ , η ' a a
b

tanγ 1% a
b

2

tan2γ

The vertical compression ρz, which is the distance of the lowest point of the
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ellipse to the road surface if this distance is non-negative, now reads with ro the
free tyre radius and rl the loaded tyre radius:

(7.46)ρz ' max (ro&rl&b%ζ ) cosγ % η sinγ , 0

In the simpler case of a circular contour (rc = a = b) the formula reduces to:
 (7.47)ρz ' max (ro&rl) cosγ%rc (1&cosγ) , 0

The normal load is now calculated as
(7.48)Fz ' CFz ρz

For a wheel subjected to oscillations, the observed tyre properties will be of
importance especially when loss of road contact occurs. In Exercise 7.1 given at
the end of this chapter and in Section 8.2, this problem is addressed. The more
complex case of moving over short obstacles, exhibiting forward and transverse
road slope variations, is treated in Section 10.1.6, Eqs.(10.35,10.36).

7.2.5. The Gyroscopic Couple

In Chapter 5 the gyroscopic couple that arises as a result of the time rate of
change of the average tyre tilt deflection angle has been introduced. This angle
is considered to be proportional with the lateral tyre deflection v or the side force
Fy. Equation (5.178) may be written in terms of the deflection. With (5.179) and
with the Fz /Fzo factor added to give smoother results for a jumping tyre, we get:

(7.49)Mz,gyr' cgyrmt reΩ
dv
d t

Fz

Fzo

where at free rolling the wheel speed of revolution equals the forward velocity
divided by the effective rolling radius of the tyre. In general, we have:

(7.50)Ω ' Vx&Vsx re
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For a radial ply steel-belted car tyre the non-dimensional coefficient cgyr has been
estimated to take the value 0.5. The quantity mt represents the mass of the tyre.
Extending the expression (7.40) yields for the total aligning moment:

(7.51)Mz ' MzN % Mzr % Mz,gyr

7.3.  Enhanced Non-Linear Transient Tyre Model

A totally different approach to model the transient rolling properties of the tyre
is based on the separation of contact patch slip properties and carcass
compliance not through the use of relaxation lengths but by incorporating the
carcass springs in the model explicitly. The contact patch is given some inertia
to facilitate the computational process (computational causality). This has the
drawback that a relatively high natural frequency is introduced, possibly making
the computation slower. We may, however, employ alternative methods to avoid
the inclusion of the small mass. The model to be discussed, automatically
accounts for the property that the lag in the response to wheel slip and load
changes diminishes at higher levels of slip that in the previous section was
realised by decreasing the relaxation length. This latter approach, however,
appeared to possibly suffer from computational difficulties (at load variations).
Also, combined slip was less easy to model. In developing the enhanced model,
we should, however, try to maintain the nice feature of the relaxation length
model to adequately handle the simulation at speeds near or equal to zero.

Figure 7.15 depicts the structure of the enhanced transient model. The contact
patch can deflect in circumferential and lateral direction with respect to the lower
part of the wheel rim. Only translations are allowed to ensure that the slip angle
seen by the contact patch at steady state is equal to that of the wheel plane. To
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enable straightforward computations, a mass point is thought to be attached to
the contact patch. That mass point coincides with point S* the velocity of which
constitutes the slip speed of the contact point. This slip velocity is used, together
with the (assumedly at the contact patch detected) path curvature due to turn slip
and wheel camber, to compute the forces Fx, Fy and the moment Mz which act
from road to contact patch. We may add a simple relaxation length model to
enable computations near zero speed. The model was first employed by Van der
Jagt et al. (1989) and later generalised by Pacejka and Besselink (1997). In
Chapter 8 the model will be applied to investigate the effect of road undulations
on the efficiency of anti-lock brake control.

With mass mc and carcass stiffnesses ccx,y and damping ratios kcx,y introduced,
the equations of motion for the contact patch mass point with longitudinal and
lateral speed components Vs

*
x,y read (yaw rate terms in accelerations disregarded):

(7.52)mcV
(

sx
0

% kcx 0u % ccx u ' Fx(κ',α',Fz)

(7.53)mcV
(

sy
0

% kcy 0v % ccy v ' Fy(α',κ',γ, Fz) & Fy,NL

The forces acting from ground to contact patch shown at the right-hand sides are
computed from the steady-state formulae. The non-lagging camber force part
Fy,NL is assumed to act directly on the wheel rim. We may approximate the non-
lagging force part by a linear relation with γ using the camber thrust stiffness
CFγ, the non-lagging fraction gNL (cf. Sec.7.2.4) and the weighting function Gyκ

(4.E59) to take care of the presence of a fore and aft force Fx:
(7.54)Fy,NL ' GyκgNL CFγ

γ

It is noted that gNL changes with Fz and γ, cf. Fig.7.13. For this reason we may
better employ the method treated in Sec.7.2.4 with Vsy,eff replacing Vsy in (7.62).

To enable calculations near or at standstill we may add additional first-order
differential equations with relaxation length σc. From these equations the
transient slip quantities result which act as input in the steady-state slip force
formulae. We have:

(7.55)σc
dα'
d t

% |Vx|α' ' &V (

sy

(7.56)σc
dκ'
d t

% |Vx|κ' ' &V (

sx

If needed, we may in the right-hand member of (7.53) replace argument γ  with
the transient spin slip nN that results from an equation similar to (7.55): 

(7.57)σc
dn'
d t

% |Vx|n' ' |Vx|n

where in the right-hand member n is to be replaced by the expression (7.13).
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The contact relaxation length σc may be given a small but finite value, for
instance equal to half the contact length, ao, at nominal load that corresponds to
our findings in Chapter 9. The equations (7.55-57) do not respond to load
changes. For this, we rely on the effect of the carcass compliance (in conjunction
with the load dependent cornering stiffness) which gives adequate results.
Effectively, the resulting lateral compliance of the standing tyre is:

 (7.58)
1

CFy

'

1
ccy

%

σc

CFα

and the effective resulting tyre relaxation length (for side slip response):

(7.59)σ
α
'

CFα

CFy

'

CFα

ccy

% σc

This equation may, in fact, be employed to assess the lateral carcass stiffness at
ground level ccy. From the measured tyre relaxation length σ

α
 and cornering

stiffness CFα the lateral stiffness of the standing tyre CFy follows. By taking σc

equal to half the contact length a the carcass lateral stiffness ccy can be
determined. The relaxation length for load variations remains equal to:

(7.60)σ
α,Fz '

CFα

ccy

which is a little smaller than σ
α
. Although this results from practical modelling

considerations, we may in fact come close to the measurement results of
Fig.7.10. 

If one is not interested to include the ability to simulate near or at zero
forward speed, the contact relaxation length σc may be disregarded and taken
equal to zero.  In Chapter 9 the contact relaxation length σc forms an essential
element in the model developed for short wavelength behaviour.

The deflection rates needed in Eqs.(7.52,7.53) are equal to the difference in
slip velocities:

(7.61)0u ' V (

sx& Vsx

(7.62)0v ' V (

sy& Vsy

As has been mentioned before, the wheel slip velocity Vs with components Vsx,y

is defined as the horizontal velocity of the slip point S that is thought to be
attached to the wheel rim a distance re, the effective rolling radius, below the
wheel centre in the wheel centre plane.

(7.63)Vsx ' Vx& reΩ

(7.64)Vsy ' Vy& rγ0
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where Vx,y denote the horizontal (parallel to road plane) components of the wheel
centre velocity. In Eq.(7.64) the camber angle is assumed to be small and re is
replaced by the loaded radius r.

The forces acting on the wheel rim, finally, become:
(7.65)Fxa ' kcx 0u % ccx u

(7.66)Fya ' kcy 0v % ccy v % Fy,NL

The aligning torque becomes:
(7.67)M'z ' & t

α
Fy

(7.68)Mzr ' Mzr (γ,α',κ', Fz)

(7.69)Mz ' MzN % Mzr% s @Fx% Mz,gyr

The last equation forms an extension of Eq.(4.E71) through the introduction of
the gyroscopic couple that follows from Eq.(7.49). 

To illustrate the performance of the model, the calculated side force response
to successive step changes in camber angle, slip angle and brake slip has been
presented in Fig.7.16. The contact patch relaxation length σc has not been used
in this example. In Chapter 8 the model is applied in the problems of controlled
braking on an uneven road and on starting from standstill where in the latter case
σc is employed. The less demanding case of the response of side force and
aligning torque to successive steps in pure side slip, shown in Fig.7.17, was
calculated with the transient model of Sec.7.2.3, Eq.(7.29). Very similar results
are found when the enhanced model is used, that is: with the inclusion of carcass
compliance and the contact mass mc.



363SINGLE CONTACT POINT TRANSIENT TYRE MODELS 

Sy1

C

Vsy1

Vsy

λ. A

Vay

Vaz

λ

h

e
Fy

Fz

rc

rsyrlro

f

Fig.7.18. Rear view of wheel assembly
subjected to combined camber, vertical and
lateral oscillations  (Exercise 7.1).

Exercise 7.1. Wheel subjected to camber, lateral and vertical axle oscillations

Consider the wheel assembly system depicted in Fig.7.18 the axle of which is
constrained to move around a longitudinal hinge that is assumed to be positioned at
a constant vertical height h above the smooth horizontal road surface. The hinge point
moves forward in longitudinal direction with velocity Vx . This forward speed is
assumed to increase linearly from zero at
t = t0 until t = t1, after which the speed
remains Vx = Vmax . The wheel axle is
subjected to forced camber variation:
 (7.70)γ ' γo% γ̂ sinωt

Compute the response of the side force
Fy by using the following equations:

(7.71)
dv

α

d t
%

1
σ

Vx v
α
' &Vsy,eff

(7.72)
dv

γ

d t
%

1
σ

Vx v
γ
'

CFγ

CFα'
Vx sinγ

where, protected against singularity:

 (7.73)σ ' max
CFα

CFy

, 0.02

and

     (7.74)CFα' ' max(CFα , 0.01)

Furthermore, the transient slip quantities, cf. (7.14,7.16), that replace α* and γ* in
Eqs.(4.E19-4.E30):

               ,        (7.75)α
(

' tanα' '
v
α

σ
γ
(

' sinγ' '
CFα

CFγ
'

v
γ

σ
with

 (7.76)CFγ' ' max(CFγ , 0.01)

Furthermore, use Eqs.(7.41-44,47,48) and for the side force Eqs.(4.E19-4.E30).
For the assembly and motion parameters we have:

e = 0.15 m, f = 0.25 m, h = 0.094 m
t0 = 0.1s, t1 = 0.2s, tend = 0.4s, Vmax = 2, 5, 10 and 20 m/s, 

= 0.4 rad, = 0.12 rad, ω = 20π rad/sγo γ
^

for the tyre parameters:
ro = 0.3 m, rc = 0.05 m, Fzo = 1000 N, CFz = 60 kN/m, CFy = 60 and 120 kN/m,

and for Eqs.(4.E19-4.E30) with ζ ’s and λ’s = 1 and remaining p’s = 0:
pCy1 = 1.3, pDy1 = 1, pKy1 = 10, pKy2 = 1.5, pKy4 = 2, pKy6 = 1, gy = 0.01 

and for Eqs.(7.43,44):
A1 = 2.5, A2 = 0.8, A3 = 3, A4 = 2, A5 = -2.5, A6 = 10. 

Plot for the eight cases the computed Fy, Fz, ρz, γ, Vx and for comparison Fy,st.st. that
arises if in Eqs.(4.E19-E30) α*=-Vsy/Vx and γ*=sinγ are used directly as input variables.



Chapter 8  

APPLICATIONS OF TRANSIENT 
TYRE MODELS 

This chapter is devoted to the application of the single contact point transient
tyre models as developed in the preceding chapter. The applications demonstrate
the effect of the tyre relaxation length on vehicle dynamic behaviour.

8.1.  Vehicle Response to Steer Angle Variations

In Chapter 1, Section 1.3.2 the dynamic response of the two-degree of freedom
vehicle model depicted in Figs.1.9,1.11 to steer angle input has been analysed.
As an extension to this model we will introduce tyres with lagged side force
response. The system remains linear and we may use Eq.(7.18). The relaxation
length will be denoted by σ. We have the new set of equations:

(8.1)m( 0v % Vr ) ' CFα1α'1 % CFα2α'2

(8.2)I 0r ' aCFα1α'1 & bCFα2α'2

(8.3)σ

V
α'10 % α'1 ' α1

(8.4)σ

V
α'20 % α'2 ' α2

 (8.5)α1 ' δ &
1
V

(v % ar)

(8.6)α2 ' &

1
V

(v & br)

Figure 8.1 presents the computed frequency response functions, which hold for
the extended system, for different values of the relaxation length. In Fig.8.2 the
corresponding step response functions have been depicted. The diagrams show
that the influence of the tyre lag on the vehicle motion is relatively small. At
higher values of speed the effect diminishes and may become negligible.
However, for closed loop vehicle control systems the additional phase lag caused
by the relaxation lengths may significantly affect the performance.
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Fig. 8.1. Frequency response of yaw rate, lateral acceleration and side slip angle to steer angle
of vehicle model featuring tyres with lagging side force response, cf. Fig.1.15. 
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An interesting effect can be seen to occur near the start of the step response
functions. With the relaxation length introduced, the responses appear to exhibit
a more relaxed nature. The yaw rate response shows some initial lag.

8.2.  Cornering on Undulated Roads

When a car runs along a circular path over an uneven road surface the wheels
move up and down and may even jump from the road while still the centripetal
forces are to be generated. Under these conditions, the wheels run at slip angles
which may become considerably larger than on a smooth road. Consequently, on
average, the cornering stiffness diminishes. This phenomenon was examined in
Chapter 5, Section 5.6, where the stretched string model was found to be suitable
to explain the decrease in cornering stiffness if the string relaxation length is
made dependent on the varying wheel load to imitate the model provided with
tread elements, cf. Fig.5.51.

These tyre models, however, are considered to be too complicated to be used
in vehicle simulation studies. Instead, we will try the very simple transient tyre
model as discussed in Sec.7.2.1 and compare the results with experimental
findings. First, the small slip angle linear model will be considered. We use
Eq.(7.20) which may be given the form:

(8.7)σ

dFy

d s
% Fy ' Fyss ' CFαα

where s denotes the travelled distance and ds = Vxdt. The slip angle is assumed
to be constant while the vertical load varies periodically. 

(8.8)Fz ' Fzo % ∆Fz ' Fzo % Fz
ˆ sin2π s

λ

Essential is that both the cornering stiffness and the relaxation length vary with
the vertical load:

     and      (8.9)CFα ' CFα(Fz) σ ' σ (Fz)

Figure 8.3 illustrates the situation.
The loss in cornering power can be divided into the ‘static’ loss and the

‘dynamic’ loss. The static loss arises due to the curvature of the cornering
stiffness vs wheel load characteristic. A similar loss has been experienced to
occur as a result of lateral load transfer in the analysis of steady-state cornering
of an automobile, cf. Fig.1.7. Figure 8.4 explains the situation at sinusoidally
changing wheel load.
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As will be shown in the analysis below, the dynamic loss appears to be
attributed to the rate of change of the relaxation length with wheel load. This, of
course, can only occur because of the fact that the cornering stiffness varies with
wheel load since that rate of change forms the input in Eq.(8.7). Apparently, with
both Fy and σ  being dependent on Fz while α in the present analysis only affects
Fy, the phenomenon is non-linear in Fz and linear in α.

If we assume a quadratic function for the CFα vs Fz relationship with the
curvature bCFαo

(8.10)CFa ' CFao(1 % a∆Fz &
1

2
b∆F 2

z )

the static loss can be simply found to become:

 (8.11)CFα,stat.loss '
1

4
bFz

ˆ 2 CFαo
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The occurrence of the dynamic loss may be explained by assuming a linear
variation of both the cornering stiffness and the relaxation length with load:

(8.12)
σ ' cFz

CFα ' eFz

Equation (8.7) becomes herewith:

(8.13)cFz

dFy

d s
% Fy ' eFzα

or simplified:

(8.14)z dy
d s

% y ' β z

with z=cFz , y=Fy , β =eα/c. Consider a truncated Fourier series approximation
of the periodic solution:

(8.15)y ' yo% ys1 sinωss% yc1 cosωss% ys2 sin2ωss% . . .

and its derivative:

(8.16)
dy
ds

' ys1ωscosωss& yc1ωs sinωss% 2ys2ωs cos2ωss& . . .

while the input

   with   (8.17)z ' zo % ẑ sinωss ωs '
2π
λ

Substitution of (8.15,8.16,8.17) in (8.14) and subsequently making the
coefficients of corresponding terms in the left and right members equal to each
other yields for the average output: 

 (8.18)yo ' β zo 1& 1

2

ω 2
s ẑ2

1% ω 2
s z 2

o

The average side force Fy,ave expressed in terms of the original quantities now
reads:

    with  (8.19)Fy,ave ' CFαo 1& 1

2

ω 2
s c 2F̂2

z

1% ω 2
s c 2F 2

zo

α c ' dσ
dFz

For large Fz amplitudes and short wavelengths λ=2π/ωs the formula shows that
the dynamic loss approaches 50% of the side force generated on smooth roads.
As we will see, this finding agrees very well with simulation and test results.

The aligning torque variation may be computed as well. In their study,
Takahashi and Pacejka (1987) employed the equation based on the string concept
and added the gyroscopic couple. We obtain according to Eqs.(5.135) and
(5.178), the latter expression corresponding with (7.49):
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Fig. 8.5. Load dependency of tyre parameters according to measurements and third degree
polynomial fits.

(8.20)σ

dM'z
d s

% M'z ' &CMα
α

and

 (8.21)Mz,gyr ' Cgyr V 2
dFy

ds
The total moment responding to the slip angle becomes:

(8.22)Mz ' M'z % Mz,gyr

Experiments have been conducted to assess the relevant parameters of a
195/60R14-87H tyre at various values of the vertical load. The diagrams of
Fig.8.5 present the characteristics for the relaxation length, the cornering
stiffness and the aligning stiffness. The relaxation length was determined by
curve fitting of the data obtained from a swept sine steering oscillation test at a
speed of 30km/h in the frequency range of 0 to 2Hz. The gyroscopic coefficient
Cgyr was assessed in a similar test but conducted at a speed of 170km/h. The
resulting value turns out to be Cgyr = 3.62×10-5 s2 that corresponds to the non-
dimensional coefficient cgyr . 0.5 , cf. Eq.(5.179). 

To assess the validity of the calculated force and moment response to load
variations experiments have been carried out on a 2.5m drum with a special test
rig at the Delft University of Technology. The wheel axle can be moved
vertically while set at a given slip angle. The side force and moment measured
at that slip angle have been corrected for the responses belonging to a slip angle
equal to zero. 

In Fig.8.6 in the left-hand diagrams the test results have been presented. The
wheel axle is vertically oscillated with frequencies up to 8Hz and with an
amplitude that corresponds to the ratio of amplitude and mean value of the wheel
load equal to 0.9. The wheel runs at a constant small slip angle of one degree



371APPLICATIONS OF TRANSIENT TYRE MODELS

0 0.5 1s/ 0 0.5 1s/

z-M

yF

[N]

[Nm]

0

60

0

1500

0.5 Hz
  2.0 Hz
  4.0 Hz
  6.0 Hz
  8.0 Hz

=3000N

experiments linear model

= 1

V= 30km/h
zF$ zoF=0.9

Fzo

ψ o

Fig. 8.6. Side force and aligning torque response to wheel load variation at a small slip angle.

with a speed of 30km/h. The response at the low frequency of 0.5Hz may be
considered as quasi static and varies periodically, practically in phase with the
axle motion. To enable a proper comparison at the different frequencies, the
responses have been plotted against travelled distance divided by the current
wavelength. The right-hand diagrams show the corresponding calculated
responses. In view of the very simple set of equations that have been used, the
agreement between test and model can be considered to be very good.
Calculations conducted with the stretched string model of Section 5.6 were not
much better. Only the moment responses turned out to be a little closer to the
experimental findings. In the responses, two major features can be identified.
First, we observe that the responses show some lag with respect to the input that
grows with increasing frequency n which means: with decreasing wavelength λ.
Second, and more important, we have the clear drop in average value of the side
force which becomes larger at increasing frequency. After subtracting the static
drop that occurs at the lowest frequency, the dynamic loss remains. 

In Fig.8.7 the static and the dynamic parts of the decrease of the average side
force, as a ratio to the side force at zero vertical load amplitude, have been
plotted versus frequency or wavelength for different input amplitude ratios. The
model shows reasonable agreement with the experimental results. It has been
found that the correspondence becomes a lot better when the speed is increased
to 90km/h. Then, the wavelength is three times larger and a better performance
of the model prevails. The curve of Fig.8.7 that holds for the amplitude ratio
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0.95, where the tyre almost loses contact, appears to approach the value of ca.
0.5 when the frequency increases to large values. This indeed corresponds to the
analytical result established by Eq.(8.19). On the other hand, the more advanced
model of Section 5.6 predicts a possibly even larger reduction at the verge of
periodic lift-off, cf. Fig.5.51 where the wavelength could be diminished to levels
as small as the static contact length 2ao.

It may be obvious that an analogous model, Eq.(7.9) with κN = u/σ
κ
, can be

used for the in-plane non-steady-state response to vertical load variations.
Without special measures it is virtually impossible to maintain a certain level of
the longitudinal slip κ at varying contact conditions. At a fixed braking torque,
the average longitudinal braking force remains constant when the wheel keeps
rolling. When the wheel runs over an uneven road surface and the wheel load
changes continuously, the effect of the tyre lag is an increased average level of
the longitudinal slip ratio. Applications of the single contact point in-plane
transient model follow in Sections 8.3 and 8.5 where problems related with tyre
out-of-roundness and braking on undulated roads are discussed. 

The theory can be extended to larger values of slip if the non-linear model
according to Eqs.(7.25,7.26) is employed. The equations may be used here in the
form:

(8.23)σ
(

dv
d s

% v ' σ
(

α

with
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(8.24)σ
(

'

σo

CFα

Fy

α'

which quantity is a function of both the wheel load Fz and the transient slip angle
or deformation gradient αN. It reduces to the relaxation length σo (=σ at αN = 0)
when αN tends to zero and Fy/αN to CFα. Obviously, offsets of the side force vs
slip angle characteristic near the origin have been disregarded here. The transient
slip angle follows from:

(8.25)α' '
v
σ
(

The side force and moment are obtained by using the steady-state characteristics:
(8.26)Fy ' Fy,ss(α', Fz )

(8.27)M'z ' M'z,ss(α', Fz )

With the gyroscopic couple, cf. Eqs.(8.21), (7.5) and (5.179):

 (8.28)Mz,gyr ' cgyr mt V
2 dv

ds
the total moment becomes:

(8.29)Mz ' M'z % Mz,gyr

The steady-state characteristics as measured on the road at a number of wheel
loads have been presented in Fig.8.8. 

As has been noted in Sec.7.2.3 the assessment of σ(  requires some attention.
In the investigation done by Pacejka and Takahashi (1992) and Higuchi (1997)
the solution was obtained through iterations. Alternatively, we may use
information from the previous time step to assess σ(. When the load is rapidly
lowered, violent vibrations may occasionally show up in the solution.
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Fig. 8.9. Side force and aligning torque response to wheel load variation at a large slip angle.

With this non-linear model, simulations have been done and experiments have
been carried out for a slip angle equal to six degrees. Plots of the resulting
responses are shown in Fig.8.9. The model appears to be successful in predicting
the side force variation caused by the wheel load excitation at different
frequencies. The load amplitude ratio of 0.83 gave rise to full sliding in certain
intervals of the periodic motion. This can be seen to occur when the force signal
touches the curve representing the maximally achievable side force µFz. In this
respect the model certainly performs well which cannot be said of the alternative
model governed by Eq.(7.20) with Fy,ss calculated with Eq.(8.26) where αN is
replaced by α. This model gives rise to a calculated force response that exceeds
this physical limit when the load approaches its minimal value due the phase lag
of the response. The dynamic loss of the average side force follows a tendency
similar to what was found with the linear model at small slip angles. The result
obtained at a constant slip angle of six degrees is shown in the diagram of
Fig.8.10. The correspondence with the experimental outcome becomes even
better than in the case of a slip angle equal to one degree, Fig.8.7.  

Very similar results have been obtained with the more robust enhanced model
of Section 7.3. The difference is that a small dynamic force acts on the little
mass of the contact patch used in the model. This causes the ground force to be
slightly different from the force felt at  the wheel rim. It is, of course, the ground
force that cannot exceed the physical limit mentioned above. 
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8.3.  Longitudinal Force Response to Tyre Non-
Uniformity, Axle Motions and Road Unevenness

In this section the response of the axle forces Fx and Fz to in-plane axle motions
(x, z), road waviness and tyre non-uniformities will be discussed. For a given
tyre-wheel combination the response depends on rolling speed and frequency of
excitation. This dependency, however, appears to be of much greater significance
for the fore and aft force variation Fx than for the vertical load variation Fz.

The vertical force response has an elastic component and a component due
to hysteresis. A similar mechanism is responsible for the generation of (at least
an important portion of) the rolling resistance. The hysteresis (damping) part of
the vertical load response appears to rapidly decrease to almost negligible levels
at from zero increasing forward speed, cf. Pacejka (1981a) and Jianmin et al.
(2001). We simplify the relationship between normal load Fz and radial tyre
deflection ρ using the radial stiffness CFz :

(8.30)Fz ' CFzρ

In Chapter 9 tyre inertia and other influences will be introduced to improve the
relationship at higher frequencies and shorter wavelengths of road unevennesses.

A coupling between vertical deflection variation and longitudinal force
appears to exist that is due to the resulting variation of the effective rolling
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Fig. 8.11. The rolling wheel subjected to longitudinal slip (slip speed Vsx).

radius of the tyre.
For the non-steady-state analysis we will employ the linear equation (7.9) that

may take the form with V = Vx (assumed positive):

(8.31)
du
d t

%

1
σ
κ

Vu ' Vκ ' &Vsx

The input is the longitudinal slip velocity that is defined as:
(8.32)Vsx ' V & reΩ

Obviously, the effective rolling radius re plays here a crucial role.

8.3.1.  Effective Rolling Radius Variations at Free Rolling

For a wheel with tyre that is uniform and rolls freely at constant speed over an
even horizontal road surface, the tractive force required is due to rolling
resistance alone. Under these conditions, the effective rolling radius re is defined
to relate speed of rolling Ω  with forward speed V:

(8.33)V ' reΩ

The centre of rotation of the wheel body S lies a distance re below the wheel spin
axis. As has been discussed in Chapter 1, by definition, this point which can be
imagined to be attached to the wheel rim, is stationary at the instant considered
if the wheel rolls freely (cf. Fig.8.11 with slip speed Vsx = 0). In general, the
effective rolling radius changes with tyre deflection ρ. We may write:

(8.34)re ' rf& f (ρ)
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Fig. 8.12. Tyre effective rolling radius and loaded radius as a function of wheel load, measured
on 2.5m drum at different speeds and for different tread depths and tyre design. Note
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with rf denoting the free (undeformed) radius that may vary along the tyre
circumference due to tyre non-uniformity. We have for the loaded radius:

(8.35)r ' rf& ρ

Figure 8.12 shows variations of the effective rolling radius re and the loaded
radius r as functions of wheel load Fz for two different tyres at different stages
of wear and at different speeds as measured on a drum surface of 2.5m diameter.
The from this diagram deduced reduction of the effective rolling radius f(ρ) with
respect to its theoretical original value rf at zero wheel load (ρ = 0) has been
presented in Fig.8.13. The influence of a change in tread depth has been shown.
The slope η and the coefficient g indicate the influence of changes in deflection
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and tread depth near the nominal load.
Figure 8.14 tries to explain the observation regarding the location of the slip

point S. Possible locations have been indicated. At zero wheel load S lies at road
level or a little lower (due to air and bearing resistance which slows the wheel
down at the expense of some slip). A small wheel load causes a number of the
originally radially directed tread elements to assume a vertical orientation. The
rotation of these tread elements is lost which causes the effective radius to
become smaller. Point S may then turn out to lie above road level! At higher
loads we get the more commonly known situation of S located below road level.
It has been assumed here that the belt with radius rc is inextensible. Then, when
the lower tread elements have a vertical orientation and translate backwards with
respect to the wheel centre, the wheel will in one revolution cover a distance
equal to the circumference of the belt. This means that the effective rolling radius
equals the radius of the belt. When the tyre possesses a ribbed tread pattern, it
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is expected that due to the greater coherence between rib elements in comparison
to the independent studs of the radial-ply tyre, some rotation still occurs in the
ribs in the contact zone which increases the effective radius and pushes point S
earlier below the road surface. This theory seems to be supported by the curves
of the new bias-ply tyre. The degree of effective incoherence g is estimated for
the radial-ply tyre to be equal to ca. 0.9 and for the bias-ply tyre equal to 0.2 at
the rated load. Because we have plotted in Fig.8.13 the reduction of the effective
radius with respect to the free unloaded radius: rf!re , the decrease of re due the
wearing off of the tread rubber is not shown directly. Only the indirect effect of
tread wear  is shown through the tread incoherence parameter g. If due to the
vertical tyre deflection the tread band is compressed and has decreased in
circumference, the effective radius diminishes. This property which is more
apparent to happen with the bias-ply tyre, is partly responsible for the slope of
the curves shown at larger vertical deflections. This slope, denoted with η, is
estimated to be equal to about 0.1 for the new radial-ply tyre with an almost
inextensible belt and 0.4 for the new bias-ply tyre at their nominal load.

The analysis will be kept linear and we assume small deviations from the
undisturbed condition. In the neighbourhood of this average state we write for
the effective radius, the loaded radius and the radial deflection:

(8.36)re ' re,o% r~e , r ' ro% r~ , ρ ' ρo% ρ
~

Small deviations from the undisturbed condition are indicated by a tilde.
Variation of the free radius may occur along the circumference of the tyre. This
kind of non-uniformity (out of roundness) is composed of two contributions. One
is due to variations of the carcass radius rc and the other due to variations of the
tread thickness dt. We have

(8.37)r~f ' r~c % d
~
t

The value of out of roundness is considered to be present at the moment con-
sidered along the radius pointing to the contact centre. The following linear
relation between the effective radius variation and the imposed disturbance
quantities is found to exist:

(8.38)r~e ' r~f& gd
~

t& ηρ
~
' r~c% (1& g)d

~
t& ηρ

~

The observation that a reduction in thickness of the tread rubber of a
radial-ply tyre produces a decrease in effective rolling radius (at Fzo), amounting
to only a small fraction of the reduction in tread depth is reflected by the factor
(1!g) in the right-hand expression of (8.38). The coupling coefficient η is
relatively small for belted tyres. In contrast to bias-ply tyres the effective rolling
radius of a belted tyre does not change very much with deflection once the initial
tread thickness effect (at small contact lengths with tread elements still oriented
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almost radially) has been overcome.

8.3.2.  Computation of the Horizontal Longitudinal Force Response  

The horizontal force response on undulated roads is composed of the following
three contributions: the horizontal component of the normal load, the variation
of the rolling resistance and the longitudinal force response to the variation of the
wheel longitudinal slip. The horizontal in-plane force designated with X becomes
with linearised variations, cf. Fig.8.15:

(8.39)

X ' Xo% X
~

' &Fro% F
~

x% Fzo
dw
ds

' &Fro% F
~

r% F
~
κ
% Fzo

dw
ds

with Fro denoting the average rolling resistance force. For this occasion, it is
assumed that the variation in rolling resistance force is directly transmitted to the
tread through changes in vertical load. We write:

 (8.40)F
~

r ' Ar F
~

z

where the variation of the vertical load results from variations in deflection and
possibly from changes in radial stiffness along the tyre circumference:

(8.41)F
~

z ' CFzoρ
~
% ρo C

~

Fz

or expressed in terms of the variation in radial static deflection:
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(8.42)ρ
~

s ' &ρo

C
~

Fz

CFzo

we may write:

(8.43)F
~

z ' CFzo (ρ~& ρ
~

s)

The variation of the tangential slip force becomes with the transient longitudinal
slip κN :

(8.44)F
~
κ
' CFκκ' ' CFκ

u
σ
κ

where the tyre deflection u follows from Eq.(8.31). The longitudinal slip velocity
appearing as input in (8.31) is governed by Eq.(8.32). With the variations in
forward velocity, speed of revolution and effective rolling radius we find in
linearised form:

 (8.45)Vsx ' V
~
& Ωo r~e& reoΩ

~

The variation of the effective rolling radius follows from (8.38), where the
deflection is a result of the combination of wheel vertical displacement, tyre out-
of-roundness and road height changes:

(8.46)ρ~ ' z% r~c% d
~
t& w

The wheel angular velocity results from the dynamic equation:

(8.47)IwΩ
0

' &rFx& My

in which Iw denotes the wheel polar moment of inertia (including a large part of
the tyre that vibrates along with the wheel rim if the frequency lies well below
the in-plane first natural frequency, cf. Chap.9). 

The moment My acts about the transverse axis through the contact centre C,
Fig.8.15, and is composed of the part due to rolling resistance and a part due to
excentricity of the tread band which constitutes the first harmonic of the tyre out-
of-roundness. This latter part runs 90 degrees ahead in phase with respect to the
loaded radius variation that is sensed at the contact centre. With subscript 1

referring to the first harmonic we have:

(8.48)My ' Mr% Fz r~1,(Ω t%π/2)

The rolling resistance moment Mr is here supposed to be directly connected with
the rolling resistance force Fr which is a simplifying assumption that has a
negligible effect on the resulting responses. As a result, the rolling resistance
components cancel out in the right-hand member of Eq.(8.47). This equation now
reduces to:
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(8.49)IwΩ
0

' &ro F
κ
& Fzo r~1,(Ωt%π/2)

Collection of the relevant equations (8.31,8.38,8.39,8.40,8.41,8.42,8.43,8.45)
and  elimination of all variables, except the input quantities:

(8.50)V
~

(' x~0 ) , z , w, r~c , d
~
t , ρ

~
s , r~1 (' first harmonic of r~f' r~c%d

~
t)

and the output  and, for now, also , yields the following LaplaceX
~

r~e and ρ
~

transformed representation of the horizontal force variation with s designating
the Laplace variable or iω :

(8.51)
X
~
' CFκ

IwΩo s @ r~e & Iws 2
@x~ & Fzo ro exp(½πs/Ωo) @r~1

σ
κ

Iws 2
% Iw Vo s % CFκ r 2

o

%

& ArCFz @ (ρ~& ρ~s) % Fzo s @w/Vo

where with (8.38) and (8.46) we have the variations of effective radius and tyre
deflection:

(8.52)r~e ' η (w& z)% (1&η & g) d
~

t% (1&η)r~c
and

(8.53)ρ~ ' z% r~c% d
~

t& w

From this expression (8.51) of the combined response, the individual transfer
functions or the frequency response functions to the various input quantities may
be written explicitly. For the latter functions to obtain, we simply have to take
the coefficients of one of the input variables (8.50) in (8.51), after (8.52) and
(8.53) have been inserted in (8.51), and replace s by iω or iΩo depending on the
type of input variable.

Figure 8.16 presents both theoretical and experimental data, the latter being
obtained from tests performed on a 2.5 m drum test stand provided with a
specially designed rig (Pacejka, Van der Berg and Jillesma 1977). The
parameters of the tyres tested have been listed in Table 7.1. The response to z
has been found by moving the axle up and down by means of a hydraulic
actuator. The variation in carcass radius rc has been achieved by mounting a
reasonably uniform wheel and tyre with 2.5 mm eccentricity on the shaft and
subsequently balancing the rotating system. In this test the axle was held fixed.
The special arrangement resulted in a larger polar moment of inertia Iw (1.1
kgm2). The response to dt variations could be obtained by partly buffing off the
tyre tread. On one side 5 mm less tread rubber remained with respect to the other
side of the tyre. As a side effect, the average slip stiffness CFκ increased. The new
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value was estimated. All tyre parameters have been determined through special
tests. Sometimes, slight changes of these values could result in a better match of
the response data. 

In general, a good correspondence with experimental results could be
established. Also the phase relationship which is very sensitive to the structure
of the model and changes in parameters, turns out to behave satisfactorily. A
negative phase angle k indicates that the response lags behind the input.

Table 8.1.  Tyre in-plane parameter values for the radial and bias-ply tyres

Radial steel-belted ( pi=1.8 bar, tread depth (at = 0)= 6.5mm)d
~
t

Iw = 0.8 (z) or 1.1 ( ) kgm2,  rfo = 0.315m,  ro. 0.3m, η = 0.1,  g = 0.6  r~f
σ
κ
 = CFx /CFκ,  CFx = 565000N/m,  CFκ = 80000N (500000N at = 2.5mm)d̂t

Fzo = 3000N,  Fro = 25N,  CFz = 133000 N/m,  Ar = 0.0083

Bias-ply  ( pi = 1.5 bar, tread depth = 6.5 mm)

Iw = 0.8 (z) or 1.1 ( ) kgm2, rfo = 0.325m,  ro. 0.3m, η = 0.4r~f
σ
κ
 = CFx /CFκ, CFx = 106 N/m,  CFκ = 45000N 

Fzo = 3000N,  Fro = 60N,  CFz = 190000N/m,  Ar = 0.02
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To explain these findings which turn out to be quite different for the two
types of tyre, we shall now analyse the responses to vertical axle motions z and
out-of-roundness  (=  first harmonic) in greater detail.r~c r~c1

8.3.3.  Frequency Response to Vertical Axle Motions

After replacing in Eq.(8.51) the Laplace variable s by iω, with ω denoting the
frequency of the excitation, we find for the response to vertical axle motions the
following frequency response function with X = Fx :

(8.54)
F
~

x

z
' &ArCFz &

ηCFκ

ro

2ζ iν

1&ν 2
% 2ζ iν

with the non-dimensional frequency:

(8.55)ν '
ω

ω
Ωo

and the speed dependent damping ratio:

(8.56)ζ '
1

2

IwV

CFκr 2
o

ω
Ωo '

1

2

V
σ
κ
ω
Ωo

where the natural frequency of the tyre-wheel rotation with respect to the foot
print has been introduced:

(8.57)ω
Ωo '

CFx r 2
o

Iw

'

CFκ r 2
o

σ
κ

Iw

An interesting observation is that an increase in slip stiffness or relaxation length
decreases the non-dimensional damping coefficient ζ. A higher speed V,
obviously, produces more damping.

For the extreme case, ω 6 0, we find as expected only the contribution to
rolling resistance:

(8.58)
F
~

x

z ω60
' &ArCFz

If we neglect the small contribution from the rolling resistance, the first term of
(8.54) vanishes. The magnitude of the remaining term reduces to a simple
expression if the frequency is considered to be small with respect to the natural
frequency:
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(8.59)/00
F
~

x

z /00 ω«ω
Ωo

' 2ζ
η CFκ

ro

ν '
η Iw

r 3
o

Vω ' 2π
η Iw

r 3
o

V n

with V the speed of travel in m/s and n the frequency of the vertical axle motion
in Hz. It is noted from Eq. (8.59) that the rise of the response in the lower
frequency range with the frequency n and the speed V is in particular influenced
by the magnitude of the factor η multiplied with the polar moment of inertia Iw.
A small value of η, as with radial tyres, is favourable which is obviously caused
by the fact that then the change of effective  rolling radius with deflection is very
small so that rotational accelerations and accompanying longitudinal forces are
almost absent. The coefficient of Vn in (8.59) becomes for the radial-ply tyre:
18.6 and for the bias-ply tyre: 74.5. This would mean that if the wheel with bias-
ply tyre that rolls at a speed of 10m/s, is oscillated vertically with an amplitude
of 1mm at a frequency of 10Hz, the resulting longitudinal force gets an
amplitude of 7.45N.

At higher frequencies it can be shown that the curves for the magnitude of
expression (8.54) reach a common maximum (for all V) at ω = ωΩo. The
maximum response amplitude amounts to:

(8.60)/00
F
~

x

z /00 max

' η
CFκ

ro

% ArCFz
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This maximum is determined again primarily by the effective rolling radius
gradient η  but now multiplied with slip stiffness CFκ. For the radial tyre the
maximum response becomes ca.28N/mm at the natural frequency 43Hz and for
the bias-ply tyre this becomes ca.64N/mm at 57Hz. Figure 8.17 shows both the
amplitude and phase (lag) response calculated for the bias-ply tyre. Figure 8.16
has already indicated that for the radial tyre a much lower response is expected
to occur.

8.3.4.  Frequency Response to Radial Run-Out

From equation (8.51) we derive for the frequency response to radial (carcass)
run-out considering only its first harmonic  with frequency equal to ther~f' r~1' r~c
wheel speed of revolution ω= Ω (non-dimensional frequency ν = Ω/ωΩo):

(8.61)
F
~

x

r~c

' &ArCFz % i
(1&η) CFxν

2
&Fzo /ro

1& ν
2
% iν 2ro /σ

κ

This expression differs in two main respects from the one for the response to axle
vertical motions (8.54). First, we have now the factor 1-η instead of η and
secondly, an additional term with Fzo shows up which is due to the excentricity,
cf. Eq.(8.49). Figure 8.18 presents the response plots for the bias-ply tyre. 

For speeds very low: Ω6 0 the expression reduces to:

(8.62)
F
~

x

r~c ω60

' &ArCFz& i
Fz

ro

The amplitude ratio attains a minimum near

(8.63)ν '
Fzo /ro

(1&η) CFx

which means for the radial tyre: near the frequency 0.14 nΩo and for the bias-ply
tyre: near 0.13 nΩo . With parameters corresponding to the experiment conducted
(Iw = 1.1 kgm2 resulting in natural frequencies of 36.5 and 48.5 Hz) we obtain
for these frequencies: 5.1 and 6.3Hz respectively. The minimum value appears
to become very close to ArCFz = 1100 and 3800N/m respectively. As can be seen
in the upper right-hand diagram of Fig.8.16, the experimentally assessed curve
also features such a dip in the low frequency range and the accompanying sharp
decrease in phase lead. At the natural frequency nΩo (ν= 1) the amplitude ratio
comes close to its maximum value. This maximum is approximately equal to:

 (8.64)/00
F
~

x

r~c
/00 max

. &ArCFz% (1&η)
CFκ

ro

&

σ
κ

Fzo

r 2
o
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The second term by far dominates this expression. The radial tyre attains 220
N/mm (at 36.5 Hz) and the bias-ply tyre 80 N/mm (at 48.5 Hz). Compared with
the maximum longitudinal force response to vertical axle motions, Eq.(8.60), we
note a much stronger sensitivity of the radial tyre to out-of-roundness (ca. 220
N/mm) than to vertical axle motions (ca. 28N/mm). This is due to the factor 1-η
occurring in (8.64) which in (8.60) appears as η. For the bias-ply tyre with a
much more compressible tread band, we have 80N/mm versus 64N/mm.

Exercise 8.1.  Response to tyre stiffness variations

Derive from Eqs. (8.51) - (8.53) the frequency response function of Fx to the static
deflection variation ρ̃s , that is: to variations in radial tyre stiffness, for fixed axle
height: z = 0. Then release the vertical axle motion and find the frequency response
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  Fig. 8.20. On the possibly unstable wheel hop motion (Exercise 8.2).

function for z to ρ̃s . Consider Fig.8.19 that represents the simplified axle/
wheel-suspension system. Small motions are considered so that only linear terms can
be taken into account. Use the parameter values of the bias-ply tyre of Table 8.1 and
furthermore the values for the mass, the suspension stiffness and the damping:

m = 50 kg ,    c = 40000 N/m ,    k = 2000 Ns/m

Now find the total frequency response of Fx to ρ̃s for the released axle motion. It may
be noted that the excitation by a variation of the radial stiffness is equivalent to the
excitation by a vertical force:

F
~
zs ' ρo C

~
Fz ' &CFzoρ

~
s

representing the variation of the ‘static’ tyre load at constant axle height while the tyre
rolls.

Exercise 8.2.  Self-excited wheel hop 

Investigate the stability of the fourth-order system of Fig.8.20 using the Hurwitz
criterium (cf. Eq.(1.118)). Employ Eqs.(8.31,8.38,8.45,8.46,8.47), assume My=0 and
consider a flat road and a uniform tyre. Assess the range of the slope β of the wheel
axle guidance surface where instability will occur for the undamped wheel suspension
system. The effective rolling radius coupling coefficient η is the decisive parameter.
Plot the stability boundary in the tanβ versus η diagram. Vary η between the values
0 and 1. Indicate the areas where stability prevails. Take the parameter values:

ro = reo = 0.3m, σ
κ
= CFκ /CFx = 0.3m

CFz +cz = CFx = 2×105 N/m
m = 30 kg, Iw = 0.5mro

2 kgm2

That a moderate oscillatory instability may indeed show up with such a system has
been demonstrated experimentally in professor S.K.Clark’s laboratory at the
University of Michigan in 1970.
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Fig. 8.21. Configuration of a simple steering/suspension system and the resulting natural
frequencies and vibrational modes. 

8.4.  Forced Steering Vibrations

A steering/suspension system of an automobile exhibits a rather complex
configuration and possesses many degrees of freedom. A simplification is
necessary to conduct a sensible analysis to gain insight into its general dynamic
behaviour and into the influence of important parameters of the system.
Investigation of the steering mode of vibration requires at least the steering
degree of freedom of the front wheel, possibly extended with the rotation degree
of freedom of the steering wheel. For the sake of simplicity, one degree of
freedom may be suppressed by holding the steering spring clamped at the node
of the natural mode of vibration. Furthermore, we will consider the influence of
two more degrees of freedom: the vertical axle motion and the longitudinal
deflection of the suspension with respect to the steadily moving vehicle mass.
The picture of Fig.8.21 shows the lay-out of system. Due to the assumed
orthogonality of the system (wheel axis, king-pin, road plane) the dynamically
coupled horizontal motions (x,ψ) are not coupled with the vertical axle motion
when small displacements are considered and tyre contact forces are disregarded.

First, we will examine the dynamics of the free system not touching the road.
After that, the tyre is loaded and tyre transient models for the in-plane and out-
of-plane behaviour are introduced and the system response to wheel unbalance
will be assessed and discussed.



390 APPLICATIONS OF TRANSIENT TYRE MODELS

8.4.1.  Dynamics of the Unloaded System Excited by Wheel Unbalance

The simple system depicted in Fig.8.21 possesses two horizontal degrees of
freedom: the rotation about the vertical steering axis, ψ, and the fore and aft
suspension deflection, x. The figure provides details about the geometry,
stiffnesses, damping and inertia. The mass m represents the total mass of the
horizontally moving parts. The length iz denotes the radius of inertia: i2

z = Iz/m.
The wheel rim that revolves with a speed Ω  is provided with an unbalance

mass mun (in the wheel centre plane at a radius run). The centrifugal force has a
component in forward direction:

(8.65)Fun,x ' &mun runΩ
2 sinΩ t

The equations of motion of this fourth-order system read:

(8.66)mx@& mbψ̈% kx x0 % cx x ' Fun,x

(8.67)m(i 2
z %b 2)ψ̈& mbx@% k

ψ
ψ0 % c

ψ
ψ ' &lFun,x

With damping disregarded, the magnitude of the frequency response function
becomes:

(8.68)
ψ8

munrun

'

l
c
ψ

Ω 2 1& Ω

ω0

2

1& Ω

ω1

2

1& Ω

ω2

2

in which we have the zero frequency:

(8.69)ω
2
0 '

l
l& b

ω
2
x

and the two natural frequencies:

(8.70)ω
2
1,2'

1

2
(1%β) ω

2
x%ω

2
ψ ± ω

2
x&ω

2
ψ

1% 4β
1%β

ω
2
xω

2
ψ

ω
2
x&ω

2
ψ

2

where we have introduced the ‘uncoupled’ natural frequencies:

   and    (8.71)ω
2
x '

cx

m
ω

2
ψ
'

c
ψ

m (i 2
z % b 2)

and the coupling factor:
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(8.72)β '
b 2

i 2
z

 For the analysis, we are interested in the influence of the fore and aft
compliance of the suspension. In the right-hand diagram of Fig.8.21 the two
natural frequencies have been plotted as a function of the longitudinal natural
frequency ratio (squared), which is proportional to the longitudinal stiffness cx,
together with the constant vertical natural frequency and the zero frequency for
three different values of f/b. In addition, the location of the two centres of
rotation according to the two modes of the undamped vibration have been
indicated.

The two steer natural frequencies ω1 and ω2 increase with increasing
longitudinal suspension stiffness. The lower natural frequency with a centre of
rotation located at the inside of the king-pin, approaches the uncoupled natural
frequency ωψ.

From (8.69) it is seen that a zero does not occur if the unbalance arm length
l lies in the range 0<l<b which does not represent a usual configuration. For the
normal situation with b>0 the zero frequency line may cross the second natural
frequency curve if l is not too large.  If the two frequencies coincide, the second
resonance peak of the steer response to unbalance will be suppressed. In that
case, the unbalance force line of action passes through the centre of rotation of
the higher vibration mode.

It may be noted that the situation with contact between wheel and road can
be simply modelled if the wheel is assumed to be rigid. The same equations apply
with inertia parameters adapted according to the altered system with a point
mass attached to the axle in the wheel plane. The point mass has the value Iw /r2

where Iw denotes the wheel polar moment of inertia and r the wheel radius.

8.4.2.  Dynamics of the Loaded System with Tyre Properties Included

In a more realistic model the in-plane and out-of-plane slip, compliance and
inertia parameters should be taken into account. A possible important aspect is
the interaction between vertical tyre deflection and longitudinal slip which may
cause the appearance of a third resonance peak near the vertical natural
frequency of the wheel system. The longitudinal carcass compliance gives rise
to an additional natural frequency around 40 Hz of the wheel rotating against the
foot print (cf. discussion in Section 8.3.3). Due to damping, originating from
tangential slip of the tyre, a supercritical condition will arise beyond a certain
forward velocity. This causes the additional natural frequency to disappear. 



392 APPLICATIONS OF TRANSIENT TYRE MODELS

For the extended system with road contact, the following complete set of
linear equations apply:

(8.73)m(x@% 2ζxωx x0 % ω2
x x) & mbψ̈& Fx' Fun,x

(8.74)mz (z@% 2ζzωz z0 % ω2
z z) ' Fun,z

 (8.75)I
ψ
(ψ̈% 2ζ

ψ
ω
ψ
ψ0 % ω

2
ψ
ψ ) & mbx@% lFx& Mz ' &lFun,x

 (8.76)IwΩ
0

% ro Fx ' 0

(8.77)σ
κ
Fx
0

% Vo Fx ' &CFκVsx

(8.78)σ
α
Fy
0

% Vo Fy ' &CFαVsy

 (8.79)Vsx ' x0 & lψ0 & ro(Ω&Ωo)%Ωoη z

(8.80)Vsy ' &Voψ

 (8.81)Mz ' & t
α

Fy&
1
Vo

κ(ψ0 & CgyrVo Fy
0

(8.82)Fun,x ' &mun runΩ
2
osinΩot

(8.83)Fun,z ' mun runΩ
2
ocosΩot

 (8.84)Vo ' roΩo

Table 8.2.  Parameter values of wheel suspension system  and tyre considered 

m 30 kg ωz 70 rad/s σ
κ

0.15 m Fzo 3500N

mz 40 kg ωψ 85 rad/s σα 0.3 m CFz 160 kN/m

Iψ 1.2 kgm2 ζx 0.01 tα 0.03 m CFκ 60 kN

Iw 0.8 kgm2 ζz 0.06 κ( 80 Nm2 CFα 40 kN/rad

mun 0.1 kg ζψ 0.08 Cgyr 2x10-5 s2 η 0.4

The tyre side force differential equation (7.20) has been used and similar for the
longitudinal force. The longitudinal slip speed follows from (8.45) with (8.52).
Note that mechanical caster has not been considered so that the lateral slip speed
is simply expressed by (8.80). The aligning torque is based on Eq.(7.51) with for
Mzr the spin moment Mz

* according to Eq.(5.82) and the gyroscopic couple from
Eqs.(7.49) or (5.178). The rolling resistance moment has been neglected in
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(8.76) and the average effective rolling radius has been taken equal to the
average axle height or loaded radius ro (in reality re is usually slightly larger than
ro).

In Table 8.2 the set of parameter values used in the computations have been
listed. The moment of inertia about the steering axis is denoted with Iψ and
equals m(b2 + iz

2). The amplitude of the steer angle that occurs as a response to
a wheel unbalance mass of 0.1kg has been plotted as a function of the wheel
speed of revolution in Fig.8.22. To examine the influence of the longitudinal
suspension compliance a series of values of the longitudinal stiffness cx has been
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Fig. 8.24. Influence of various tyre parameters on the steer angle amplitude response curve.

considered. In Fig.8.23 these values have been indicated by marks on the
stiffness axis. Clearly, in agreement with the variation of the natural frequencies
assessed in this figure, the two resonance peaks move to higher frequencies when
the stiffness is raised. A third resonance peak may show up belonging to the
vertical natural frequency. This peak remains at the same frequency. It is of
interest to observe that when the lowest steer natural frequency n1 coincides with
nz the interaction between vertical and horizontal motions causes the peak to
reach relatively high levels. As we have seen before, this interaction is brought
about by the slope η indicated in Fig.8.13. The curves of the diagram of Fig.8.22
also exhibit the dip in the various curves that correspond with the zero’s (ω0) of
Fig.8.23. The zero frequency closely follows the formula (8.69) of the free
system. At the lowest stiffness the zero frequency n0 almost coincides with the
second natural frequency n2 and suppresses the second peak.

It may be of interest to find out how the several tyre parameters affect the
response characteristics of Fig.8.22. In Fig.8.24 the result of making these
parameters equal to zero has been depicted for the stiffness case cx= 3x105 N/m.
Neglecting the factor η (case 1) meaning that the effective rolling radius would
not change with load, appears to have a considerable effect indicating that, with
η, the vertical motion does amplify the steering oscillation. Omitting the
gyroscopic tyre moment (2), while reinstating η, appears, as expected, to
effectively decrease the steer damping. This is strengthened by additionally
deleting the moment due to tread width (3). Omitting the relaxation lengths (4)
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lowers the peaks, thus removing the negative damping due to tyre compliance.
Deleting, in addition, the side force and the aligning torque (5) raises the peaks
again indicating that some energy is lost through the side slip. Disregarding the
horizontal tyre forces altogether (6) brings us back to the (horizontally) free
system treated in the previous subsection. As predicted by the analysis, two
sharp resonance peaks arise as well as the dip at the zero frequency. 

8.5.  ABS Braking on Undulated Road

The aim of this section is to investigate the influence of dynamic effects due to
vertical and longitudinal wheel vibrations excited by road irregularities upon the
braking performance of the tyre and anti-lock braking system. These disturbing
factors affect the angular velocity of the wheel and consequently may introduce
disinformation in the signals transmitted to the ABS system upon which its
proper functioning is based. 

One may take the simple view that the primary function of the anti-lock
device is to control the brake slip of the wheel to confine the wheel slip within a
narrow range around the slip value at which the longitudinal tyre force peaks. In
the same range it fortunately turns out that the lateral force that the tyre develops
as a response to the wheel slip angle is usually sufficient to keep the vehicle
stable and steerable.

In order to keep the treatment simple, we will restrict the vehicle motion to
straight line braking and consider a quarter vehicle with wheel and axle that is
suspended with respect to the vehicle body through a vertical and a longitudinal
spring and damper. The analysis is based on the study of Van der Jagt et
al.(1989).

8.5.1.  In-Plane Model of Suspension and Wheel/Tyre Assembly

The vehicle is assumed to move along a straight line with speed V. The forward
acceleration of the vehicle body is considered to be proportional with the
longitudinal tyre force Fx. Vertical and horizontal vehicle body parasitic motions
will be  neglected with respect to those of the wheel axle. Consequently, the role
of the wheel suspension is restricted to axle motion alone. These simplifications
enable us to concentrate on the influence of the complex interactions between
motions of the axle and the tyre upon the braking performance of the tyre. Figure
8.25 depicts the system to be studied. We have axle displacements x and z and
a vertical road profile described by w and its slope dw/ds. To suit the limitations
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Fig. 8.25.  System configuration for the study of controlled braking on undulated road surface.

of the tyre model employed, the wavelength λ of the road undulation is chosen
relatively large. The wheel angular velocity is Ω and the braking torque is
denoted with MB. The unsprung mass and the polar moment of inertia of the
wheel are lumped with a large part of those of the tyre and are denoted with m
and Iw.

Through the tyre radial deflection the normal load is generated. Since we
intend to consider possibly large slip forces, the analysis has to account for non-
linear tyre characteristic properties. To adequately establish the fore and aft tyre
contact force we will employ the enhanced transient tyre model discussed in
Section 7.3. The contact relaxation length σc will be disregarded here. In the
model, a contact patch mass mc is introduced that can move with respect to the
wheel rim in tangential direction, thereby producing the longitudinal carcass
deflection u. The contact patch mass may develop a slip speed with respect to the
road denoted by Vs

*
x. The transient slip is defined by (V>0):

(8.85)κ' ' &
V (

sx

V
This longitudinal slip ratio is used as input in the steady-state longitudinal tyre
characteristic. The internal tyre force that acts in the carcass and on the wheel
axle will be designated as Fxa while the tangential contact force is denoted with
Fx. According to the theory, this slip force is governed by the steady-state force
vs slip relationship Fx,ss(κ) which may be modelled with the Magic Formula.
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Fig. 8.26. Steady-state tyre brake force characteristics at different loads as computed with
the aid of the Magic Formula and the similarity technique.

Since we have to consider the influence of a varying normal load, the relationship
must contain the dependency on Fz. To handle this, the similarity method of
Chapter 4 is used. We have the following equations:

(8.86)Fx,ss '
Fz

Fzo

Fxo(κeq)

with argument

(8.87)κeq '
Fzo

Fz

CFκ(Fz)

CFκo

κ'

The master characteristic Fxo(κ) described by the Magic Formula holds at the
reference load Fzo which is taken equal to the average load. Its argument κ  is
replaced by the equivalent slip value κeq. Also the longitudinal slip stiffness CFκo

is defined at the reference load. In Fig.8.26 the steady-state force characteristics
have been presented for a set of vertical loads.

In-plane braking dynamics equations

The system has as input the road profile w and the brake torque MB. The level
w and the forward slope dw/ds are given as sinusoidal functions of the travelled
distance s. To partly linearise the equations, the road forward slope is assumed
to be small. The brake torque ultimately results from a control algorithm but
may in the present analysis be considered as a given function of time.

The following equations apply for the wheel rotational dynamics, the
horizontal and vertical axle motions and the tangential motion of the contact
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patch mass:

(8.88)IwΩ
0

% rFxa% My ' &MB

(8.89)mx
@
% kx x0 % cx x & Fxa& Fz

dw
ds

' 0

(8.90)mz
@
% kzz0 % cz z % Fz & Fxa

dw
ds

' 0

(8.91)mcV
(

sx
0

% Fxa& Fx ' 0

with auxiliary equations for the tyre loaded radius
(8.92)r ' ro& ρ

the radial deflection
(8.93)ρ ' z & w

the effective rolling radius
(8.94)re ' re (ρ)

the longitudinal carcass deflection rate

(8.95)0u ' V (

sx & Vsx

the wheel slip velocity

(8.96)Vsx ' V% 0x& reΩ % 0z dw
d s

and the transient slip

(8.97)κ' ' &
V (

sx

V
Moreover, the following constitutive relations are to be accounted for

(8.98)Fz ' Fz(ρ, u)

(8.99)Fxa ' Fxa(u, 0u)

(8.100)My ' My(Fz,Fx)

(8.101)Fx ' Fx,ss(κ', Fz)

The function (8.101) is represented by Eqs.(8.86) and illustrated in Fig.8.26. The
remaining constitutive relations are simplified to linear expressions. 

Frequency response of wheel speed to road unevenness 

As essential element of the analysis we will assess the response of the wheel
angular velocity variation to road undulations at a given constant brake torque.
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For this, the set of equations may be linearised around a given point of operation
characterised by the average load Fzo, the constant brake torque MBo and the
average slip ratio κo. We find for the constitutive relations:

(8.102)F
~

z ' ccz(ρ
~
% ezx u~ )

 (8.103)F
~

xa ' ccxu
~
% kcx u~0 % exz F

~

z

(8.104)M
~

y ' Ar F
~

z% BrF
~

xa

(8.105)F
~

x ' Cxz F
~

z% Cxκκ
~'

where with the use of Eqs.(8.86,8.87)

(8.106)Cxz '
MFx,ss

MFz

'

Fxo

Fzo

% κo
1

CFκo

dCFκ

dFz

&

1
Fzo

dFxo

dκeq

and

 (8.107)Cxκ '
dFxo

dκeq

For the variation in effective rolling radius we have:

(8.108)r~e ' &ηρ
~

The linearised equations of motion are obtained from the Eqs.(8.88-91) by
subtracting the average, steady-state values of the variable quantities and neglect
products of small variations. 

The frequency response of Ω  to w has been calculated for different values of
the longitudinal suspension stiffness cx. The average condition is given by: the
vehicle speed Vo = 60 km/h, a vertical load Fzo = 3000 N and a brake torque MBo

= 300 Nm that corresponds to an average slip ratio κo = !0.021. The road
undulation amplitude = 0.001 m. w8

Some of the tyre constitutive relations were determined directly from
measurements while for some of the parameters values have been estimated. The
small interaction parameters, η, exz and ezx, and also the rolling resistance
parameters Ar and Br have been disregarded. Table 8.3 lists the parameter values
used in the computations. 

Table 8.3.  Parameter values for wheel/tyre/suspension system

Iw 0.95 kgm2 cx 100 kN/m cz 20kN/m Fzo 3000 N

m    35 kg kx 2 kNs/m kz 2 kNs/m ro 0.29 m

mc      1 kg ccx 103 kN/m ccz 170 kN/m kcx 0.8 kNs/m
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Fig. 8.27. Frequency response of amplitude of wheel spin fluctuations to road undulations w
at a constant speed V and brake torque MB and for different values of the longitudinal
suspension stiffness cx.

Figure 8.27 displays the amplitude of the wheel angular velocity variation as
a function of the imposed frequency that is inversely proportional with the
wavelength of the undulation. It is seen that the resonance peak height and the
resonance frequency strongly depend on the fore and aft suspension stiffness.

8.5.2.  Anti-Lock Braking Algorithm and Simulation

The actual control algorithms of ABS devices marketed by manufacturers can
be quite complex and are proprietory items which incorporate several practical
considerations. However, almost all algorithms make use of raw data pertaining
to the angular speed and acceleration of the wheels. A detailed discussion of the
various algorithms for predicting wheel motions and modulating the brake torque
accordingly, has been given by Guntur (1975). The operational characteristic of
a control algorithm used here for the purpose of illustration is shown in Fig.8.28.
The salient features of the criteria used to increase or decrease applied brake
torque (pressure) during a braking cycle depend critically upon both the
momentary and threshold values of  and of . It is assumed that the brakeΩ Ω0

torque rate can be controlled at three different levels. Upon application of the
brake the torque rises at a constant rate until point B is reached. After that the
torque is reduced linearly until point C. The brake torque remains constant in the
interval between points C and E. Compound criteria are considered at points A
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and B for predicting when braking should be reduced to prevent the wheel from
locking. Thus we have from the starting of brake application:

Increase of torque for 0 < t < tB  according to:   dMB /dt = R1

The preliminary prediction time tA is given by:
reoΩ

0 (tA) ' Tg
where reo stands for the nominal effective rolling radius and T for a constant
which sets the treshold for . Ω0

From time tB we have:
Decrease of torque for tB < t < tC  according to:   dMB /dt = R2

The instant of prediction and action tB is defined by:
reo {Ω (tA)& Ω (tB)}& Tg (tB& tA) ' ∆VB

The time tC marks the beginning of the constant torque phase CE, i.e.:
Constant torque for tC < t < tE :   dMB /dt = 0

Time tC is found from:
Ω0 (tC) ' 0

Similarly, the criterion for increasing the torque at E:
Increase of torque for t > tE  according to:   dMB /dt = R1

is given by the compound reselection conditions generated at points D and E,
with tD and tE being found from:

Ω̈ (tD) ' 0
and

reo[ {Ω (tD)& Ω (tE)}% Ω0 (tD) @ (tE& tD)] ' ∆VE

For the simulation the following values have been used:
T =!1, ∆VB = 0.1reo Ω (tB) and ∆VE = 1 m/s

The brake torque rates have been set to:
R1 = !R2 = 19000 Nm/s

In order to simulate the braking manoeuvre of a quarter vehicle equipped with
the anti-lock braking system, the deceleration of the vehicle is taken to be
proportional to Fx. The results of the simulations performed are presented in
Fig.8.29. The left-hand diagrams refer to the case of braking on an ideally flat
road while the diagrams on the right-hand side depict the results obtained with
the same system on a wavy road surface. For the purpose of simulation, the
model was extended to include a hydraulic sub-system interposed between the
brake pedal and the wheel cylinder. However, this extension is not essential to
our discussion. In both cases the same hydraulic sub-system was used and the
same control algorithm as the one discussed above was implemented.

The further parameters used in the simulation were:
Initial speed of the vehicle: 60km/h, the road input with a wavelength of 0.83 m
and an amplitude of 0.005 m. 
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Fig. 8.28.  Example of an ABS algorithm used to modulate the applied brake torque.

The results of the simulation show that brake slip variations occur both on a
flat as well as on undulated road surfaces. However, the very large variations of
the transient slip value κN in the latter case lead to a further deterioration of the
braking performance. The average vehicle deceleration drops down from 7.1m/s2

to approximately 6m/s2. Although large fluctuations in the vertical tyre force are
mainly responsible for this reduction, it is equally clear that severe perturbation
occurring both in  and  may be an additional source of misinformation forΩ Ω0

the anti-lock control algorithm. The important reduction in braking effectiveness
resulting from vertical tyre force variations may be attributed to the term Ccz in
the linearised constitutive relation (8.106) of the rolling and slipping tyre, and in
particular to the contribution of the variation of the longitudinal slip stiffness
with wheel load dCFκ /dFz. Both vertical and horizontal vibrations of the axle and
the vertical load fluctuations on wavy roads appear to adversely influence the
braking performance of the tyre as well as that of the anti-lock system. 

In 1986, Tanguy made a preliminary study of such effects using a different
control algorithm. He pointed out that wheel vibrations on uneven roads can pose
serious problems of misinformation for the control logic of the anti-lock system.
The results of the simulations discussed above and reported by Van der Jagt
(1989) confirm Tanguy’s findings.
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Fig. 8.30.  On the problem of starting from standstill on a slope.

8.6.  Starting from Standstill

In this section the ability of the transient models to operate at and near zero
speed conditions will be demonstrated. The four models treated in Secs.7.2.2,
7.2.3 and 7.3 will be employed in the simulation of the longitudinal motion of a
quarter vehicle model on an upward slope of 5%, cf. Fig.8.30. 

The following three different manoeuvres are considered:
1. Standing still on slope, stepwise application of drive torque and subsequently

rolling at constant speed.
2. From standstill on slope: freely rolling backwards, then powerful propulsion

followed by free rolling. 
3. From standstill: rolling backwards, then braking to wheel lock, followed by

free rolling again after which a short phase of drive torque is applied. Finally
the quarter vehicle slows down on the slope.

The steady-state longitudinal force function of the transient longitudinal slip κ’
is described by the formula:

(8.109)Fx' Dx sin[Cx arctan{Bxκ'& Ex (Bxκ'&arctan(Bxκ' ))}]

For the successive transient tyre models the equations will be repeated below.

Semi non-linear transient model:
First-order differential equation for longitudinal tyre deflection u according to
Eq.(7.9):

 (8.110)
du
d t

%

1
σ
κ

|Vx|u ' &Vsx



405APPLICATIONS OF TRANSIENT TYRE MODELS

where σ
κ
 only depends on a possibly varying vertical load Fz. The transient slip

reads:

(8.111)κ' '
u
σ
κ

At low values of speed |Vx| < Vlow the deflection u may have to be restricted as
was formulated in general by Eq.(7.25). For our present problem we have:

if:    and     and    |κ'| > Aκsl |Vx | < Vlow (Vsx% |Vx|u/σ
κ
)u<0 :

 (8.112)
du
d t

' 0

else:

(8.113)
du
d t

' &Vsx&
1
σ
κ

|Vx|u

The slip where the peak force occurs is roughly:
(8.114)κsl ' 3Dx /CFκ

with the slip stiffness
(8.115)CFκ ' Bx Cx Dx

For the factor A the value 1 is suggested but a higher value may improve the
performance especially when the force characteristic exhibits a pronounced peak.

Fully non-linear transient model:
The same equations (8.110,8.111) hold but with σ

κ
 replaced by the κN dependent

and downwards limited quantity:

 (8.116)σ
(

κ
' max

σ
κo

CFκ

@

|Fx|%CFκεF

|κ' |%εF

, σmin

where σ
κo represents the value of the relaxation length at κN = 0. We have the

equation:

(8.117)
du
d t

%

1
σ
(

κ

|Vx|u ' &Vsx

The transient slip now reads:

(8.118)κ' '
u
σ
(

κ

A deflection limitation is not necessary for this model. However, because of the
algebraic loop that arises, the quantity (8.116) must be obtained from the
previous time step.
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Restricted fully non-linear model:
Analogous to Eq.(7.35) we have the equation for κN :

(8.119)σ
κ

dκ'
d t

% |Vx|κ' ' &Vsx

with the κN dependent relaxation length:

 (8.120)σ
κ
'

σ
κo

CFκ

MFx

Mκ'

The model is not sensitive to wheel load variations which constitutes the
restriction of the model. For the problem at hand this restriction is not relevant
and the model can be used. The great advantage of the model is the fact that an
algebraic loop does not occur. And again a u limitation is not needed. A straight-
forward simulation can be conducted. For the relation (8.120) the following
approximate function is used:

 (8.121)σ
κ
' max σ

κo 1&
CFκ

3Dx

κ' , σmin

where σmin represents the minimum value of the relaxation length that is
introduced to avoid numerical difficulties.

Enhanced non-linear transient model:
Following Sec.7.3 and Fig.7.15 we have for the differential equation for the
longitudinal motion of the contact patch mass mc:

(8.122)mcV
(

sx
0

% kcx 0u % ccx u ' Fx(κ' )

where Fx denotes the contact force governed by Eq.(8.109).
The transient slip value is obtained from the differential equation (7.56):

(8.123)σc
dκ'
d t

% |Vx|κ' ' &V (

sx

an equation similar to (8.119) but here with a constant (small) contact relaxation
length. The longitudinal carcass stiffness ccx in the contact zone should be found
by satisfying the equation:  

 (8.124)σ
κo '

CFκ

CFx

'

CFκ

ccx

% σc

The deflection rate needed in Eq.(8.122) is equal to the difference in slip
velocities of contact patch and wheel rim:

(8.125)0u ' V (

sx& Vsx

The longitudinal force acting on the wheel rim results from:
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(8.126)Fxa ' kcx 0u % ccx u

Low speed additional damping:
At zero forward speed with each of the first three tyre models a virtually
undamped vibration is expected to occur. An artificial damping may be
introduced at low speed by replacing κN in (8.109) by 

(8.127)κ ' &
kV,low

CFκ

Vsx

which corresponds with the suggested Eq.(7.26). The gradual reduction to zero
at Vx = Vlow is realised by using the formula:

  if |Vx|#VlowkV,low '
1

2
kV,low0 1% cos π

|Vx|

Vlow (8.128)
if |Vx| > VlowkV,low ' 0

Also with the enhanced model the additional damping will be introduced while
kcx is taken equal to zero to better compare the results.

Vehicle and wheel motion:
For the above tyre models the wheel slip speed follows from:

(8.129)Vsx ' Vx& reΩ

The vehicle velocity and the wheel speed of revolution are governed by the
differential equations:

(8.130)mVx
0

' Fxa& mg tanβ

(8.131)IwΩ
0

' MD& re Fxa

where re is the effective moment arm which turns out to correspond with
experimental evidence, cf. Chap.9, Fig.9.34. For the first three models with
contact patch mass not considered, we have:

(8.132)Fxa ' Fx

When at braking the wheel becomes locked we have: Ω= 0.

Results:
The three different longitudinal manoeuvres listed above have been simulated
with each of the four transient tyre models. In the Figs.8.31-34 some of the
results have been presented. The parameter values have been listed in Table 8.4.

Figures 8.31 and 8.32 depict the process of standing still on a 5% upward
slope (appropriate brake or drive torque), followed by a step drive torque input
and subsequently rolling at constant speed (back to equilibrium drive torque). 
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Table 8.4. Parameter values

m 600 kg Bx 12.5 tanβ 0.05 σ
κ(o) 0.2 m

Iw 1 kgm2 Cx 1.6 kV,low0 770 Ns/m σmin 0.02 m

g 9.81 m/s2 Dx 3000 N kcx 0 σc 0.02 m

re 0.3 m Ex 0 mc 1 kg εF 0.01

Tyre/wheel wind-up oscillations occur both at start and at end of step change in
propulsion torque MD. Results have been shown of the computations using the
semi non-linear transient tyre model (Fig.8.31) and the enhanced model
(Fig.8.32). Virtually the same results as depicted in Fig.8.32 have been achieved
by using either the fully non-linear or the restricted non-linear transient tyre
model. Only at low speed a frequency difference can be observed to occur when
using the semi non-linear model.

Figure 8.33 shows the results of standing on the slope, then freely rolling
backwards, subsequently applying a powerful propulsion, which is followed by
free rolling. The tyre longitudinal force passes its peak and reaches the lower end
of its characteristic which enables the wheel to spin up. Next, when the wheel
slows down rapidly, the peak is passed again and a damped wheel/tyre wind-up
oscillation occurs. Calculations have been performed using the enhanced
transient tyre model of Sec.7.3 (with contact mass). The restricted fully non-
linear tyre model, Eq.(7.35) not responding to load changes, turns out to yield
almost equal results. The other two models and especially the semi non-linear
model of Sec.7.2.3 (with σ constant), appear to perform less good under these
demanding conditions (less Fx reduction in spin-up phase which avoids an
equally rapid spinning up of the wheel). The low speed limit value Vlow was
increased to 5m/s to restrict the u deflection of the semi non-linear model over
a larger speed range. The factor A was increased to 4 which improved the
performance of this model. Omission of the limitation of the u deflection would
lead to violent back and forth oscillations.

Finally, Fig.8.34 depicts the simulated manoeuvre: from standstill rolling
backwards, then braking to wheel lock, which is followed by free rolling again
after which a short phase of acceleration occurs; finally, the quarter vehicle
slows down on the slope. During wheel lock the vehicle mass appears to vibrate
longitudinally at low frequency with respect to the ‘contact patch’. Calculations
have been conducted with the simple semi non-linear transient tyre model.
Practically equal results have been obtained when using one of the  other three
transient tyre models.
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Fig. 8.31. Standing still on slope, acceleration and subsequently rolling at constant speed.
Tyre/wheel wind-up oscillations occur both at start and at end of step change in
propulsion torque MD. Computations have been performed with the semi non-linear
transient tyre model with constant relaxation length (Vlow = 2.5m/s).
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Fig. 8.32. Same simulation as in Fig.8.31 but now using the enhanced non-linear transient tyre
model with carcass compliance (Vlow = 2.5m/s). Only at low speed a frequency
difference can be observed to occur. Very similar results are obtained with the fully
non-linear transient models with changing relaxation length.
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 Fig. 8.33. From standstill on slope, freely rolling backwards, then powerful propulsion
followed by free rolling. The tyre longitudinal force passes its peak and reaches the
lower end of its characteristic which enables the wheel to spin up. Next, when the
wheel slows down rapidly, the peak is reached again and a damped wheel/tyre
wind-up oscillation occurs. Calculations using enhanced transient tyre model (Vlow
= 5m/s) which together with the restricted fully non-linear model turns out to
perform best.
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Fig. 8.34. From standstill rolling backwards, then braking to wheel lock, followed by free
rolling again after which a short phase of acceleration occurs. Finally the quarter
vehicle slows down on the slope. During wheel lock the vehicle vibrates at low
frequency with respect to the ‘contact patch’. Calculations with the simple semi
non-linear transient tyre model. Practically same results are obtained when using
one of  the other three transient tyre models.
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It may be concluded that the restricted fully non-linear model and the
enhanced model with contact patch mass show excellent performance. It should
be kept in mind that the restricted model does not react on wheel load variations.
The semi non-linear model can be successfully used under less demanding
conditions.

The next chapter deals with the development of a more versatile tyre model
which can handle higher frequencies and shorter wavelengths. The enhanced
model and the restricted fully non-linear transient tyre model will be used as the
basis of this development.



Chapter 9

SHORT WAVELENGTH INTERMEDIATE
FREQUENCY TYRE MODEL

9.1.  Introduction

In Chapter 5 the stretched string model, possibly featuring tread elements and
tyre inertia, was used to study the dynamic response of the side force and
aligning torque to lateral, vertical and yaw motion variations of the wheel axle.
These motions, however, had to be restricted in magnitude to allow the theory to
remain linear. Several approximations were introduced to simplify the model
description which made it possible to consider ranges of relatively large slip
through a simple non-linear extension. The limitation, however, was that only
relatively large wavelength phenomena (> ca. 1.5 m) could be investigated with
these simplified models.

The present chapter describes a model that is able to cover situations where
the wavelength is relatively short (>ca.10cm and even shorter for modelling road
obstacle enveloping properties), the frequency is relatively high (< 60-80Hz)
while the level of slip can be high. Situations in which combined slip occurs can
be handled and the Magic Formula model can be used as the basis for the non-
linear force and moment description. As a result, a continuous transition from
time varying slip situations to steady-state conditions is realised. The original
model development was restricted to the more important responses to variations
of longitudinal and side slip. Also, the possibility to traverse distinct road
irregularities (cleats) was included in the tyre model. The model is based on the
work of Zegelaar (1998) and Maurice (2000) conducted at the Delft University
of Technology and supported by TNO Automotive and a consortium of
industries. The model is referred to as the SWIFT model (corresponding to the
title of the present chapter). Subsequent developments of the model made it
possible to also include variations of camber and turn slip.

The crucial step that was taken to reach further than one can by using the
string model is the separation of modelling the carcass and the contact patch. In
this way a much more versatile model can be established that correctly describes
slip properties at short wavelengths and at high levels of slip. The model
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Fig. 9.1. General configuration of the SWIFT model featuring rigid belt ring, residual
stiffnesses, contact patch slip model and effective road inputs.

achieved can be seen as a further development of the enhanced single contact
point model of Section 7.3, Fig.7.15. Five elements of the model structure can
be distinguished: (1) The inertia of the belt that has been taken into account to
properly describe the dynamics of the tyre. The restriction to frequencies of
about 60Hz allows the belt to be considered as a rigid circular ring. (2) The so-
called residual stiffnesses that has been introduced between contact patch and
ring to ensure that the total static tyre stiffnesses in vertical, longitudinal, lateral
and yaw directions are correct. The total tyre model compliance is made up of
the carcass compliance, the residual compliance (in reality a part of the total
carcass compliance) and the tread compliance. (3) The brush model that
represents the contact patch featuring horizontal tread element compliance and
partial sliding. On the basis of this model, the effects of the finite length and
width of the footprint are approximately included. This element of the model is
the most complex part and accomplishes the reduction of the allowed input
wavelength to ca. 10cm. (4) Effective road inputs to enable the simulation of the
tyre moving over an uneven road surface with the enveloping behaviour of the
tyre properly represented. The actual three-dimensional profile of the road is
replaced by a set of four effective inputs: the effective height, the effective
forward and transverse slopes of the road plane and the effective forward road
curvature that is largely responsible for the variation of the tyre effective rolling
radius. (5) The Magic Formula tyre model to describe the non-linear slip force
and moment properties. In Fig.9.1 the model structure has been depicted.

Similar more physically oriented models have been developed. A notable
example is the BRIT model of Gipser. He employs a brush-ring model featuring
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tread elements distributed over a finite contact patch with realistic pressure
distributions and demonstrates the use of the model with simulations of the tyre
traversing a sinusoidal road surface also at a slip angle and at braking, cf. Gipser
et al. (1997). Other models: FTire and RMOD-K, have been developed by Gipser
(1999) and Oertel and Fandre (1999) respectively. In Section 9.6 a comparative
outline of these two models and of the SWIFT model is presented.

In the ensuing theoretical treatment, first, in Section 9.2, the slip model of the
contact patch covering small wavelengths and large slip will be dealt with.
Secondly, the model for the description of the dynamic behaviour of the rigid belt
ring will be added, Sec.9.3. Thirdly, the feature of the model that takes care of
running over uneven roads will be addressed, Chapter 10. Full scale tyre test
results will demonstrate the validity of the model. 

9.2.  The Contact Patch Slip Model

In this section, we will first represent the contact patch with tread elements by
the brush model. Because of its relative complexity, the analytical model that
describes the non-steady-state response to slip variations is approximated by a
set of first-order differential equations. This contact model is tested by attaching
the base line of the brush model to the wheel plane through a compliant carcass.
For reasons of practical use, we finally introduce the Magic Formula to handle
the non-linear behaviour of the model.

9.2.1. Brush Model Non-Steady-State Behaviour

The steady-state characteristics of the model have been discussed in Chapter 3.
As a first step, we will derive the equations that govern the response of the forces
and moment to small variations of the wheel slip with respect to a given level of
wheel slip indicated with subscript o .

Longitudinal Slip

For the case of pure longitudinal slip 6co of the contact patch, the point of
transition from adhesion to sliding is located according to Eq.(3.44) with
(3.34,3.40) at a distance xt from the contact centre:

 (9.1)xt ' a
2θ |κco |

1%κco

&1
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The composite parameter 2 has been defined in Chapter 3, Eq.(3.46). The length
of the adhesion range 2am=a!xt that begins at the leading edge is characterised
by the fraction m that in the present chapter replaces the symbol 8 to avoid
confusion with the notation for the wavelength. We have:

     if       else   (9.2)m ' 1& θ
|κco |

1%κco

|κco |

1%κco

< 1
θ

m ' 0

An important observation is that at small variations of slip we may assume that
only in the adhesion range changes in deflection occur.

For the development of the transient model we start out from the basic rolling
contact differential equations (2.55,2.56). In the adhesion range we find for the
longitudinal tread element deflection uc in the case that only longitudinal slip is
considered:

(9.3)
Mu~c

Mt
&Vrco

Mu~c

Mx
' V

~

sxc ' &Vxcoκc
~

Where the tilde designates the variation with respect to the steady-state level. The
average linear speed of rolling of the contact patch is equal to that of the wheel
rim and reads:

(9.4)Vrco ' Vro ' Vx& Vsxo ' Vx (1% κco)

The Fourier transform of the deflection becomes with U and K denoting the
transformed quantities of u and κ respectively and ωs the path frequency:

(9.5)U
~

c '
1

iωs

1& e
&iωs(a&x)Vx /Vrco K

~
c

Here, the boundary condition which says that the deflection vanishes at the
leading edge is satisfied. By integrating over the range of adhesion and
multiplying with the tread element stiffness cp the frequency response function
of the variation of Fx to the variation of κc is obtained. With the reduced
frequency 

(9.6)ωs' '
mωs

1% κco

and the local derivative of Fx to 6c

    if       else   (9.7)CFκc'
2cpm

2a 2

1% κco

|κco |

1%κco

< 1
θ

CFκc' 0

the expression for the response function becomes when still adhesion occurs in
the contact patch ( first condition of (9.2)):
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Fig. 9.2. Frequency response function of the longitudinal force variation to longitudinal slip
variation of the brush model versus reduced path frequency according to the exact
analytical solution and that of an approximate substitute first-order system at a given
level of longitudinal slip. 

(9.8)HF,κc (iωs' ) '
CFκc

iωs'a
1& 1

2iωs'a
1& e

&2iωs'a

In Fig.9.2 the resulting amplitude and phase characteristics have been shown
together with those of an approximate first-order system. Especially the phase
curve appears to exhibit a wavy pattern in the higher frequency range. These
waves are considerably attenuated when the contact model is incorporated in a
more complete tyre model including carcass compliance as will be shown below.

The first-order substitute model has a frequency response function that reads:

 (9.9)HF,κc (iωs' ) '
CFκc

1% iωs'a
'

CFκc

1% iωsσc

The approximation shows the same high frequency asymptote and steady-state
level as the exact model. Apparently, the actual cut-off path frequency reads: 

 (9.10)ωs,c&o '
1% κco

ma
that, obviously, reduces to 1/a when the average slip 6co vanishes and as a
consequence m (9.2) becomes equal to unity. When the average slip is chosen
larger, the length of the adhesion range decreases and the cut-off frequency
becomes higher. The relaxation length of the approximate contact model reads
according to Eq.(9.9) with (9.6):

 (9.11)σc '
ma

1% κco
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Fig. 9.3. Frequency response function of the longitudinal force variation to longitudinal slip
variation of the brush model attached to a flexible carcass versus path frequency
according to the exact analytical solution and that of the approximate first-order system
at zero longitudinal slip. 

which reduces to zero when total sliding occurs.
The performance of the first-order system is reasonable but appears to

improve when the filtering action of the carcass compliance is taken into
account. In that configuration we have the wheel slip velocity Vsx that acts as the
input quantity. Adding the time rate of change of the carcass deflection produces
the slip velocity of the brush model. The carcass deflection u equals (with fore
and aft carcass stiffness cx introduced):

 (9.12)u '
Fx

cx

The feed-back loop in the augmented system apparently contains a gain equal to
iTs /cx. The resulting complete frequency response function reads:

 (9.13)HF,κ (iωs) '
HF,κc (iωs)

1% HF,κc (iωs) iωs /cx

When the approximate first-order system is employed for the contact model, the
frequency response function for the complete model becomes using (9.13) with
(9.9):

 (9.14)HF,κ (iωs)'
CFκc

1% iωsσ

where the total relaxation length has been introduced which apparently reads:

(9.15)σ ' σc%
CFκc

cx

' am%

CFκ

cx



SHORT WAVELENGTH INTERMEDIATE FREQUENCY TYRE MODEL418

The local longitudinal slip stiffness of the contact patch is here equal to the local
longitudinal slip stiffness of the complete model which obviously is due to the
assumed inextensibility of the base line of the brush model. So we have at steady
state:

(9.16)
MFx

Mκ
' CFκ ' CFκc

At vanishing slip we will add a subscript 0. When total sliding occurs, both σc

and CFκ reduce to zero and the total relaxation length F vanishes. 
Figure 9.3 presents the frequency response function for the total model at

vanishing slip, 6o = 0. It is noted that compared with the curves of Fig.9.2 the
wavy pattern is considerably reduced. The approximate system performs very
well. A wavelength of 10cm occurs at the path frequency Ts = ca. 60rad/m. 

The differential equation that governs the transient slip response of the
contact patch and through that the longitudinal force response, becomes for the
approximate system:

(9.17)σc

dκc'
~

d t
% |Vx|κc'

~
' |Vx|κc

~
' &V

~
sxc

The variation of the force becomes:

(9.18)F
~

x ' CFκcκc'
~

The structure of Eq.(9.17) corresponds with that of Eq.(7.37) of Chapter 7. The
response, however, is insensitive to load variations but shows a nice behaviour.
The transient response to load variations is sufficiently taken care of through the
effect of carcass compliance. As a result, the relaxation length for the response
to load variations becomes equal to CFκc/cx which is somewhat smaller than σ
(9.15) that holds for the response to slip variations.

When the average steady-state relation for the longitudinal slip

(9.19)|Vx|κco ' &Vsxco

is added to Eq.(9.18) the equation for the total transient slip is obtained:

(9.20)σc

dκc'

d t
% |Vx|κc' ' |Vx|κc ' &Vsxc

that completely corresponds to Eq.(7.54) of the enhanced non-linear transient
tyre model. The transient slip κcN is subsequently used as input into the steady-
state longitudinal force characteristic as will be explained later on and has
already been indicated in Chap.7, Sec.7.3.
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Lateral Slip

The lateral slip condition is more complex to handle because we have to deal
with both the side force and the aligning torque. In addition, in the test condition,
the carcass is allowed to not only deflect in lateral direction but also about the
vertical axis. This is in accordance with the ultimate SWIFT configuration. The
connected turn slip behaviour of the contact patch will be dealt with further on.

As with the longitudinal model development, first, the analytic response
functions of the brush model will be assessed, in this case to side slip variations.
Equation (2.56) gives rise to the following equation for the lateral tread
deflection variations:

(9.21)
Mv~c

Mt
&Vrco

Mv~c

Mx
' V

~

syc ' &Vxcoαc
~

Note that for the sake of simplification in the present chapter the notation tanα
is replaced by α, with or without subscript. Similar as for the longitudinal
deflection we find for the Fourier transform Vc of the lateral deflection
responding to slip angle variations, Ac denoting the brush model slip angle’s
transform (or actually of tanαc):

(9.22)V
~

c '
1

iωs

1& e
&iωs(a&x)Vx /Vrc0 A

~
c

Again, the responses to variations of the side slip only occur in the range of
adhesion. The transition point from adhesion to sliding now occurs at:

 (9.23)xt ' a 2θ |αco | &1

and the corresponding adhesion fraction becomes, cf. Eq.(3.8):

     if       else   (9.24)m ' 1& θ |αco | |αco | < 1
θ

m ' 0

As the slip angle of the contact patch remains small in the range where adhesion
still occurs, cosαco has been replaced by unity. By integration of the transformed
deflection over the range of adhesion the frequency response functions of the
force and the moment variations are established. They read at pure lateral slip
(Vrc0 = Vx) :

(9.25)HF,αc (iωs) '
CFαc

iωsam
1& 1

2iωsam
1& e

&2iωsam

and
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  (9.26)

HM,αc(iωs) '
cp

iωs

&

1

ωs
2

1& e
&2iωsam

%

&

a

iωs

1% (2m&1)e &2iωsam
% 2a 2m(1&m)

The local slope of the steady-state side force characteristic of the brush model
is given by:

   if       else   (9.27)CFαc' 2cpm
2a 2 |αco | < 1

θ
CFαc' 0

The normalised response function of the side force is identical to that of the
longitudinal force if the factor 1+κco is omitted in (9.6). The approximate first-
order description with response function 

(9.28)HF,αc (iωs)'
CFαc

1% iωsσc

where
(9.29)σc ' am

shows the same very good agreement with the exact result as assessed with the
longitudinal force response. Similarly we have the differential equation for the
variation of the transient side slip: 

(9.30)σc

dαc'
~

d t
% |Vx|αc'

~
' |Vx|αc

~
' &V

~
syc

The variation of the side force becomes:

 (9.31)F
~
y ' CFαcαc'

~

After adding the steady-state equation 

(9.32)|Vx|αco ' &Vsyco

to Eq.(9.30), the equation for the total transient side slip is obtained:

(9.33)σc

dαc'

d t
% |Vx|αc' ' |Vx|αc ' &Vsyc

As before, the resulting αcN is used as the input of the steady-state side force
function. 

We may follow the same procedure to assess the aligning torque equations as
was done in Sec.7.3. The resulting first-order response, however, does not
always agree with the analytically found tendency. The phase lag and the slope
of the high frequency amplitude asymptote indicate that a second-order
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behaviour prevails at zero average slip angle while at larger slip angles the
response gradually changes into a first-order nature. Apparently, the mechanism
is more complex and we should account for the transient response of the
pneumatic trail. The variation of the aligning torque may be written as follows:

(9.34)M
~

z ' & tco F
~
y& t~cFyo

The analysis conducted by Maurice (2000) shows that the analytically assessed
response function of the pneumatic trail variation to slip angle variations can be
approximated by the first-order system (9.33) and a so-called phase leading
network in series. The frequency response function of the latter reads:

(9.35)Hp(iωs) ' Ctαc

1% iωsσ1

1% iωsσ2

The factor in this formula represents the local slope of pneumatic trail
characteristic:

(9.36)Ctαc '
Mtc

M|αc|

which, apparently, is a negative quantity. According to Maurice, adequate values
for the parameters σ1 and σ2 can be obtained through the formulae:

(9.37)σ2 '
1

3
a (1& θ |αco|)

or alternatively:
(9.38)σ2 ' tc

and

(9.39)
σ1

σ2

'

1

1& m 2

The block diagram of the current system governed by the equations
(9.28,9.34,9.35) is presented in the upper diagram of Fig.9.4. The lower diagram
shows an alternative structure of the same system, thereby displaying the extra
moment ∆Mz which is governed by the ratio of parameters (9.39). This ratio
tends to infinity when full adhesion occurs. Then, m =1 and αco = 0 as becomes
clear from Eq.(9.24). The singularity involved has been circumvented by
Maurice through the introduction of a function that limits the value of (9.39)
around zero lateral slip, αco = 0. This, however, will slightly disturb the proper
response at zero slip angle and thus degrades the linear analysis around zero slip.
An alternative way of avoiding the singularity, which obviously is caused by the
fact that we actually may have a moment without the simultaneous presence of
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Fy
~

Mz
~

1+iλξφs c

1

Ctψc

1+iλξφs 1

1+iλξφs 2

CFψc

Fyo

tco

ψc
~

ψc
~'

t~
-

-

Fy
~

Mz
~

1+iλξφs c

1

1
1+iλξφs 2

CFψc

CtψcFyo

tco

ψc
~

ψc
~'

--

φ1φ2
CtψcFyo

-

-
+

ψt
~

phase leading 
     network

-δMz
~

c

'

Fig. 9.4. Block diagram of the contact patch model to generate short wavelength transient
responses of the side force and the aligning torque to small slip angle variations. The
original upper diagram can be replaced by the lower diagram, thereby avoiding
singularity at zero slip.

a force, is the consideration of the extra transient moment ∆Mz. This moment is
obtained by multiplication of the difference of the transient slip quantities for the
force and for the pneumatic trail with three factors the combination of which
may be designated with C∆M :

(9.40)C
∆M ' &

σ1

σ2

Ctαc Fyo

It turns out that now the singularity does not show up because both Fyo and 1/σ1

become zero at the same time. This indicates that indeed a moment may arise
although at that instant of time the side force is zero. After writing out the
factors in (9.40) by using expressions for the side force (3.11), the pneumatic
trail (3.13) and further (9.36,9.39) while in (3.11) λ is replaced by m and 2yσy

by θαco = z we find for C∆M :
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(9.41)C
∆M '

1

3
aCFαc0 ξ ' CMαc0 ξ

where CMαc0 denotes the aligning stiffness of the brush model at zero slip angle
and the non-dimensional factor ξ  is introduced:

    if   else   (9.42)ξ'
(1& z)2

2&z
3& (1& z)(1&2z/3)

1&z% z 2/3
z<1 ξ' 0

with
(9.43)z ' θ |αco|

Evaluation of (9.42) reveals that for z < 1 the factor ξ may possibly be
approximated by 

(9.44)ξ . 1& z
This approximation will be introduced later on when we will deal with the
application of the Magic Formula.

The differential equations that apply for the contact patch model subjected to
small side slip variations with respect to a given side slip level now read:

(9.45)σc

dαc'
~

d t
% |Vx|αc'

~
' |Vx|αc

~
' &V

~
syc

(9.46)σ2

dαt'
~

d t
% |Vx|αt'

~
' |Vx|αc'

~

from which the variation of the force and moment result:

(9.47)F
~
y ' CFαcαc'

~

(9.48)M
~

z ' & tco F
~

y & Ctαcαt'
~ Fyo% C

∆M (αc'
~
& αt'

~ )

It is of importance to check the step responses to side slip starting from zero slip
angle especially right after the start of the step change. Initially we have all
variables equal to zero while the slip angle input has reached the new value αc0.
The various time derivatives become:

( t ' 0: αc' αc0 , αc'' αt'' 0, Fy' Mz' 0)

(9.49)
dαc'

d t
'

1
σc0

|Vx|αc0 ,
dαt'

d t
' 0

dFy

d t
'

|Vx|

σc0

CFαc0αc0 ,
dMz

d t
' & tc0

dFy

d t
% C

∆M0

dαc'

d t
' 0

These results are correct. The last equation holds indeed because we have at
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Fig. 9.5. The brush model attached to a carcass possessing lateral and torsional compliance.

vanishing slip angle according to Eq.(9.42): ξ=1 and consequently C∆M = tc0CFαc0

where tc0 = a /3. Evidently, the extra moment is responsible for the proper start
of the course of the aligning torque showing zero slope. This property has been
ascertained to occur both in reality and with models, cf. Figs.5.10 and 5.11. Also
the response to a lateral wheel displacement y = IVsydt at zero forward speed
develops correctly. We find with Eq.(7.6) for the force: Fy =!CFy y and for the
moment: Mz = 0.

The equations may now further be appraised by first introducing tyre carcass
lateral and torsional compliance as depicted in Fig.9.5 and in the corresponding
block diagram of Fig.9.6, and subsequently comparing the results with analytical
solutions obtained by using Eqs.(9.25,9.26). 

As a reference, the steady-state characteristics of the model have been
presented in Fig.9.7. The diagram contains the curves for both the complete
model and for the brush model alone. It is of interest to note the lower cornering
stiffness due to the introduction of carcass compliance. The expression for the
lower side slip stiffness can be found to read:

(9.50)CFα '
c
ψ

c
ψ
% CMαc

CFαc

The relaxation length of the complete model found from the cut-off frequency of
the side force response function turns out to become:

(9.51)σ '

c
ψ

c
ψ
% CMαc

am%

CFαc

cy

'

c
ψ

c
ψ
% CMαc

am%

CFα

cy

The way the relaxation length changes with slip angle is depicted in the right-
hand diagram of Fig.9.7. As one might expect, we find that this length multiplied
with the increment in wheel slip angle is equal to the increase of the sum of
carcass lateral deflection and the average deflection of the adhering tread
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Fig. 9.6. Block diagram of the augmented system including carcass lateral and torsional
compliance.
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Fig. 9.7. Steady-state side slip force and moment characteristics and the relaxation length of
the brush model (the contact patch) and of the model including the flexible carcass
through which the brush model is attached to the wheel plane.

elements. 
At three different levels of side slip, αo =0, 0.08 and 0.16rad, the comparison

of the simulation model with the analytical model has been conducted in terms
of the path frequency response functions. Figure 9.8 shows the results. The
general conclusion is that at least for wavelengths larger than ca.15cm the
correspondence can be judged to be very good. The upper pair of diagrams that
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Fig. 9.8. Frequency response functions of linearised system including carcass flexibility at
different average slip angle levels according to the analytical solution and to the
approximate simulation model. The path frequency at a wavelength of the input wheel
plane motion equal to 20cm has been indicated.

refer to the side force response shows the sideways ‘shift’ of the phase lag curves
which is caused by the drop in relaxation length with increasing average slip
angle. The diagram for the aligning torque response clearly shows the transition
from second to first-order behaviour when the average slip angle changes from
zero to larger values.
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Fig. 9.9. Block diagram of the non-linear model of the contact patch (tread) also valid for
larger slip angle variations. 

The Eqs.(9.45-48) can be made applicable to the general case of large slip
angle variations by adding to (9.45,9.46) the steady-state relations and by
rewriting the Eqs.(9.47,9.48) in complete non-linear form so that, when
considering a small variation, the linearised equations are recovered. We obtain
for the transient slip quantities:

(9.52)σc

dαc'

d t
% |Vx|αc' ' |Vx|αc ' &Vsyc

(9.53)σ2

dαt'

d t
% |Vx|αt' ' |Vx|αc'

and for the force and moment:
(9.54)Fy ' Fy (αc')

(9.55)Mz ' & tc(αt') Fy% C
∆M(αc'& αt')

The last term representing the extra moment is left in linearised form. This term
may be replaced by the difference of two equal functions the derivative of which
equals C∆M, one with argument αcN and the other with α tN. Because of the fact that
the difference of these two arguments remains small, the linearised version is
expected to be sufficiently accurate. The block diagram of the non-linear system
displayed in Fig.9.9 may further clarify the structure of the model. 

To ensure that the above equations correctly describe the response to large
slip angle variations, the simulation model results have been compared with the
response of a physical model. That model features a finite number of tread
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elements attached to a straight base line. The deflections of carcass and elements
are computed at each time step in which the wheel is rolled further over a
distance equal to the interval between two successive tread elements and is
moved sideways according to the current value of the input slip angle. The actual
model employed contains 20 elements. The parameter values used in both models
have been listed in Table 9.1.

The slip angle variation is sinusoidal around a given average level. To cover
a broad range of operation the computations have been conducted at three
wavelengths: λ= 0.2, 1 and 5m, two average slip angle levels: αo = 0 and 0.08rad
and one amplitude: α̂= 0.08rad. 

Table 9.1. Parameter values used for brush model with flexible carcass

vertical load Fz      4000  N

friction coefficient µ       1.0   -

half contact length a     0.0535  m

longitudinal carcass stiffness cx   5.50×105 N/m

lateral carcass stiffness cy   1.25×105 N/m

torsional carcass stiffness cψ      4000 Nm/rad

tread element stiffness /m cp       107 N/m2

composite tyre parameter       4.77   -

Figure 9.10 presents the results for the two models. The range of the abscissa
has been chosen such that precisely two wavelengths are covered and the
distance rolled is large enough to have a situation close to the periodic state.
Again, the agreement is quite good and we may have confidence in the model.
The bottom diagram presents the variation of the slip angle. The top pair of
diagrams shows the responses at the relatively long wavelength of 5m so that a
condition closer to steady state has been reached. From Fig.9.7 it can be seen
that at the maximum α of 0.16 rad or almost 9E the aligning torque peak has
been surpassed by far. This explains the two dips per wavelength. At a
maximum of 0.08 rad the peak has just been surpassed. 

The less deep dips occurring in the upper curves of diagrams b and d are
delayed with respect to the slip angle when this has  reached its minimum value
equal to zero.  At steady state, when  λ64 , the moment (and the force) would
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  a   b

  c   d

  e   f

Fig. 9.10. Side force and aligning torque responses of the non-linear brush simulation model
with flexible carcass to sinusoidal slip angle input of the wheel plane with a slip
angle amplitude of 0.08rad and average levels of 0 (thin curves) and 0.08rad (fat
curves), compared with results of the physical model (broken curves). 

have become equal to zero at that instant. The deeper dips belong to the maxima
of the slip angle variation. The considerable reduction in amplitude of the
response at the shorter wavelengths nicely agrees with the findings of Fig.9.8.
The force responses correspond almost perfectly with the outcome of the
physical model. Evidently, a similar correspondence is expected to occur with the
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response of the longitudinal force to longitudinal slip variations. 

Turn Slip

The last item to be studied in the development of the contact model is the
response to variations in path curvature while the slip angle remains zero. We
will not attempt to develop a background analytical model but take a more
heuristic route. The results will be checked by comparing these with the
computed responses of the physical model. The responses derived for the string
model with tread elements as presented in Chapter 5, especially the step
responses to n as depicted in Fig.5.21c and d (ex.tr.el.) and Fig.5.10 may be
helpful. We observe that the force response is similar to that of the aligning
torque to a step change in slip angle. In both cases the slope at the start is zero.
The further approach of the force to its steady-state level is assumed to occur
according to the first-order equation with σc as relaxation length. The zero slope
at the start may be modelled by subtracting a response curve that starts with the
same slope but dies out after having reached its peak. Such a short term response
may be obtained by taking the difference of two responses each leading to the
same level but starting at different slopes the difference of which should
correspond to the initial slope of the uncorrected force response curve. For
simplicity we take for one of the two responses the uncorrected force response,
so that σF1 = σc. The relaxation length of the second response should then be
equal to σF2 =σc/2.  The resulting equations for the force response to the turn slip
velocity  read:ψ0 c

(9.56)σc

dnc'

d t
% |Vx|nc' ' &ψ0 c

(9.57)σF2

dnF2'

d t
% |Vx|nF2' ' &ψ0 c

The transient turn slip for the force finally becomes:
(9.58)nF' ' nc'& (nF2' & nF1' )' 2nc'&nF2'

and the side force at pure path curvature is obtained from the non-linear steady-
state response function:

(9.59)Fy ' Fy (nF')

For the range of turn slip a|n| < 1/θ the relation remains linear and equals:

(9.60)Fy ' CFnc0nF' 'CMαc0nF' '
2

3
cpa

3
nF'

The moment response may be divided into the response due to the contact patch
length that involves lateral tread deflections, and the response due to tread width
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giving rise to longitudinal deflections. First, we will address the moment
generated by the brush model with zero width. Figures 5.9,5.10 and 5.21 indicate
that we are dealing here with a response that after having reached a peak tends
to  zero. Again we may model this behaviour by subtracting two first-order
responses. For this, we introduce two transient turn slip quantities and n1' n2'
with respective relaxation lengths: σn1 and σn2. The two differential equations
become:

(9.61)σ
n1

dn1'

d t
% |Vx|n1' ' &ψ0 c

(9.62)σ
n2

dn2'

d t
% |Vx|n2' ' &ψ0 c

At zero speed the response of the difference would become:

(9.63)n1'& n2' ' &
1
σ
n1

&

1
σ
n2

ψc

The deflection angle of the tread due to transient spin is defined as:

 (9.64)αM ' &2a (n1'& n2')

which at zero speed becomes:

 (9.65)αM ' 2a
1
σ
n1

&

1
σ
n2

ψc

The condition to be satisfied is that the deflection angle is equal to the yaw angle.
Hence, we have:

(9.66)
1
σ
n1

&

1
σ
n2

'

1
2a

In the case of small angles we may write for the moment:

(9.67)Mz ' &CMαc0αM

From Eqs.(9.61,9.62) it can be assessed that the initial slope of the response of
the moment to a step change in spin from zero to nc0 turns out to be:nc'&ψ0 c /Vx

(9.68)
dMz

d s
' 2aCMαc0

1
σ
n1

&

1
σ
n2

nc0 ' CMαc0nc0

For the second condition to assess the ratios of the σn ’s to half the contact length
a, the best fit of the remaining course of the step response may serve. 

When the angle of rotation ψ  continues to grow, the state of total sliding will
be attained and the moment can be calculated to become:
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(9.69)Mzn4 ' &
3

8
aµFz

It has not been tried to derive the functional relationship between moment and
increasing steer angle for the standing (non-rolling) brush model. The following
non-linear function to describe the moment response in between the two extremes
has been chosen:

(9.70)Mz ' &Mzn4 sin arctan
CMαc0

Mzn4

g
n
αM

The factor gn has been introduced to have a parameter available to better
approach the response shown by the physical model. The value 1.15 appeared
to be appropriate. Similar to the relaxation length σc , Eqs.(9.29,24), the lengths
σn1,2 are reduced in proportion with the magnitudes of transient turn slip
quantities and .n1' n2'

For the evaluation of the model a comparison with the physical brush model
has been executed. First, the flexible carcass is attached to the tread model, cf.
Fig.9.5. To simulate this more complex situation, the approach of the enhanced
transient model of Sec.7.3 has been adopted. The additional dynamic equations
for the contact patch with mass mc and moment of inertia Ic and carcass
stiffnesses cy,ψ and damping coefficients ky,ψ read:

(9.71)mc (Vyc
0

% Vxψ
0

c )% ky 0v% cy v ' Fy

(9.72)0v ' Vyc& Vsy

(9.73)Ic ψ̈c% k
ψ
β0% c

ψ
β ' Mz

(9.74)β0 ' ψ0 c& ψ0

(9.75)Vsyc ' Vsy% 0v& Vxβ

This extension of the model may, of course, also be used for the previously
treated response to pure side slip. In fact, it is to be noted that the model for side
slip, Eqs.(9.52-55), should be added to the spin model, Eqs.(9.61,9.62,
9.64,9.70), to correctly account for their interaction in the complete model with
carcass compliance included. In the physical model the brush model
automatically responds to both the side slip and spin. When the wheel plane is
subjected to only side slip, the spin of the base line of the tread model remains
very small and may be neglected. On the other hand, when the wheel is being
steered with wheel side slip remaining zero (path curvature), the base line does
show non-negligible side slip especially at shorter wavelengths where the moment
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becomes considerable and as a result the base line is yawed and thus induces side
slip. This effect vanishes at steady-state turning. However, if we would add the
effect of tread width, the spin torque also acts at steady state and thereby
contributes largely to the side force response to spin of the complete model.

Due to the complexity that arises when adding tread width to the brush model,

  a b
          

   c d

          e                    f
Fig. 9.11. Side force and aligning torque responses of the non-linear brush simulation model

with flexible carcass to sinusoidal path curvature variations (turn slip at α =0) of the
wheel with an amplitude of an  equal to 0.08 and average levels of 0 (thin curves)
and 0.08 (fat curves), compared with results of the physical model (broken curves).
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Fig. 9.12. Steady-state turn slip force and moment characteristics of the brush model both with
and without flexible carcass. The effect of tread width has not been included.

cf. Chap.3, it has been decided to consider this aspect when dealing with the
ultimate model adapted to the use of the Magic Formula in the next section. 

The diagrams of Fig.911 present the computed responses to varying turn slip.
It is seen that the correspondence with the physical model is quite good. The
deformation of the moment response curve occurring at shorter wavelengths is
caused by the extra moment ∆Mz generated through the base line slip angle
variation.
 As a reference, the steady-state characteristics of the force and moment
response to turn slip,  as computed for the single row brush model with and
without carcass compliance have been shown in Fig.9.12. Up to an = 1/θ  the
aligning torque remains zero which causes the characteristics for the cases
without and with flexible carcass to become identical. The remaining course of
the curves for the system including carcass compliance has not been computed
as that part lies outside the range of evaluation.

Combined Slip

To cover the case of combined slip, also including longitudinal slip, the steady-
state brush model characteristics are to be adapted as formulated in Chapter 3,
Sec.3.2.3. In addition, the factor m that indicates the fraction of the contact
length where adhesion occurs and is used to reduce the relaxation length σc is to
be adapted by using the composite magnitude of slip of the contact patch:

(9.76)ζc' '
αc'

2
% κc'

2

1% κc'

This expression holds because we have assumed that the brush model is
isotropic. Using the magnitude of combined slip according to (9.76) the factor
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m can be assessed :
     if       else   (9.77)m ' 1& θζc' ζc' < 1/θ m ' 0

Maurice (2000) found excellent agreement with the physical model for the
combined slip cases: αo = 0.08rad and α̂ = 0.08rad and κo = 0.06 and κ̂ =  0.06
with a phase difference of 45Eand wavelengths of 0.2, 1 and 5m. For a more
precise treatment with the interaction in the sliding range taken into account as
well, we refer to the work of Berzeri et al. (1996).

Adding turn slip will influence the combined slip response further. The next
section approaches this matter in a pragmatic way. 

9.2.2. The Model Adapted to the Use of the Magic Formula

Now that we have treated all ingredients of the force and moment short
wavelength responses to longitudinal, lateral and turn slip and have developed
the structure of the contact model, we may carry on and show the performance
of the model adapted to the use of the Magic Formula the parameters of which
may have been assessed through full scale steady-state tyre measurements. The
model includes the effect of tread width.

To illustrate the matter, we will here consider a simplified set of formulae for
the steady-state responses, the complete version of which have been listed in
Chapter 4, Secs.4.3.2 and 4.3.3. Only the case of combined side slip and turn
slip will be considered. Adding braking or driving will not pose any problems.

A first problem that is encountered is the fact that in the model developed
above where the contact patch is represented by the brush model, the steady-state
characteristics employed belong to the brush model and not to the total model
including the compliant carcass. In Fig.9.7 the calculated total model
characteristics can be seen together with those of the contact patch alone.  

An obvious solution is to model the contact patch characteristics with the
Magic Formulae. These, however, will deviate from those assessed for the
complete tyre because the contact patch ‘sees’ a slip angle that differs (is
smaller) from that of the wheel plane. A set of adapted MF parameters may be
established off-line for the contact patch or an iteration loop may be included to
achieve the correct steady-state behaviour of the total model. A practical way has
been found which employs a first-order feed-back loop with small time constant.
Instead of introducing an additional first-order differential equation, the already
present first-order equation for the transient side slip αN  has been used. The
diagram of Fig.9.13 illustrates the set-up. A similar approach is followed in
Sec.9.3 to account for the camber angle of the belt being different from the
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Fig. 9.13.  Diagram explaining the model structure using the Magic Formula.

camber angle of the wheel plane.
The transient slip first-order differential equations listed below are identical

to those derived in the previous section except for the first equation for the lateral
transient slip. The factor  in (9.86) accounts for the effect of tread width.g

(

n

transient slip equations for side slip, turn slip and camber

(9.78)σc
dα'
d t

% |Vx|α' ' &Vsyc& |Vx|βst

(9.79)σ2

dαt'

d t
% |Vx|αt' ' |Vx|α'

(9.80)σc

dnc'

d t
% |Vx|nc' ' &ψ0 c

(9.81)σF2

dnF2'

d t
% |Vx|nF2' ' &ψ0 c

(9.82)σ
n1

dn1'

d t
% |Vx|n1' ' &ψ0 c

(9.83)σ
n2

dn2'

d t
% |Vx|n2' ' &ψ0 c

where in (9.78) the calculated deflection angle has been used:

(9.84)βst ' Mz /c
ψ



SHORT WAVELENGTH INTERMEDIATE FREQUENCY TYRE MODEL 437

composite transient slip quantities

 (9.85)nF' ' 2nc' &nF2'

(9.86)nM' ' g
(

n
nc' %gn12 (n1' &n2' )

dynamic contact patch equations

(9.87)mc (Vyc
0

% Vxψ
0

c )% ky 0v% cy v ' Fy

(9.88)0v ' Vyc& Vsy

 (9.89)Ic ψ̈c% k
ψ
β0 % c

ψ
β ' Mz

 (9.90)β0 ' ψ0 c& ψ0

(9.91)Vsyc ' Vsy% 0v& Vxβ

simplified side force and aligning torque Magic Formulae (MF)

(9.92)Fy ' Dy sin{Cy arctan(Byαy )}

(9.93)Mz ' & tFy% ∆Mz% Mzr

(9.94)Cy ' pCy1

(9.95)Dy ' µ Fz @ζ2

(9.96)By ' Kyα /(Cy Dy )

(9.97)Kyα ' CFα0 @ζ3

(9.98)αy ' α'% SHy

(9.99)SHy ' DHynsin{CHynarctan(BHynRonF' )}

(9.100)t ' Dt cos{Ctarctan(Btαt)}

(9.101)αt ' αt'% SHt

(9.102)SHt ' 0

(9.103)Dt ' qDz1 Ro@ζ5

(9.104)Drn ' DDrnsin{CDrnarctan(BDrnRonM' )}

(9.105)Mzr ' Mzn. Drn

(9.106)∆Mz ' C
∆M(α'& αt')

(9.107)ζ2 ' cos{arctan(Byn RonF' )}

(9.108)ζ3 ' cos{arctan(pKyn R 2
onF'

2 )}
(9.109)ζ5 ' cos{arctan(qDtn1RonF' )}
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factors reduced with slip

(9.110)C
∆M ' CFα0 t0 @max(1& θζ' , 0)

(9.111)σc ' a @max(1& θζ' , εlim)

 (9.112)σ2 '
t0

a
σc

(9.113)σF2 ' bF2σc ' 0.5σc

(9.114)σ
n1 ' b

n1σc

 (9.115)σ
n2 ' b

n2σc ' σc
1

b
φ1
&

1
2

with tyre composite parameter

(9.116)θ '
CFα0

3µFz

and the total magnitude of equivalent side slip

(9.117)ζ''
1

1%κ'
|α' |%ag

n12 |n1'&n2' |
2

%

CFκ0

CFα0

2

|κ' |% 2

3
b|nc' |

2

where in the present application κ= = 0.

other parameter relations

CFαc0 = CFκc0 (9.118)
tc0 = qDz1Ro

CMn*c0  = (2/3)2 b2 CFκc0

CMαc0 = tc0 CFαc0

CFnc0 = CMαc0

CMnc0 = CMn*c0 - tc0 CFnc0

t0  = tc0

CFα0  = CFαc0 /(1+ t0 CFαc0/cψ)
CMa0 = t0 CFα0

Cy  = pCy1

Bt  = qBz1 CFα0 /CFαc0

Ct  = qCz1

CFn0 = CFnc0 + CFαc0 CMnc0 /(c
ψ
+CMαc0)

CMn0 = CMnc0 c
ψ

/(c
ψ
+CMαc0)

Byn = pDyn1 (9.119)
CHyn = pHyn1

DHyn = pHyn2

BHyn = CFn0 /(Ro CHyn DHyn CFα0)
CDrn = qDrn1

DDrn = Mzn4 /sin(0.5π CDrn )
KzRnr0= (CMn0+t0 CFn0)/Ro

BDrn = KzRnr0 /(CDrn DDrn)
Mzn4= qCrn1 Ro µFz

kycrit = 2%(mccy) (9.120)
k
ψcrit = 2%(Iccψ)

ky = ζk kycrit

k
ψ

=ζk k
ψcrit
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Fig. 9.14. Steady-state side slip and turn slip force and moment characteristics of the overall
tyre model as defined by the Magic Formula. The effect of tread width has been
included. 

Table 9.2. Parameter values for tyre model with Magic Formula including quantities
introduced later on

Fz 4000N µ 1.0 pCy1 1.2 pKyn1 1.0

cy 125×103 N/m CFκc0 15Fz qBz1 22 pHyn1 0.15

cψ 4×103 Nm/rad a 0.0535 m qCz1 1.192 pHyn2 1.0

mc 0.5 kg b 0.9 a qDz1 0.05 qCrn1 0.12

Ic 0.0005 kgm2 Ro 0.3 m pDyn1 0.4 qDrn1 1.0

ζk 0.1 1.0 4.0 qDtn1 10g
(

n
g
n12

bF2 0.5 bn1 0.5 bn2 1/1.5

εlim 0.1 Vlow 1 m/s mqc 400 kg co 2.0

Steady-State, Step Response and Frequency Response Characteristics

To demonstrate the performance of the model, a number of typical
characteristics will be presented. The hypothetical steady-state pure side slip and
pure turn slip characteristics of the model have been given in Fig.9.14.

The step response graphs of Fig.9.15 show the proper shapes of the various
curves, notably the initial horizontal tangent of the response curves of the side
force to turn slip and of the moment to side slip, also shown in Fig.5.21 (no tread
width). Also, the peak of the moment response curve to spin and the dip of  the
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Fig. 9.15. Step response curves of the side force and of the aligning torque to side slip α, turn
slip (path curvature) n and steer angle ψ.

curve of the moment response to steer angle are exhibited as expected. 
Figure 9.16 presents the frequency response functions of the linearised system

at zero average side and turn slip with tread width effect included. The curves
may be compared with those of the string model with tread elements, cf. Fig.5.23
(with zero tread width). In Fig.9.17 the Nyquist plots of the moment response to
steer angle have been depicted. The upper diagram shows the influence of tread
width by changing the parameter . If equal to zero the thin tyre is represented.g

(

n

The value 1 corresponds with the baseline configuration. The lower graph
provides insight in the influence of the parameter  that governs theg

n12
magnitude of the effect of the transient yaw deflection angle αM (9.64,9.86). The
value 4 is used in the baseline configuration. When compared with the plots of
Figs.5.27 and 5.35 it may be concluded that the model is capable of approach-
ing the responses of more complex infinite order models and of actual tyres.  
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SHORT WAVELENGTH INTERMEDIATE FREQUENCY TYRE MODEL 443

Large Slip Angle and Turn Slip Response Simulations

The same sinusoidal manoeuvres have been simulated as was done before with
the brush based contact model. The complete non-linear set of equations (9.78)
to (9.120) have been used with parameters listed in Table 9.2.

    a     b

    c    d

    e     f

Fig. 9.18. Side force and aligning torque responses of the Magic Formula based simulation
model with flexible carcass and finite tread width to sinusoidal slip angle input of
the wheel plane with a slip angle amplitude of 0.08rad and average levels of 0 (thin
curves) and 0.08rad (fat curves). 
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The slip angle variation is sinusoidal around average levels αo = 0 and
0.08rad with one amplitude: α̂=0.08rad at three wavelengths: λ= 0.2, 1 and 5m.
Similarly, the turn slip has two average levels: ano = 0 and 0.08 and one
amplitude: an̂= 0.08, also at wavelengths: λ= 0.2, 1 and 5m.

The diagrams of Figs.9.18-19 present the results. We observe that the curves

    a   b

    c   d

    e    f
Fig. 9.19. Side force and aligning torque responses of the Magic Formula based simulation

model with flexible carcass and finite tread width to sinusoidal path curvature
variations (turn slip at α = 0) of the wheel plane with an amplitude of an  of 0.08
and average levels of 0 (thin curves) and 0.08 (fat curves). 
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Fig. 9.20a. Comparison of theoretical model calculations and experimental results performed
at 0.6 m/s on a 2.5 m drum (Maurice). The curves cover one wavelength of the
periodic responses to sinusoidal slip angle variations. Force response to slip angle
variations at two levels of side slip.

are quite similar to those depicted in the Figs.9.10 and 9.11. Only, as expected,
the moment response to turn slip is very much affected by the now introduced
effect of the tyre tread width. 

Maurice has conducted extensive experiments with a 205/60R15 91V tyre at
2.2 bar inflation pressure on a 2.5m drum test rig. The diagrams of Fig.9.20a
present the computed results compared with experimental data for the case of
pure side slip. The experiments have been carried out at very low speed to avoid
inertia effects of the moving tyre. The wavelength ranges from 0.3 to 2.4m. The
upper diagram refers to the case of zero average slip angle and 4Eamplitude. The
lower diagram shows the responses around an average slip angle of 4E which
causes the curves to deviate considerably from the input sinusoidal shape. The
curves clearly show that a shorter wavelength causes the response amplitude to
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Fig. 9.20b. Comparison of theoretical model calculations and experimental results performed
at 0.6 m/s on a 2.5 m drum (Maurice). The curves cover one wavelength of the
periodic responses to sinusoidal load variations. Force and moment response to
vertical load variations at two values of slip angle.

decrease and the phase lag to increase. It can also be observed that the responses
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occur more quickly at larger levels of slip which is due to the with slip sharply
decreasing relaxation length. The magic formula was used to model the steady-
state characteristics. The parameters were obtained from separate tests
performed on the drum at the much higher speed of 60 km/h. The different
conditions may explain the deviation in level of the calculated with respect to the
measured responses.

Figure 9.20b present the comparison with the results of a second series of
experiments at same conditions. Here, the vertical load is changed sinusoidally
while the slip angle is kept at a low level and at a higher level. The results are
similar to those discussed in Chapter 8, Fig.8.9. The moment response seems to
be improved with the more complex tyre model.

The agreement of the computed results with experimental data is quite good.
As has been reported by Maurice, also for the moment response a rather good
agreement has been established. Since at the maximum slip angle of 8E the peak
of the moment characteristic has been surpassed, the result becomes quite
sensitive to small differences between actual and model steady-state
characteristics of the aligning torque. 

9.2.3. Parking Manoeuvres 

Parking manoeuvres take place at very low or zero speed. The torque acting on
the tyre at such conditions may become very large. The influence of the finite
tread width is essential as the response to spin is now predominant. We might
employ the equations developed above but then we should take care of the
integration of the spin velocity to properly limit the built-up of the yaw transient
slip. Similar problems arose when considering the problem of braking to stand-
still or starting from stand-still, cf. Sec.8.6, Eqs.(8.112,8.113).

To achieve a much better agreement with experimental evidence, a different
approach will be followed in the present application. It may be noted that an
important characteristic is actually still missing. For the brush based model
Eq.(9.70) was used. The equation governs the variation of the aligning torque Mz

that arises when the non-rolling tyre is steered and the steer angle ψ is increased
from zero to and beyond the state of full sliding. Ultimately, the torque reaches
the magnitude that would also arise when the rolling tyre is subjected to a
constant rate of turning dψ /dt (while the slip angle remains zero), at a forward
speed Vx that decreases to zero. Then, the radius of turn R reduces to zero and
thus the spin approaches infinity. Figure 9.21 illustrates the situation.

The missing characteristic will be modelled by using a for this purpose
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Fig. 9.21. Approaching the maximum torque at stand-still in two ways: 1. by decreasing the
turn radius R to zero, 2. by increasing the steer angle !ψ while standing still. 

adequate model that has been developed by Van der Jagt (2000). In his
dissertation a model study was discussed that is especially aimed at the
generation of a proper moment response to steering at very low or zero speed.
First, the brush model was used to gain general insight into the phenomena that
occur. Qualitatively good results have been obtained using this model, notably
when a sinusoidal steer angle variation is imposed and the state of almost full
sliding is attained periodically. For practical usage, a special type of model was
developed of a nature completely different from the models used so far. Since
this model appears to perform very well in the near zero speed range we have
tried to incorporate Van der Jagt’s model in the existing model structure. For a
gradual transition from the new type of model to the existing one when the speed
approaches and surpasses a low speed threshold has been taken care of.

The principle of Van der Jagt’s approach is that at a given rate of change of
the steer input the growth rate of the tyre angular deflection β decreases in
proportion with a function of the remaining difference between the maximum
achievable deflection and the current deflection. The torsional stiffness is
assumed to be a constant and the resulting characteristic of the torque becomes
similar to a first-order response function. The calculated moment gradually
approaches its maximum value. When the direction of rotation of the wheel
about the vertical axis is changed, the distance to the new, opposite, peak torque
is large and, accordingly, the rate of reduction of the moment is large as well. It
is this feature of the model that is attractive since a similar behaviour has been
found to occur with the actual tyre subjected to an alternating left and right
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Fig. 9.22.Calculated and experimentally assessed variation of the moment vs steer angle for a
non-rolling tyre pressed against a flat plate at a load Fz = 4800N.

sequence of turning. The equations that govern the moment generation at stand-
still are as follows:

(9.121a)β0 ' & 1& p /0
Mzψ

Mzn4
/0
co

ψ0

 (9.121b)Mzψ ' CMψ β

     if           else      (9.121c)p' 0 sgnβ …&sgnψ0 p' 1

For the parameter value co = 2, Fig.9.22 presents the calculated variation of the
torque vs the steer angle compared with experimentally obtained results as
reported by Van der Jagt. The non-rolling tyre (size P205/65R15) is loaded to
4800N on a flat plate and subsequently steered at a rate of + and !1 deg./s. The
correspondence is quite good perhaps except for the initial phase where the wheel
starts to be steered from the condition where Mz = 0. To improve the model
performance Van der Jagt suggests to use an exponent co the value of which
depends on the last extreme of the deflection angle β. For possible further
refinements of the model we refer to the original work.

When, instead of the new approach, the Magic Formula would be used with
the integration limitation as suggested according to Eqs.(8.112,8.113), a sharp
peak would arise in the curve where the direction of turning is changed. As a
result, the moment decreases at a much slower rate than shown by the test result.

The problem is now how to integrate the new model feature in the original
model structure. The transient slip quantity , Eq.(9.86), may be recognisednM'
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to be proportional with the deflection angle. As can be seen from Eqs.
(9.80,9.82,9.83,9.86) this quantity is obtained through integration of:

(9.122)nM'¯0 ' g
(

n
nc'0 %g

n12 (n1'0 &n2'0 )

In the new configuration, the integration is conducted at a gradually decreasing
rate while approaching the maximum torque value. We have:

(9.123)nM'0 ' 1& wVlow p /0
Mzn

Mzn4
/0
2

nM'¯0

where      if           else      . (9.124)p' 0 sgnnM' … sgnnM'¯0 p' 1

At zero speed wVlow=1. The moment is found with the linear function, cf. (9.104):

(9.125)Mzn ' DDrnCDrnBDrnRonM'

For the standing tyre with speed Vx equal to zero the response to alternating steer
angle variations will follow a course similar to that of Fig.9.22.

It is now desired to gradually change to the original equations when the tyre
starts rolling. The transition is accomplished by adding up the following two
components. The first one decreases in magnitude with increasing speed until it
vanishes at Vx = Vlow while the second part increases from zero to its full value
also at Vx = Vlow. For the gradual change, the following speed window is used: 

     if      else   (9.126)wVlow '
1

2
1% cos π

Vx

Vlow

|Vx| < Vlow wVlow' 0

With this quantity (already used in (9.123)) the first part that prevails at low
speed becomes:

(9.127a)Mzn1 ' wVlow @ DDrnCDrn BDrn Ro nM'

and the fraction obtained from the original (here simplified) Eqs.(9.105,9.104):

(9.127b)Mzn2 ' (1&wVlow) @DDrn sin CDrnarctan BDrn RonM'

The resulting expression for the spin moment now reads:

(9.128)Mzn ' Mzn1% Mzn2

A similar method may be employed to improve the low speed model for the
side force  responding to lateral motions of the contact patch (cf. Fig.9.29, point
S) and for the fore and aft force to longitudinal motions of the same point S.

The adapted model will now be applied to the simulation of the motion of a
rigid quarter car model with mass mqc that, while a sinusoidal steering input is
applied, starts moving after 1.6sec. with a linearly increasing speed. The lateral
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Fig. 9.24.  The steer torque plotted vs steer angle during the manoeuvre of Fig.9.23.

acceleration of the quarter car axle results from the action of the side force that
begins to develop after the wheel has started to roll:

 (9.129)ÿqc '
Fy

mqc

The lateral wheel slip velocity is now not only a result of the yaw angle at a
forward speed of the vehicle  but also due to the lateral velocity of the wheel0xqc
axle . We have:0yqc

(9.130)Vsy ' & 0xqc sinψ % 0yqc cosψ

which serves as an input into the equations (9.88,9.91). The additional parameter
values have been appended in Table 9.2.
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Fig. 9.23. Simulation results of a parking manoeuvre (car leaving the parking lot while steering
sinusoidally).
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Figure 9.23 shows the courses of variation of various quantities vs time.
Simultaneously, in Fig.9.24, the moment is plotted vs steer angle. Several
phenomena occur that deserves to be noted. The steer angle has an amplitude
that is large enough to attain a level of the moment close to its maximum. The
moment starts to decrease in magnitude as soon as the steer angle passes its peak
value. The moment changes sign before the steer angle does the same. After 1.6
seconds the forward speed increases linearly with time and the side force starts
to built up as a result of the slip angle that begins to develop. The car shows a
lateral vibration in the low speed range as indicated by the fluctuations of the
side force. Evidently, the quarter car vibrates against the lateral tyre stiffness.
The moment amplitude decreases as the spin diminishes in amplitude due to the
increasing speed. The side force amplitude increases because of the larger lateral
oscillations of the quarter car mass induced by the increasing speed of travel at
the constant steer input pattern with time. The loops shown in Fig.9.24 give a
nice impression of the transition from the situation at stand-still  to the condition
at higher speeds. At stand-still the moment varies in accordance with the diagram
of Fig.9.22.

As mentioned before, to get a more accurate calculation of responses to
lateral and circumferential wheel displacements at or near forward speed equal
to zero, one might apply, instead of the abrupt integration limitation suggested
earlier, Eqs.(8.112) and (8.113), the same structure of additional equations
(9.123) and (9.124) and an adaptation such as achieved in Eq.(9.128).

9.3.  Tyre  Dynamics

The contact patch model has been used above in connection with a flexible
carcass. In the present section the inertia of the belt will be introduced. Since we
restrict the application of the model to frequencies lower than ca. 60Hz the belt
may be approximated as a rigid ring that is attached to the wheel rim through
flexible side walls. To ensure that the total static tyre stiffness remains
unchanged, residual springs have been introduced between contact patch and
belt. In certain cases, a by-pass spring directly connecting rim and contact patch
may be needed to improve model accuracy.

9.3.1.  Dynamic Equations

As depicted in Fig.9.25, the wheel axle position is defined by the location of
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Fig. 9.25.Model structure featuring contact patch, residual compliance, rigid belt, carcass
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wheel centre (X,Y,Z) and orientation (γ,θ,ψ). The wheel speed of revolution is
denoted by Ω. A moving axes system (C,x,y,z) has been defined of which the x
axis points forwards and runs along the line of intersection of wheel plane and
road plane. The y axis lies in the plane normal to the road plane and passing
through the wheel spin axis. The z axis forms the normal to the road surface. The
origin of the moving triad is the contact centre C. Another moving system of axes
(A,ξ,η,ζ) is introduced of which the origin A is located in the wheel centre, the ξ
axis is horizontal and the η axis runs along the wheel spindle axis. With respect
to the wheel rim the belt shows relative displacements: (xb

r,yb
r,zb

r) and
(γb

r,θb
r,ψb

r). The contact patch is displaced horizontally with respect to the belt
corresponding to the deflections of the residual springs: (xc

r,yc
r,zc

r) and ψc
r. The

superscript r designates a relative displacement; without the superscript we have
the displacement with respect to the inertial system (X,Y,Z). All relative
displacements are considered small and the dynamic equations may be linearised.

The wheel motion forms the input to the tyre system (possibly together with
the road profile). From these, the wheel velocities Vξ, Vη, Vζ and ωξ, ωη, ωζ

(defined with respect to the axle triad (A,ξ,η,ζ)) or alternatively  (definedγ0 , Ω , ψ0
with respect to the moving contact triad (C,x,y,z)) and the camber angle γ and the
radial tyre deflection ρz are available. The camber angle γ will be treated here as
a small quantity.

The belt considered as a rigid circular body has a mass mb and moments of
inertia Ibx,y,z. The carcass (side walls) possesses stiffnesses cbx,y,z and damping
coefficients kbx,y,z. In the figure the force and moment vectors Kc and Tc defined
to act from contact patch to and about the centre of the belt have been indicated.
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Their components are defined with respect to the (A,ξ,η,ζ) triad. The first of the
two sets of first-order differential equations for the six degrees of freedom reads:

dynamic belt equations

 (9.131)mb(Vbξ
0

& Vbηωbζ) % kbx 0x r
b % cbx x r

b % kbzΩ z r
b ' Kcξ

 (9.132)mb Vbζ
0

% kbz 0z r
b % cbzz r

b & kbxΩ x r
b ' Kcζ

 (9.133)Ibyωbη
0 % kbθθ

r
b

0

% cbθθ
r

b ' Tcη

 (9.134)mb( Vbη
0

% Vbξωbζ ) % kby 0y r
b % cby y r

b ' Kcη

 (9.135)Ibxωbξ
0 % IbyΩωbζ % kbγγ

r
b0 % cbγγ

r
b% kbψΩψ

r
b ' Tcξ

 (9.136)Ibzωbζ
0 & IbyΩωbξ%kbψψ

r
b

0 %cbψψ
r
b&kbγΩγ

r
b ' Tcζ

Several coupling terms show up. These are due to the gyroscopic effect and due
to the action of the rotating radial dampers with resulting coefficient  kbx = kbz and
the lateral dampers with resulting angular damping coefficients kbψ= kbγ. Figure
9.26 illustrates the mechanism that gives rise to the interaction terms. The
example concerns the term in (9.131). The following relations betweenkbzΩ z r

b
the two sets of wheel and axle angular velocities hold:

(9.137)ω
ξ
' γ0

 (9.138)ω
η
' &Ω% ψ0 sinγ . &Ω% ψ0 γ

 (9.139)ω
ζ
' ψ0 cosγ . ψ0

For the relative displacements between belt and wheel rim we have the second
set of six first-order differential equations:

(9.140)0x r
b ' Vbξ& V

ξ

 (9.141)0y r
b ' Vbη& V

η

 (9.142)0z r
b ' Vbζ& V

ζ

and
(9.143)γ

r
b0 ' ωbξ& γ0

(9.144)θ
r
b

0

' ωbη%Ω&ψ0 (γ%γ r
b)

 (9.145)ψ
r
b0 ' ωbζ&ψ0

The forces and moments appearing in the right-hand members of Eqs.(9.131-



SHORT WAVELENGTH INTERMEDIATE FREQUENCY TYRE MODEL 455

κ
belt

rim

radial dampers kbz

-zb
r

κ

rim

F
N

Fr

belt

rolling resistance force

-z
b
r

 xb
r

Fig. 9.26. The rotating radial dampers of the vertically deflected tyre gives rise to a resulting
fore and aft force acting between belt and rim. The resulting longitudinal deflection
produces a rolling resistance force Fr through the action of the normal load FN.

136) can be expressed in terms of the forces acting in the residual springs that
connect the contact patch with the belt. The residual spring deflections as defined
in the model can be observed in greater detail in Fig.9.27. The directions of the
residual spring forces and moments are defined to act parallel to the moving axes
system (C,x,y,z) with the z axis normal to the road plane. Also, the vertical
forces Fz are defined here, in contrast to the definition adopted in the remainder
of this book, according to the consistent SAE convention. For the normal wheel
load acting from road to tyre we introduce the positive quantity FN. We have in
case of a horizontal road plane with products of angles neglected and rl denoting
the loaded radius:

(9.146)Kcξ ' Fcx

(9.147)Kcζ ' Fcz&γFcy

(9.148)Tcη ' rlFcx % Mcy

(9.149)Kcη ' Fcy%γFcz

(9.150)Tcξ ' &rl Fcy& (rlγb&yr
c ) Fcz%Mcx

(9.151)Tcζ ' Mcz&yr
c Fcx

Obviously, a proper axes transformation is to be performed if the road plane is
not horizontal. As a result, transverse and forward slopes will affect the terms
appearing in the right-hand members of Eqs.(9.146-151). It is left to the user to
introduce these transformations.  

The contact patch body is subjected to forces acting in the residual springs
(subscript c) and external forces acting from road surface to contact patch
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Fig. 9.27.  Deflections of the residual springs attaching contact patch to belt.

(subscript s). Figure 9.28 illustrates the situation. The differential equations that
govern the horizontal dynamics of the contact patch body read:

dynamic contact patch equations

 (9.152)mc(Vcx
0

& Vcyψc
0 ) % kcx 0x r

c %ccx x r
c ' Fsx

 (9.153)mc(Vcy
0

% Vcxψc
0 ) % kcy 0y r

c %ccy y r
c ' Fsy

 (9.154)Icψ̈c % kcψψ
0

r
c %ccψψ

r
c ' Msz

and in addition equations for the residual deflections:

(9.155)0x r
c ' Vcx& Vbξ% re (Ω&θ r

b
0 )

(9.156)0y r
c ' Vcy& Vbη% rl(γ0 %γ

r
b0 )

(9.157)ψ0
r

c ' ψ0 c&ψ0 &ψ0
r

b

Also here, in the right-hand members, a road slope will have an effect. An axes
transformation is needed to properly introduce the belt velocities with respect to
the location of the contact patch. From the deflections and deflection rates the
residual spring and damper forces appearing in Eqs.(9.146-151) can be
determined. We have:

 (9.158)Fcx ' kcx 0x r
c %ccx x r

c

(9.159)Fcy ' kcy 0y r
c %ccy y r

c

 (9.160)Mcz ' kcψψ0
r
c %ccψψ

r
c

while
 (9.161)Mcx ' Msx
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 (9.162)Mcy ' Msy

 (9.163)Fcz ' Fsz

The contact forces and moments result from the contact slip model equations
developed in the preceding section. The computed forces and moments have been
defined according to the Magic Formula model which, at steady state, act with
respect to the moving axes system (C,x,y,z). These forces and moments, here
provided with subscript C , are to be transformed to arrive at the set of forces and
moments defined according to the system with lines of action shifted sideways
over the calculated ‘static’ lateral displacement of the contact patch withyr

st
respect to the wheel plane. These corrected quantities correspond to the forces
and moments provided with subscript s occurring in the Eqs.(9.152-154) and
(9.161-163).

(9.164)Fsx ' Fx,C

 (9.165)Fsy ' Fy,C

 (9.166)Msz ' Mz,C% yr
st @Fx,C

 (9.167)Msx ' Mx,C& yr
st @Fz,C

(9.168)Msy ' My,C

 (9.169)Fsz ' Fz,C

where the static lateral deflection is computed from the side force and the overall
lateral compliance of the standing tyre at ground level:
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 (9.170)yr
st '

Fsy

CFy

' Fsy
1

ccy

%

1
cby

%

r 2
l

cbγ

With the transient response variables computed with the aid of Eqs.(9.78-86)
plus Eq.(9.20) the contact forces and moments may be found by using these
variables as argument in the steady-state equations presented in Sections 4.3.2
and 4.3.3. We should, however, properly account for the response to a varying
camber angle of the belt plane.
 For this purpose, we introduce the tyre total spin velocity , cf. Eq.(4.76)ψ0

γ

which has been corrected for the static belt camber deflection to enable the direct
use of the relevant magic formulae (analogous to the use of βst in Eq.(9.78)):

 (9.171)ψ0
γ
' ψ0 c& (1&g

γ
)Ω sin(γ%γ r

b&γ
r
bst)

with the ‘static’ belt deflection angle:

(9.172)γ
r

bst ' & rl Fsy
1

cbγ

Further, we write instead of βst :

 (9.173)ψ
r

st ' Msz
1

ccψ

%

1
cbψ

The transient slip first-order differential equations are repeated below. They
are identical to Eqs.(9.78-86) plus Eq.(9.20) except for the now added effect of
the camber angle in the right-hand members. In (9.20)  may be replaced by κc' κ '
as at steady-state these are equal for contact patch and overall tyre model. The
same holds for the spin variables and . nc' n'
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transient slip equations for longitudinal, side slip, turn slip and camber

(9.174)σc
dκ'
d t

% |Vx|κ' ' &Vsxc

(9.175)σc
dα'
d t

% |Vx|α' ' &Vsyc& |Vx|ψ
r

st

(9.176)σ2

dαt'

d t
% |Vx|αt' ' |Vx|α'

(9.177)σc
dn'
d t

% |Vx|n' ' &ψ
γ

0

(9.178)σF2

dnF2'

d t
% |Vx|nF2' ' &ψ

γ
0

(9.179)σ
n1

dn1'

d t
% |Vx|n1' ' &ψ

γ
0

(9.180)σ
n2

dn2'

d t
% |Vx|n2' ' &ψ

γ
0

In addition, we need the composite transient slip quantities:

 (9.181)nF' ' 2n' &nF2'

(9.182)nM' ' g
(

n
n' %g

n12 (n1' &n2' )

The slip variables employed in the magic formulae (MF) are replaced by the
transient slip variables as indicated in the arguments of the following
expressions:

output forces and moments

(9.183)Fx,C ' MFFx (κ',α',nF' ,FN)

 (9.184)Fy,C ' MFFy (κ',α',nF' ,γ, FN )

(9.185)Mz,C ' & tC Fy,C% Mzr,C% sFx,C% ∆Mz

(9.186)tC ' MFt(κ',αt' ,nM' ,γ, FN)

     (9.187)Mzr,C ' MFMzr(κ',α' ,nM' ,γ, FN)

(9.188)∆Mz ' C
∆M(α'& αt' )

 (9.189)Mx,C ' Mx

 (9.190)My,C ' My
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 (9.191)Fz,C ' &FN

Equation (9.188) has been added which is in agreement with the short
wavelength transient slip theory, cf. Eqs.(9.106,9.110). The input to the transient
slip equations (9.171,174-180) is constituted by the velocities of the contact
patch, cf. Fig.9.29:

 (9.192)Vsxc ' Vcx

(9.193)Vsyc ' Vcy & Vx (ψ r
b %ψ

r
c )

 (9.194)ψc
0 ' ψc

0

The overturning couple Mx can be modelled with the function (4.E69) where the
Fy part may be replaced by the expression (4.122-124) with transient slip angle
as argument, if the actual momentary loaded radius rl (distance between points
A and C) has been properly accounted for in the (steady-state) measurements and
further processing. The wheel load FN (=|Fz|) and the rolling resistance moment
My depend on the radial deflection and on a number of other variables. The
subsequent section provides information on the experimentally assessed
functional relationships.  

Finally we need to establish the output forces and moments that act from the
tyre upon and about the wheel centre. These quantities are denoted with the
symbols K and T and are provided with the subscript a . The components are
defined to act along and about the axes of the axle triad (A,ξ,η,ζ). We find:

(9.195)Kaξ ' Kbξ

(9.196)Kaη ' Kbη

 (9.197)Kaζ ' Kbζ

(9.198)Taξ ' Tbξ% y r
b Kbζ& z r

b Kbη

 (9.199)Taη ' Tbη% z r
b Kbξ& x r

b Kbζ

 (9.200)Taζ ' Tbζ% x r
b Kbη& y r

b Kbξ

where the forces and moments acting from belt centre to rim are retrieved from
Eqs.(9.131-136):

(9.201)Kbξ ' kbx 0x r
b % cbx x r

b % kbzΩ z r
b

(9.202)Kbη ' kby 0y r
b % cby y r

b

(9.203)Kbζ ' kbz 0z r
b % cbz z r

b & kbxΩ x r
b
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Fig. 9.30. Measured and calculated half length a and half width b of the contact patch vs wheel
load, for the cases: loading on a flat plate and on a drum surface.

 (9.204)Tbξ ' kbγγ
0

r
b % cbγγ

r
b % kbψΩψ

r
b

 (9.205)Tbη ' kbθθ
r

b
0

% cbθθ
r

b

(9.206)Tbζ ' kbψψ
r

b0 % cbψψ
r

b & kbγΩγ
r
b

Values of inertia parameters normalised with tyre mass mo and reference moment
of inertia moro

2 with ro the unloaded tyre radius have been listed in App.3.

9.3.2.  Constitutive Relations

In the study of Zegelaar (1998) important observations have been made
regarding contact area dimensions, static and dynamic vertical stiffness and
characteristics at different speeds of rolling, static longitudinal stiffness of the
standing tyre, tyre radius growth with speed, rolling resistance, effective rolling
radius and rolling resistance couple. Much of the results will be repeated below.

Dimensions of the Contact Area

Prints of the contact patch may be obtained by using ink or carbon paper. The
shape appears to change from an oval shape at very low normal loads to a more
rectangular shape at higher values of the load. An effective rectangular contact
area may be defined with an area equal to that of the envelope of the actual print.
The ratio of the width and length of the rectangle is taken equal to that of the
actual contact area. The effective half length and half width are denoted as a and
b. The dimensions depend on the normal load FN (=|Fz|) and the following
formulae have been found to give a good approximation:

(9.207)a' (qa1 FN /FNo%qa2 FN /FNo)ro
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and
 (9.208)b' (q 3

b1 FN /FNo%qb2 FN /FNo) ro

with ro denoting the free tyre radius. Figure 9.30 presents the curves compared
with the measured effective quantities for the tyre pressed on a flat surface and
on a curved drum surface with 2.5m diameter. Obviously, the results are
satisfactory. The dimensions of the tyre were again: 205/60R15 91V at 2.2 bar
inflation pressure. The non-dimensional parameter values can be found in Table
9.3. In App.3.3 an alternative expression for a is presented based on the radial
deflection ρz instead of on the normal load FN. The resulting value is much less
dependent on the possibly changed inflation pressure, cf. Fig.A3.1.

Table 9.3. Parameter values for contact patch dimensions (205/60R15 91V at 2.2 bar).

FNo (= |Fzo|) = 4000 N,   ro (= Ro) = 0.312 m,   drum diameter = 2.5m

qa1,flat  = 0.140 qa2,flat  = 0.053 qb1,flat  = 0.240 qb2,flat  = !0.037

qa1,drum = 0.120 qa2,drum = 0.050 qb1,drum = 0.247 qb2,drum = !0.027

The Sidewall Stiffnesses and Damping   

The rigid ring model of the tyre freely rolling and loaded on the road shows three
in plane modes of vibration: the vertical mode and two angular modes. One of
these rotational modes vibrates in phase with rim angular vibration while the
other moves in anti-phase. The natural frequencies have been estimated with the
aid of experiments conducted on the drum test stand where the wheel, at fixed
axle position, rolls over a short cleat or is excited by brake torque fluctuations,
cf. Sec.9.4.2.

The experiments indicate that the natural frequencies lying in the range of 0-
100Hz, decrease with velocity. Other researchers found the same tendency,
notably Bruni, Cheli and Resta (1996). Since the sidewall stiffnesses are much
larger than the residual stiffnesses it is decided to make the in-plane sidewall
stiffnesses dependent on the speed of rolling. As to the out-of-plane vibrations,
Maurice did not ascertain the necessity to make the lateral, yaw and camber
stiffnesses speed dependent.

Zegelaar introduces a variable quantity QV that is a measure of the time rate
of change of the loaded tyre deformation due to rolling. We have the non-
dimensional quantity (Vo representing the reference velocity, cf. Sec.4.3.2):

(9.209)QV'
|Ω |
Vo

x r
b

2
% z r

b
2
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The following expressions for the sidewall stiffnesses have been found to be
appropriate:

 (9.210)cbx ' cbx0 1&qbVx QV

 (9.211)cbz ' cbz0 1&qbVz QV

 (9.212)cbθ ' cbθ0 1&qbVθ QV

The additional subscript 0 designates the situation of the loaded non-rotating tyre.
The vertical and longitudinal stiffnesses have been assumed equal to each other.
The parameters qbVx,z,θ  govern the speed dependency of the stiffnesses.

The sidewall damping coefficients kbi = kbx,y,z,γ,θ,ψ are considered to be constant
quantities. The interaction terms appearing in Eqs.(9.131-136) containing the
coefficients kbiΩ  are omitted since these terms affect the rolling resistance and
the aligning torque (also in steady state) and would make these speed dependent.
The introduction of material damping being inversely proportional with
frequency would be closer to reality. Further on, the rolling resistance will be
introduced in an alternative, better controlled way. 

For the constant stiffnesses non-dimensional parameters may be introduced.
We define with FNo, ro (=Ro) and mo (the reference load, free tyre radius and tyre
mass) the non-dimensional parameters q:

(9.213)cbx0,y,z0 ' qcbx,y,z FNo/ro

(9.214)cbγ,θ0,ψ ' qcbγ,θ,ψFNo ro

(9.215)kbx,y,z ' 2qkbx,y,z mo FNo/ro

(9.216)kbγ,θ,ψ ' 2qkbγ,θ,ψ mo FNo r 3
o

To provide more damping when the wheel speed gets close to zero, we may
follow the theory of Chapter 7 and introduce kV,low as demonstrated in Chap.8,
Eqs.(8.127,8.128) where the slip speed Vsx may be replaced Vsxc. In a similar way
the residual stiffness and damping parameters cc and kc have been normalised.

The Normal Force

The spring with residual stiffness ccz indicated in Fig.9.27 hides a structure that
is a lot more complex than a spring with constant stiffness. Experiments reveal
that the force deflection characteristics are non-linear: the force develops after
contact has been made and increases slightly more than proportionally with the
overall normal deflection ρz. Also, the tyre grows with speed due to the
centrifugal action. Figure 9.31 illustrates both phenomena. Furthermore, it has
been found useful to introduce Fx and Fy interaction terms in the vertical
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Fig. 9.31. Vertical load vs normal deflection characteristics at various forward velocities and tyre
radius growth with speed.

stiffness, cf. Reimpell et al. (1986). The following formula is proposed for the
normal force including interaction and overall stiffness and growth functions:

(9.217) FN' |Fz|'

1%qV2|Ω|
ro

Vo

& qFcx1

Fx

FNo

2

& qFcy1

Fy

FNo

2

(qFz1%qFz3γ
2)
ρz

ro

%qFz2

ρ2
z

ro
2

FNo

With radius rc of assumed circular cross section contour, the deflection becomes
at wheel camber angle γ (relative to normal to road plane), also cf. Eq.(7.46):

 (9.218)ρz ' max (ro&rl%∆r) cosγ%rc (1&cosγ) , 0

 The tyre radial growth changes quadratically with rotational velocity:

(9.219)∆r ' qV1ro(Ω ro /Vo)
2

Here, ro denotes the radius of the free non-rotating tyre, rl the loaded radius
(distance between wheel centre and contact centre) and ∆r the increase in free
tyre radius due to wheel rotation velocity. The non-dimensional parameter qV1

governs the influence of tyre growth, qV2 the stiffness variation with speed, qFcx,y1

the interaction with horizontal forces and qFz1,2,3 the stiffness and non-linearity of
the force deflection characteristic at zero speed and zero horizontal forces.
Appendix 3 presents the parameter values fitted to experimental data. To
radically simplify (9.218) take rc =ro-rl +∆r being equal to the radial deflection.

From the overall characteristics the properties of the residual spring are to be
derived. An exact functional relationship may be established but it can be found
that the residual normal spring characteristic can be approximated by the third
degree polynomial function:

(9.220)FN' |Fz|' a1ρzr%a2ρ
2
zr%a3ρ

3
zr



SHORT WAVELENGTH INTERMEDIATE FREQUENCY TYRE MODEL 465

with the FN related normal residual spring deflection (taking into account
geometrical interaction terms with horizontal deflections):

(9.221)ρzr' ρz% z r
b cosγ&qFcx2ρ

2
x/ro&qFcy2ρ

2
y /ro

Here, zb
r is the radial displacement of the centre of the belt ring with respect to the

wheel centre and ρx,y represent the longitudinal and lateral tyre contact
deflections. The actual loaded radius rl results from the calculated deflections
(cf. Fig.4.30 for measured evidence) with camber influence included:

(9.222)rl' ro%z r
b%∆r%{rc(1&cosγ)&ρzr&(qFcx2ρ

2
x%qFcy2ρ

2
y) /ro} cosγ

The coefficients appearing in (9.220) can be expressed in terms of sidewall
stiffness cbz and wheel speed of revolution Ω :

(9.223)a1 '
cbz A1

cbz&A1

(9.224)a2 '
c 3

bz A2

(cbz&A1)
3

(9.225)a3 ' 2
c 4

bz A 2
2

(cbz&A1)
5

where with Reimpell’s terms in (9.217) omitted, we obtain:

(9.226)A1' (qFz1%qFz3γ
2)(1%qV2 |Ω |ro /Vo)FNo /ro

(9.227)A2' qFz2 A1 /{(qFz1%qFz3γ
2)ro}

where the non-dimensional parameters qV2 and qFz1,2,3 of Eq.(9.217) appear. The
horizontal tyre deflections at road surface level with respect to the wheel rim are
(at small camber):

(9.228)ρx ' x r
b% roθ

r
b%x r

c

 (9.229)ρy ' y r
b& roγ

r
b%y r

c

Appendix 3 provides the relevant parameter values for the passenger car tyre
that has been tested.

Free Rolling Resistance

Experiments show that the rolling resistance force Fr (pointing backwards) is
proportional to the tyre normal load FN. A history on this subject can be found
in the publication of Clark (1982). We have:

(9.230)Fr ' fr FN
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The rolling resistance coefficient fr depends on the forward speed and may be
expressed in terms of powers of the speed, cf. Mitschke (1982):

(9.231)fr ' qsy1% qsy3|Vx/Vo|% qsy4(Vx/Vo )4

Parameter qsy1 governs the initial level of the rolling resistance force and
typically lies in between 1 and 2 %. Parameter qsy3 controls the slight slope of the
resistance with speed. The last parameter qsy4 represents the sharp rise of the
resistance that occurs after a relatively high critical speed is surpassed. Then, the
so-called standing waves show up as a result of instability, cf. Pacejka (1981),
or according to an alternative theory due to resonance, cf. Brockman and
Braisted (1994). The formation of standing waves gives rise to large deflection
variations and considerable energy loss. The phenomenon may result in failure
of the tyre and poses an upper limit to the safe range of operation of the tyre. 

Below, we will see that the rolling resistance will be introduced in the tyre
model through the rolling resistance moment that is imposed on the tyre belt ring
as an external torque about the y axis, cf. Eq.(9.236).

Effective Rolling Radius, Brake Lever Arm, Rolling Resistance Moment

In Chapter 8 the notion of the effective rolling radius has been introduced. Figure
8.12 shows the results of experiments of tyres running over a drum surface. In
Subsection 8.3.1 the theory is restricted to a linearised representation of the
variation of the effective rolling radius with radial defection. The complete non-
linear variation versus normal load FN may be described by the expression:

(9.232)re' ro% ∆r& qre1ρz% Dre arctan Breρz

with
Dre' qre2 FNo /CFz

 (9.232a)
Bre' qre3 /Dre

and the vertical stiffness of the standing tyre at nominal load FNo as derived from
Eq.(9.217):

(9.232b)CFz '
FNo

ro

q 2
Fz1% 4qFz2

The longitudinal slip velocity is defined with re introduced as the slip radius, cf.
e.g. Eq.(8.32). Note the slightly deviating formula in App.3, Eq.(A3.7). 

 In the present model with the belt ring and contact patch modelled as
separate bodies, the longitudinal slip velocity Vsxc of the contact patch is used as
input in the transient slip differential equation (9.174). In Eq.(9.192) with
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Fig. 9.33. Power flow diagram (bond graph) of driven tyre wheel combination in steady state.

κMD tyre
FD Vx

Vsxc-FxκMy

R R

RS

Fig. 9.33. Power flow diagram (bond graph) of driven tyre wheel combination in steady state.
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Fig. 9.32. The driven tyre-wheel combination with deflected belt and residual spring.

(9.155) the effective rolling radius re accomplishes the transmission of the
rotational speed of the belt to the residual deflection rate of change. At steady-
state condition, the deflection rates vanish and we have the following relation for
the longitudinal slip speed:

(9.233)Vsxc' Vx& reΩ

We may consider the power balance of a wheel subjected to a propulsion torque
MD and a drag force FD acting backwards on the wheel in its centre. Figure 9.32
depicts the situation. The connected power flow diagram is presented in Fig.9.33.
The S represents a power source (the engine) and the R’s are resistors where
energy is dissipated. The balance of power requires that the equation holds:

(9.234)MDΩ ' FD Vx% MyΩ & Fx Vsxc

or with (9.233):

(9.235)MD& My ' Fx re

This suggests, at least for the model employed, that the moment arm equals the
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Fig. 9.35. Tyre radii measured on 2.5m drum as a function of the forward speed at three axle
heights corresponding to the indicated initial loads. Average level and amplitude of
brake torque are small.

effective rolling radius (defined at zero driving or braking torque: free rolling).
Consequently, the block named ‘tyre’ in the diagram of Fig.9.33 represents,when
unfolding the bond graph, a junction structure containing a transformer with
modulus re that transforms the angular speed into (a part of) the slip speed and,
in opposite direction, the slip force into the drive torque.

Experiments have been carried out by Zegelaar on both the flat plank
machine and the drum test stand to establish the effective rolling radius and the
moment arm. In these tests a brake torque was applied to the wheel. The moment
arm may be termed as the brake lever arm. The diagrams of Fig.9.34 have been
obtained from tests performed at zero (brake lever arm) and very low speed of
travel (effective rolling radius). Especially in case of the flat surface an excellent
agreement has been found to occur. It is assumed that the growth of the effective
rolling radius with speed is equal to that of the free tyre radius, cf. Eq.(9.219).

The diagrams of Fig.9.35 present the influence of speed on the two radii. The
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Fig. 9.36. Ratio of brake torque increment to brake force increment as function of level of
brake force at a velocity of 25km/h and three different axle heights (loaded radii).

loaded radius has been kept fixed so that the vertical load rises when the speed
is increased. Three different axle heights have been selected corresponding to the
indicated initial vertical loads at zero speed FN0. The left-hand diagram shows the
degree of fit for the effective rolling radius. The right-hand diagram shows the
correspondence with the brake lever arm. The tests from which the brake lever
arm can be assessed  have been conducted at low levels of the average and the
standard deviation of the brake torque random input (120 and 22Nm
respectively). The brake lever arm results from the longitudinal force response
to the imposed brake torque variation at zero frequency. The influence of the
average brake torque on the ratio of the torque amplitude and the force amplitude
at zero frequency, !dMB/dFx, is given in Fig.9.36. This ratio does not appear to
be a constant. Especially at low loads and relatively large braking forces large
deviations arise from the value of the effective rolling radius. Obviously, due to
its definition, the effective radius is not affected by the magnitude of the brake
force.

With the effective radius adopted as the brake or driving torque moment arm
the rolling resistance moment becomes (acting about C-y axis):

 (9.236)My' Fx (re&rl)% Frrl @arctan(Vr /Vo )

which also contains the free rolling resistance moment Frrl according to
Eq.(9.230) and the arctan function to take care of a possible sign change of the
wheel rolling speed.

In Appendix 3 a complete set of parameter values has been listed for both the
Magic Formula model and the SWIFT model.
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9.4. Dynamic Tyre Model Performance

A number of experiments has been conducted at the Delft University of
Technology to assess the parameters of the dynamic model and to judge its
performance. The steady-state side slip, longitudinal slip and camber force and
moment characteristics have been typically assessed from over the road
experiments with the Delft Tyre Test Trailer. For the model performance
evaluation, steady-state characteristics have been used, obtained from tests
carried out on the drum with the strain gauge equipped measuring hub mounted
in the measuring tower, cf. Fig.9.37. 

In Section 9.4.1  the dedicated dynamic test facilities have been indicated,
followed by Section 9.4.2 with the presentation of the model dynamic behaviour
in comparison with experimental data. In Chapter 10 the model will be extended
to include the description of running over road obstacles (cleats). This model
extension is followed by the presentation of experimental results compared with
model behaviour.

The reader is referred to Chapter 12 for a more extensive description of
steady-state and higher frequency test facilities including the dedicated rigs
mentioned in the section below. For some practical details regarding parameter
assessment for advanced dynamic tyre models Section 10.2 may be of interest.
In this context, it is important to note that cleat tests are most useful to determine
both the in-plane and the out-of-plane natural frequencies of the model. Also
modal testing of the unloaded tyre with fixed wheel axle may provide useful,
possibly additional, information.

9.4.1. Dedicated Dynamic Test Facilities

Dynamic Brake and Cleat Test Rig

Experiments have been conducted on the 2.5 m steel drum test stand provided
with a specially designed rig equipped with a disc brake installation, cf. Fig.9.37
and for more details: Chapter 12, Fig.12.6. Brake torque fluctuation tests (Sec.
9.4.2) and dynamic cleat tests (Sec.9.5.5) have been carried out. The test
facilities with numerous experimental and simulation results have been described
in detail by Zegelaar (1998).

The wheel axle height can be adjusted to select the tyre initial load. During
the tests the axle position is held fixed causing the wheel load to rise with
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Fig. 9.37.  Principle setup of the measuring tower and of the dynamic brake and cleat test stand.

increasing speed. The wheel axle bearing supports are equipped with piezo
electric load cells. Steady-state or average force levels can not be measured very
well with these force transducers. To provide an indication of the actual load
increase with speed as measured in the measurement tower equipped with a hub
provided with strain gauges, Table 9.4 gives for a series of initial deflections (ρz0

at zero speed) the values of the average vertical force derived from
measurements at different speeds. The values have been obtained from
Eqs.(9.217-219) after having fitted the parameters involved. The loads shown
apply for the cases of nominal loads 2000, 4000, 6000N indicated in the graphs
presented in the next section.

              Table 9.4. Vertical load on 2.5m drum at constant axle height and increasing 
speed  (tyre: 205/60R15 91V at 2.2 bar)

 Vx [km/h]        initial vertical deflection  ρz0   [mm]

          0            0      11.90      22.57      32.33

vertical load FN  [N]  at constant axle height

          0            0       2115       4153       6133

        25            7       2166       4246       6288

        39          17       2202       4307       6352

        59          40       2264       4404       6483

        92        100       2388       4588       6727

      143        249       2642       4939       7169
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Fig. 9.38. Principle sketch of the trailing arm ‘pendulum’ test rig exciting the tyre almost
purely laterally. Frequencies up to ca. 25 Hz, adequate for assessing the tyre
relaxation length and gyroscopic coupling parameter.

centre point steering

Fig. 9.39. Principle sketch of the yaw oscillation test rig featuring centre point steering.
Frequencies up to ca. 65 Hz enabling the assessment of tyre out-of-plane  inertia and
stiffness parameters including residual stiffnesses and rigid modes.

Pendulum and Yaw Oscillation Test Rigs

To assess the lateral and yaw tyre dynamic parameters two test rigs have been
developed. One is the trailing arm ‘pendulum’ test stand with at one end a
vertical hinge and at the other the steering head with piezo-electric measuring
hub. At that point the arm is excited laterally up to ca. 25Hz through a hydraulic
actuator. Cf. Fig.9.38 and for more details: Chapter 12, Fig.12.7. The rig is
useful to assess the overall relaxation length and the gyroscopic couple
coefficient, both needed for the simpler transient models treated in Chapter 7.
The idea of the pendulum concept originates from Bandel et al. (1989). They
designed and used an actual pendulum rig. The natural frequency of the freely
swinging trailing arm with tyre rolling on the drum was taken to establish the



SHORT WAVELENGTH INTERMEDIATE FREQUENCY TYRE MODEL 473

relaxation length σ. This quantity is the parameter of the first-order differential
equation such as used in Chapter 7. Bandel found that σ increases with speed.
However, when using a model in which a belt ring with mass is used, it turns out
that the parameters can be kept constant, cf. Vries and  Pacejka (1998b).
Consequently, tyre inertia, notably the gyroscopic couples, give rise to the speed
dependency of the effective relaxation length. 

Another rig was developed to investigate the response of the tyre subjected
to yaw oscillations at frequencies up to ca. 65 Hz. The structure depicted in
Fig.9.39 is light and very stiff, also see Fig.12.8. The two guiding members with
flexible hinges intersect in the vertical virtual steering axis that is positioned in
the wheel centre plane (centre point steering). A hydraulic actuator is mounted
to generate the yaw vibration. The wheel axle is provided with a piezo-electric
measuring hub. The tyre is loaded by adjusting the axle height above the drum
surface. During the test the loaded radius remains constant.

The measuring tower, cf. Fig.9.37, provided with a hydraulic vertical axle
positioning installation is used to conduct pure braking and pure side slip tests
as well as combined slip experiments at axle height oscillations and radial
dynamic stiffness tests up to ca. 15 Hz. 

A detailed description of the various side slip test facilities together with a
full account on the numerous experiments conducted and the simulation results
of the model have been given by Maurice (2000) and for motorcycle tyres by
Vries and Pacejka (1998a,b).

9.4.2. Dynamic Tyre Simulation and Experimental Results

In general, the values of the model parameters can be estimated by minimizing
the difference between measured and calculated frequency response functions
(both amplitude and phase). In some cases (in particular the in-plane response)
special aspects of the response functions may be considered to successfully assist
the parameter assessment process. These aspects are: the position and width of
resonance peaks (sidewall and residual stiffnesses and damping), the phase
relationship in the low frequency range (overall relaxation length which itself is
not a parameter!), the yaw response at zero speed (yaw residual stiffness). The
residual damping ratios have been chosen equal to those of the sidewalls.
Another help is the establishment of the inertia parameters of the relevant part
of the tyre by cutting the tyre into pieces and considering the parameters of these
parts. Rolling over a cleat might be used to estimate some of the parameters but
the most accurate way is the identification through frequency response functions.
These are obtained with the aid of the random brake test with the measured brake
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torque (or the measured wheel speed) used as input, the yaw oscillation test and
the vertical axle oscillation test. 

Vibrational Modes

The vibrational modes of the tyre may be assessed through modal analysis of the
tyre wheel system with axle fixed and tyre loaded and/or unloaded. When
comparing these results with calculated modes using the parameter values
assessed by means of the frequency response functions of the rolling tyre, it is
found that the stiffnesses found from the dynamic rolling experiments are ca.
30% lower than those estimated from experimental modal analysis, cf. Zegelaar.
These differences must be due to the different operational conditions and the
larger amplitudes of the vibrations and higher temperatures that occur in the
realistic rolling experiments. 

The calculated vibrational rigid body modes at zero speed using the
parameters as established from experiments carried out on the drum have been
depicted in Figs.9.40 and 9.41.

We have four in-plane degrees of freedom of belt ring and wheel rim (two
translational and two rotational) and three out-of-plane degrees of freedom
(lateral, yaw and camber). As a consequence, we can distinguish four in-plane
rigid modes and three out-of-plane rigid body modes. The mode shapes change
considerably when the tyre is making contact to the drum surface. The free
rotation (0 Hz) mode changes into a mode with the belt and rim rotating in phase
with respect to each other. The lateral and camber modes appear to form
combinations: one low frequency mode with a low axis of camber oscillations
and one high frequency mode with a rotation axis closer to the top of the tyre and
relatively large lateral deflections in the contact zone. The yaw mode in the
loaded case shows a higher calculated natural frequency since the effect of turn
slip has been included which was not the case in Maurice’s original model. This
means that the yaw stiffness of the contact tread has now been accounted for.

The natural frequencies n and damping ratio ζ change with the speed of
rolling. In Table 9.5 the values have been presented for the loaded tyre running
at a velocity of 0 and 30 m/s. Especially the out-of-plane modes show
considerable changes in frequency and damping. The camber and yaw mode
natural frequencies which are identical in the unloaded zero speed case, exhibit
a with speed growing mutual difference with the camber mode frequency
becoming smaller and the yaw mode frequency larger. 
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Fig. 9.41. Calculated out-of-plane vibrational modes of tyre/wheel system with axle fixed and
tyre free or loaded on the drum surface with vertical load FN = 4000N and zero
speed.
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Fig. 9.40. Calculated in-plane vibrational modes of tyre/wheel system with axle fixed and tyre
free or loaded on the drum surface with vertical load FN = 4000N and at zero speed.
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Table 9.5. Natural frequencies and damping of vibrational modes of rigid ring tyre model
calculated at a vertical load FN = 4000N for two values of forward speed

  forward speed   [m/s]        0       30        0      30

n   [Hz]             ζ    [%]

  in-plane modes

  in-phase       33       30     0.10    0.25

  vertical       80       75     0.05    0.05

  anti-phase       76       71     0.05    0.05

  longitudinal     100     129     0.77    0.35

  out-of-plane modes

  camber       44       33     0.03    0.05

  yaw       54       51     0.03    0.04

  lateral     103     101     0.01    0.24

Frequency Response Functions

A typical example of measured and calculated in-plane frequency response
functions has been depicted in Fig.9.42. Coherence functions show that the tests
give sensible results up to ca. 80 Hz. Similar response functions have been
obtained by Kobiki et al. (1990). The left-hand diagram of the figure represents
the response function of the longitudinal force Fx (=Kaξ in Eq.(9.195)) acting on
the wheel axle to the imposed brake torque variation considered to be applied in
the torque meter. The right-hand diagram shows the response of the force to
wheel slip variations. The wheel slip is derived from the measured wheel and
drum speeds.

The two peaks occurring in the left-hand diagram belong to the in-phase and
the anti-phase modes. The single peak showing up in the right-hand diagram
belongs to the mode that would arise if the rim is fixed also in rotation. The
natural frequency lies in between the frequencies of the peaks in the left diagram.
The natural frequencies contribute to assess the sidewall stiffnesses. From the
right-hand diagram two quantities can be derived: the slip stiffness and the
overall relaxation length. Through the latter, additional information is obtained
to find the fore and aft residual stiffness. From careful interpretation of the
frequency response functions assessed at different speeds, the sidewall stiffness
dependence on the speed of rolling has been ascertained. Resulting calculated
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Fig. 9.42. Measured and calculated in-plane frequency response functions at an average
braking force of 450N and assessed at a braking force standard deviation of 75N.

response functions at different loads and brake torque level gave satisfactory
agreement with measured behaviour. We refer to the original work of Zegelaar
(1998) for detailed information.
 The out-of-plane frequency response functions of the side force Fy (=Kaη) and
the aligning torque Mz (=Taζ) to yaw oscillations have been presented in Figs.
9.42,43. The parameters have been assessed by minimising the difference
between measured and calculated (complex) response functions. The
correspondence achieved between measured and computed curves at different
speeds, loads and side slip level is quite satisfactory, cf. Maurice (2000) for
more details. To conduct a proper comparison, the measured data have been
corrected for the inertia of the wheel and part of the tyre that moves with the
wheel. The expected splitting up of the single peak at low velocity into two
peaks, one belonging to the camber mode and the other to the yaw mode, and the
growing difference of the two natural frequencies with increasing speed is clearly
demonstrated. This phenomenon which is due to the gyroscopic action, has
already been observed to occur with the stretched string model with inertia
included approximately, cf. Fig.5.40. It is noted that the theoretical results of
Maurice have been established by using the model that did not include the
equations for the response to spin (9.177-180). Especially the aligning moment
is sensitive to turn slip. The moment response curves to side slip and yaw of the
massless tyre model as depicted in Fig.9.16 are quite different. The dip in the
moment amplitude response curve to yaw oscillations occurring in the curve for
Mψ in Fig.9.16 does not appear in the curve for the response to side slip
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Fig. 9.43. Measured and calculated out-of-plane frequency response functions of the side
force and aligning torque to steer angle variations at zero average slip angle for
three values of forward speed and normal load FN = 4000N.
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Fig. 9.44. Measured and calculated out-of-plane frequency response functions of the side
force and aligning torque to steer angle variations at one value of speed and at four
levels of average side slip and wheel load FN = 4000N.
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M
α
. This dip also appears in the curves of Fig.5.40 where spin is included as

well. It is surprising to see that a similar dip occurs in the Figs.9.43,9.44. The
minimum arises here due to the tendency of the response to side slip to decrease
and tend to zero at increasing path frequency while at the same time the moment
amplitude increases due to tyre inertia when approaching the resonance peak.
The dip in the measured curve of the upper right-hand diagram of Fig.9.43 at
25km/h is deeper than the one shown by the theoretical curve of the lower
diagram. This may be due to the additional action of spin in the actual tyre. As
shown by both the theoretical and measured curves of Fig.9.44 the dip
disappears altogether at larger average side slip.

The experiments conducted with the trailing arm ‘pendulum’ test rig where
the tyre is subjected to almost pure side slip and the spin is very small, also show
satisfactory correspondence with model behaviour (Maurice 2000; also: De
Vries and Pacejka, motorcycle tyres, 1998b). This also appears to hold for a
limited number of conducted combined slip tests and the response to vertical axle
motions at side slip and braking carried out with the measuring tower. 

Apparently, the rigid ring model provided with the short wavelength transient
slip model is very well capable of describing the dynamic tyre behaviour in the
frequency range up to about 60 Hz. Furthermore, it may be concluded that the
spin part is only necessary when dealing with short wavelength, especially low
speed phenomena where tyre inertia is less important, such as with parking. 

Time Domain Responses

To demonstrate the performance of the model, simulations and experiments have
been carried out pertaining to successive stepwise increases in brake pressure
and steer angle. 

The response of the longitudinal force and the associated wheel speed has
been presented in Fig.9.45. The lower diagram clearly depicts the oscillatory
variation of the force vs slip ratio. The measured response shows a faster decay
of the wheel velocity after the highest brake effort has been reached. Apparently,
this is due to the friction coefficient being lower in the experiment than assumed
in the model. Finally, the brake is released and the wheel spins up again. The
oscillations (ca. 28Hz) correspond to the in-phase vibrational mode of the system
with the brake disc/axle inertia included.

Figure 9.46 shows the responses to successive changes in steer angle for both
the side force and the aligning torque at a given load and speed. The responses
clearly show vibrations attributed to the yaw/camber mode with natural
frequency of ca. 40Hz (cf. Fig.9.43, 25 km/h). Also, the decrease of the overall
relaxation length at larger slip angle can be recognized.
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Fig. 9.45. Brake force response to successive step increments of brake pressure. The upper
diagrams depict the variation of force and wheel speed of revolution with time.
The lower figure shows the loops in the force vs wheel slip diagram.
Apparently, the actual friction coefficient is lower than assumed in the model.
(Zegelaar 1998). 
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(Maurice 2000)



Chapter 10

SWIFT AND ROAD UNEVENNESSES 

10.1.  Dynamic Tyre Response to Short Road Unevennesses

The actual road surface profile over which the tyre rolls may contain spectral
components showing relatively short wavelengths. If the wavelength is smaller
than two to three times the contact length a geometric filtering of the profile
becomes necessary if the tyre model employed is assumed to contact the road in
a single point. For the SWIFT model a special filter has been developed that
takes care of the envelopment properties of the tyre and the variation in effective
rolling radius that occurs when the tyre rolls over a short obstacle. The
envelopment of an obstacle takes place in the contact zone. It is assumed that
local dynamic effects can be neglected. The changing conditions that arise for the
tyre, while quasi-statically traversing an obstacle, are measured and modelled
and subsequently used as effective inputs for the tyre model also at higher
speeds. The belt inertia takes care of the dynamic effects. The central item that
is introduced is the effective road plane. Height, slopes and curvature of the
effective surface are used as inputs in the tyre model. The orientation of the
effective plane is defined such that the resulting force that would act on the
assumedly frictionless road surface is directed normal to the effective road plane.

10.1.1. Tyre Envelopment Properties

In the literature one finds numerous publications on tyre envelopment behaviour.
We refer to the study of Zegelaar (1998) for an extensive list of references. A
number of these will be mentioned here. Important experimental observations
have been made by Gough (1963). He indicated that the tyre that is slowly rolled
at constant velocity and axle height, over a cleat with length much smaller than
the contact length, exhibits three distinct responses: (1) variations in the vertical
force, (2) variations in the (horizontal) longitudinal force and (3) variations in
the angular velocity of the wheel. Lippmann et al. (1965,1967) studied the
responses of both truck and passenger car tyres rolling over short sharp
unevennesses like cleats and steps of several heights. From the experimental
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trapezium positive step negative step

Fig. 10.1. Three typical obstacles used in Zegelaar’s research.

observations it has been concluded that an almost linear relationship exists
between tyre force variation and step height. The superposition principle may
therefore be employed to assess the response to an arbitrarily shaped unevenness
by taking the sum of responses to a series of step changes in road surface height.
These observations are expected to be approximately true if the obstacle height
is not too large. 

For three typical road unevennesses, depicted in Fig.10.1, Zegelaar has
measured the responses of the tyre at three different constant axle heights. To
avoid dynamic effects, the velocity of the drum on which the cleat is attached
(Fig.9.37) was maintained at the very low level of 0.2 km/h.

Figure 10.2 presents the measured vertical load FV , horizontal longitudinal
force FH and the effective rolling radius re as derived from the measurements.
The latter quantity is obtained from the variation of the wheel rotation rate dθ/ds
which is defined as: the difference of the incremental wheel angular displacement
and the constant (undisturbed) incremental rotation, as a ratio to the increment
of the travelled distance of the wheel axle. The following equations apply:

(10.1)re '
Vx

Ω
, Vx '

d s
d t

, Ω ' Ωo&
dθ
d t

, reo '
Vx

Ωo

and hence

 (10.2)re . reo 1% reo
dθ
d s

The peculiar shapes of the various response curves correspond very well with
results found in the literature. Several tyre models have been used to simulate the
experimental observations. Davis (1974) has developed  a model featuring
independent radial springs distributed along the circumference. By giving the
individual springs a non-linear degressive characteristic the model is able to
generate a vertical force response curve with the typical dip that shows up when
running at relatively high initial loads. Badalamenti and Doyle (1988) developed
a model also consisting of radial springs but now with additional interradial
spring elements that connect the end points of adjacent radial springs in radial
direction. When the deflections of neighbouring radial springs are not equal to
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Fig. 10.2. Rolling over a trapezium cleat, an upward and a downward step (Fig.10.1) at very
low speed and for three axle heights. Diagrams show measured variations of the
vertical force FV  (upward +), the longitudinal horizontal force FH (forward +) and
the effective rolling radius re , Eq.(10.2). Tyre dimensions: 205/60R15.
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Fig. 10.3. The wheel rolled over a road irregularity at constant axle height to establish the
effective road plane variation.

each other, the interradial spring generates a radial ‘shear force’ that acts on the
end points of the radial springs. Mousseau et al. (1994) and Oertel (1997)
simulate the tyre rolling over a positive step by means of (different types of)
finite element models; also cf. Gipser (1987,1999). Zegelaar uses the flexible
ring (belt) model of Gong (1993), that was developed with the aid of the modal
expansion method, as a reference model in his research. The addition of tread
elements with radial and tangential compliances to Gong’s model did enable
Zegelaar to employ the model for the study of traversing obstacles. Also this
model shows responses very similar to the measured behaviour. Schmeitz  and
Pauwellussen (2001) employ the radial interradial model as a possible basis for
the pragmatic model running over an arbitrary road surface.

10.1.2. The Effective Road Plane

To arrive at a geometrically filtered road profile, Bandel follows the idea of
Davis and introduces the effective road plane. The effective plane height and
slope variation may be established by conducting an experiment where the wheel
is rolled at a very low velocity over an uneven road surface at constant axle
height (with respect to a horizontal reference plane) and the forces are measured,
cf. Fig.10.3. It is argued that the resulting force (with the rolling resistance force
omitted) that acts upon the wheel axle, is directed perpendicularly to the effective
road plane. By dividing the variation of the measured vertical force, which is
approximately equal to the vertical component of the normal force FN , by the
radial stiffness of the tyre, the effective height variation, !w, is obtained. The



487SWIFT AND ROAD UNEVENNESSES

effective slope, tanβy, is found by dividing the longitudinal horizontal force (after
having subtracted the relatively small rolling resistance force) by the vertical
force. Both effective quantities are functions of the longitudinal position of the
wheel centre s. The following formulae apply for the effective height w:

(10.3)&w'

FV& FVo

CFz

.

FNcosβy& FVo

CFz

' ρ z cosβy& ρzo

or for the actual effective height, wN, defined as a vertical displacement, cf.
Fig.10.3:

(10.4)&w' ' &w%ρ z tanβy sinβy

For the effective forward slope tan βy we have:

(10.5)tanβy ' &
FH % fr FN /cosβy

FV

. &

FH % fr FV

FV

From Eq.(10.3) the approximate value (effect of small fr disregarded) of the
radial deflection ρz can be obtained. If needed, the actual effective road plane
height, zw, defined below the wheel spin axis, may be assessed, cf. Sec.10.1.6.
For the description of the effective road input the pragmatic modelling approach
initiated by Bandel et al. (1988) and further developed by Zegelaar and extended
by Schmeitz is most useful and will be discussed below. Bandel discovered that
the function representing the response of the change in vertical force to a short
rectangular obstacle, featuring the dip at high load and the nipple at low load,
can be decomposed into two identical basic functions, which are each others
mirror image. The basic functions are found to be approximately independent of
the initial tyre vertical deflection, that is: independent of the axle height. To find
the force response curve at a possibly different axle height, the basic force curves
are shifted with respect to each other over a distance a bit less than the contact
length and then added together. By dividing by the radial stiffness of the tyre the
basic height functions are found and from these the effective height variations w.
For the ratio of the measured longitudinal force and vertical load variations a
pair of basic functions can be assessed as well. Again, these are identical but the
first must now be subtracted from the second to find the variation of the slope
of the effective road plane tanβy, cf. Fig.10.4.
    Zegelaar did experiments with the trapezium shaped cleat as indicated in
Fig.10.1. He found basic functions which are practically symmetric in shape.
Mirror imaging was not necessary and did certainly not apply for non-symmetric
unevennesses such as the step. Also, the basic functions assessed for the vertical
force appeared to be practically the same as the ones for the longitudinal force.
These findings helped a lot to make the principle of the basic function easier and
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Fig. 10.4. The construction of the curves representing the effective height and effective slope
from the basic function associated with the trapezium cleat.

more widely applicable. One basic function established from an experiment with
a tyre rolling over a given road irregularity at a fixed constant axle position
should be sufficient to serve as the source for assessing the equivalent road plane
height and slope. These two equivalent quantities will later be extended with a
third quantity: the effective forward road curvature that may significantly
contribute to the variation of the effective rolling radius.

Figure 10.4 demonstrates the use of the basic function for the effective height
applicable for the tyre rolling over a short trapezoidal cleat at a constant axle
height. The vertical scale has been exaggerated. The basic function is
approximated by a half sine wave. The base length of the curve is denoted with
lb, its height with 0.5hb and the shift with ls. The with travelled distance s varying
values of w and βy define the local effective road plane, cf. Sec.10.1.6. Figure
10.5 clarifies the actual situation. At wheel position s the current effective road
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Fig. 10.5. The virtual road profile and effective road plane as sensed at wheel axle level.

plane has been indicated. The virtual road profile defined as the path of the wheel
centre that would occur at constant normal load has been drawn together with the
actual road profile. The distance of the wheel centre with respect to the virtual
road profile corresponds to the increase of the actual radial tyre deflection. The
distance of the wheel centre to the indicated effective road plane (translated to
axle level with w and βy regarded) is the increase in effective radial deflection
which together with the initial deflection becomes equal to ρz .

10.1.3.  The Two-Point Follower Technique

In Fig.10.6 an alternative technique is introduced using a single basic curve with
full height hb and a two-point follower. If the two points are moved along the
basic curve the midpoint describes a curve that represents the characteristic for
the effective height. The inclination angle of the follower corresponds to the slope
of the effective road plane. 

The response to a step change in road level may serve as a building block to
compose the response to an arbitrary road unevenness. The corresponding basic
function may be termed as the elementary basic function. The elementary basic
curve may be represented by a quarter sine wave. For the steps given in Fig.10.1
the parameters of the basic curve have been determined by fitting the calculated
force response to the vertical force variation measured for a series of axle heights
(Fig.10.2).
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Fig. 10.7. The effective road response curves resulting from the (elementary) basic curve
associated with the step change in road level by using the two-point follower concept.
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Fig. 10.6. Alternative method to determine the effective road height and slope using the basic
curve with height hb and the two-point follower with length equal to the shift ls.
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Figure 10.6 shows the elementary basic curve for the upward step and the
resulting effective road level and slope characteristics assessed by using the two-
point follower technique. For the downward step the fitted basic function appears
to come very close to the mirror image of the one determined for the upward
step. The difference may very well be neglected. The parameters that control the
size and position of the basic curve are the length lb, the shift ls and so-called
offset lf. The height hb is equal to the step height. The offset is a new quantity
that defines the position of the basic curve with respect to the step, cf. Fig.10.7.

A further important step is taken in the development of the assessment and
use of basic functions. It is obvious that during the experiment that is performed
at constant axle height, the normal load changes while rolling over an obstacle.
The shift has been seen to change with axle height, that is: with a changed
vertical load. The shift that corresponds to the length of the two-point follower
has been found to be equal to a little less than the contact length. It seems
therefore to be practical to adapt the strategy followed so far. We will henceforth
define the basic curve to be assessed at constant vertical load. The experiments
are to be carried out at constant load and at very low speed of travel. Schmeitz
conducted such tests with the flat plank machine, cf. Sec.10.1.5. The effective
height variation follows directly from the experiment. It turns out (cf.
Sec.10.1.6) that w now simply equals the change in axle height, za. Division of
the vertical force by the radial stiffness is not needed anymore which relieves us
from accounting of a possibly non-linear tyre compression characteristic, cf.
Eq.(9.220). In addition, since the rolling resistance is now assumed to remain
constant, it is no longer necessary to take account of the rolling resistance force
when determining the effective slope, as was done in Eq.(10.5).

Zegelaar calculated the step response with the flexible ring model provided
with tread elements and found good agreement with measured data. By fitting the
quarter sine curve representing the basic curve, parameter values have been
assessed for a wide range of step heights. The results have been compared with
the values calculated for a rigid wheel or zero normal load. Figure 10.8
illustrates the extreme case of the rigid wheel rolling over a step.

In Fig.10.9 Zegelaar’s calculated results have been presented for a series of
vertical loads FV. The diagrams show that the basic curve length lb and the offset
lf do change with step height hstep but are approximately independent of the
vertical load FV. The curve length may be estimated from the circle curve length,
Fig.10.8:

(10.6)lb ' r 2
o & (ro&hstep)

2

The horizontal shift ls amounts to approximately 80% of the contact length 2a.
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Fig.10.10. ‘Cam’ moving over step road profile, producing basic curve.

The offset may be approximated by a linear function becoming zero at vanishing
step height.

The approach of employing basic curves to assess the effective road height
and slope as inputs to the dynamic tyre model has been found adequate for the
description of the response to single obstacles. Although, in principle, the method
may be used also for a series of obstacles or for an arbitrary road surface profile
with the elementary basic curve (that holds for a step unevenness) as building
block, the rules that are to be followed may become rather cumbersome. For
such a more general application the method developed by Schmeitz (2004), also
cf. Schmeitz and Pacejka (2003), that is based on the so-called tandem cam
technique is considered to be the best option.

The ‘Tandem Cam’ Technique

Instead of using the basic profile and running over that with the two-point
follower we may  more closely consider the actual tyre shape that moves over the
road surface profile. Schmeitz discovered that the principle of the circle moving
over the surface (Fig.10.8) may be adopted but than with an ellipse instead of the
circle. This super ellipse that takes the shape of a standing egg has a height
approximately equal to that of the tyre but a radius of curvature at the lowest
point smaller than that of the free tyre. In that way, the ‘cam’ touches the step
later than the circle would. By choosing an optimal shape of the ellipse, the role
of the offset lf (that changes with step height) of the sine based basic curve
(Fig.10.9) can be taken care of automatically. Figure 10.10 depicts the cam
moving over a step. The dimensions of the cam are defined by the super ellipse
parameters. In terms of the coordinates xe and ze the ellipse equation reads: 
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The effective road height and slope can be assessed by using two cams
following each other at a distance equal to the shift length ls. The change in
height of the midpoint of the connecting line and the inclination of this line
represent the effective height and effective slope. Figure 10.11 illustrates this
‘tandem cam’ configuration. Fitting the tandem cam parameters follows from
assessing the best approximation of low speed responses of a tyre running over
steps of different heights at a number of constant vertical loads. Once the ellipse
parameters have been established, the cam dimensions can be approximately
considered to be independent of step height and vertical load. The tandem base
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Fig. 10.13.  Three contributions to the change in apparent effective rolling radius.

length ls, however, does depend on the vertical load. It is interesting that analysis
shows that the lower part of the ellipse turns out to be practically identical to the
contour of the tyre in side view just in front of the contact zone up to the height
of the highest step considered in the fitting process (Schmeitz 2004). 

In a vehicle simulation, it may be more efficient to assess the basic profile
first, that is: before the actual wheel rolls over the road section considered. This
is achieved by sending one cam ahead over a given section of the road and
having that determine the basic profile. The two-point follower is subsequently
moved, concurrently with the actual wheel forward motion, over the basic
profile, thereby generating the (actual) effective road inputs, wN and βy which are
fed into the tyre model. Figure 10.12 illustrates the procedure. When traversing
a single step it is, of course, more efficient to use an analytic expression for the
basic curve based on Eq.(10.7), cf. Fig.10.11 left.

10.1.4. The Effective Rolling Radius when Rolling over a Cleat

The third effective input is constituted by the effective road forward curvature
that significantly changes the effective rolling radius when a road unevenness is
traversed. In Fig.10.2 these variations have been shown in the lower diagrams.
The curves are derived from measurements by using the Eqs.(10.1,10.2).

In the effort to model the aspect of rolling over an obstacle it is important to
realise that we have three elements that contribute to the variation of the rolling
radius:

1. increment in normal load
2. the local forward slope
3. the local forward curvature

Figure 10.13 illustrates the matter. The first item has been dealt with before, cf.
Sec.8.3.1, Fig.8.12, Eq.(8.38) and Eq.(9.232).  According to the latter equation
the effective radius is a function of vertical load and speed of rolling. In
Fig.10.14 model considerations and the graph resulting from experiments have
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been repeated. For small variations in radial deflection we may employ the
equation:

(10.8)r~eη ' &ηρ
~

z

The second contribution accounts for the fact that at a slope and unchanged
normal load, the axle speed parallel to the road surface is larger than the
horizontal component Vx. We have for the change in the apparent re = Vx /Ω :

(10.9)r~e,slope ' &reo (1&cosβy )

The third contribution comes from the road surface curvature. The analysis that
attempts to model the relation between curvature and effective rolling radius is
more difficult and requires special attention. Figure 10.15 unravels the process
of rolling over a curved obstacle and indicates the connection with rolling over
a drum surface with same curvature. In contrast to the drum, the obstacle does
not rotate. Consequently, to compare the process of rolling over a curved
obstacle with that of rolling over a rotating drum surface, we must add the effect
of the tyre supported by a counter rotating surface that does not move forwards.
The left-hand diagram of Fig.10.16 depicts a possible test configuration with a
plank that can be tilted about a transverse line in the contact surface. When being
tilted, point S, that is attached to the wheel rim, must move along with the plank
in longitudinal direction since the wheel slip is zero (Vsx = 0) as brake or drive
torque is not applied. Consequently, the wheel rotates slightly and the following
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Fig. 10.15. Unravelling the process of rolling over a curved obstacle.

equation applies:

(10.10)Vsx ' & (reo& rl)
dβy

d t
& reoΩ

~
' 0

The apparent variation in effective rolling radius derives from the equation:

(10.11)r~e '
Vx

Ω
&

Vx

Ωo

. &

Vx

Ωo
2
Ω

~

so that we obtain for the contribution from the slope rate:

(10.12)r~e,slope rate '
reo&rl

Ωo

dβy

d t

The relationship (10.10) has been confirmed to hold through elaborate
experiments conducted by Zegelaar (1998) on the tilting plank of the Delft flat
plank machine, cf. Fig.12.5. 

The other contribution that comes from the drum analogue is found by
considering the simple model shown in the right-hand diagram of Fig.10.16. The
tread elements with length dt are assumed to stand perpendicularly on the drum
surface. The drum has a curvature with radius Rdr. The belt with radius rb is
considered inextensible. As a consequence we find the following relation between
the wheel and drum velocities. 

(10.13)Ω rb ' Ωdr (Rdr% dt) ' Vx 1 %
dt

Rdr

and for the effective rolling radius for the tyre rolling freely over the drum
surface:
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Fig. 10.16. Two components of rolling over a curved obstacle.

(10.14)re,drum '
Vx

Ω
'

rb

1% dt /Rdr

For the model, the effective rolling radius of the tyre rolling over a flat surface
is equal to the radius of the belt:

(10.15)reo ' rb

Now, the tread depth is:
(10.16)dt ' ro& reo

Hence, the expression for the effective rolling radius on the drum can be
rewritten as:

(10.17)re,drum '
reo

1% (ro&reo) /Rdr

. reo 1&
ro& reo

Rdr

The variation of the radius becomes:

(10.18)r~e,drum ' & (ro& reo)
reo

Rdr

The drum radius is equal to the radius of curvature of the (effective) road surface
profile. This curvature corresponds to change in slope βy with travelled distance
s. Note that for the convex drum surface the βy rate of change is negative. So, we
have:

(10.19)
1

Rdr

' &

dβy

d s

The slope rate of change may be written as:

(10.20)
dβy

d s
' βy' '

1
Vx

dβy

d t
'

1
Ωo reo

dβy

d t

The drum contribution is now expressed as:
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(10.21)r~e,drum '
ro&reo

Ωo

dβy

d t

Adding up the two contributions (10.12) and (10.21) yields the variation in
effective rolling radius due to obstacle curvature:

(10.22)

r~e,curvature ' r~e,slope rate % r~e, drum

'

ro& rl

Ωo

dβy

d t
' ρz reo

dβy

d s

where ρz is the radial compression of the tyre. By adding up all the contributions
we finally obtain for the variation of the effective rolling radius with respect to
the initial condition where βy = dβy /ds = 0 and ρz = ρzo :

 (10.23)r~e ' &ηρ
~

z& reo (1&cosβy )% ρz reo

dβy

ds
The term with the effective forward curvature dβy/ds constitutes by far the most
important contribution to the effective rolling radius variation and thus to the
wheel rotational acceleration that can only be brought about by a variation in the
longitudinal force Fx. This force also often outweighs the part of the horizontal
longitudinal force FH that directly results from the slope itself, cf. (10.5).

The effective curvature dβy/ds may show abrupt changes at the beginning and
end of the passage over an obstacle.  To assess the curvature and at the same
time smoothen the discontinuities of the response we may send βy through a first-
order filter, Eq.(10.24), with ‘time constant’ σβ /Vx. After taking the difference
of input βy and output y and dividing by the length σβ, the filtered curvature dy/ds
is obtained, Eq.(10.25), that vanishes at wavelengths approaching zero.

 (10.24)
σ
β

Vx

dy
dt
% y ' βy

 (10.25)
dy
ds

'

βy& y

σ
β

10.1.5.  Simulations and Experimental Evidence

Zegelaar and Schmeitz have performed numerous experiments on the drum test
stand (Fig.9.37) and the flat plank machine (Figs.10.17 and 12.5) and used the
SWIFT model (including enveloping model)  to carry out the simulations. Figure
10.9 shows the obstacle parameter values for the quarter sine basic curve of
Zegelaar. Table 10.1 gives the parameters used by Schmeitz which are based on
the ellipse concept (tandem cam technique).
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cleat

Fig. 10.17.  Principle of the flat plank machine provided with a trapezium shaped cleat.

Table 10.1. Parameter values used for envelopment calculations. Tyre: 205/60R15, 2.2bar

unloaded radius  ro 0.310 m

effective rolling radius at FN = 4000N  reo 0.305 m

slope effective rolling radius characteristic η 0.3

vertical tyre stiffness at  FN = 4000N  CFz 220 N/mm

rolling resistance, cf. Eqs.(9.230,9.231)  qsy1 0.01

half contact length, cf. Eq.(9.207)  a cf. Table 9.3

half ellipse length /unloaded radius ae /ro  pae 1.0325

half ellipse height /unloaded radius be /ro  pbe 1.0306

ellipse exponent ce  pce 1.8230

shift length /contact length ls /2a  psh 0.8773

The table shows that the height and length of the ellipse are slightly larger than
the dimensions of the free tyre. It is the exponent that gives rise to the larger
curvature of the ellipse near the ground.

Figure 10.18 presents the measured and calculated variations of the actual
effective height !wN, the horizontal fore and aft force FH and the effective rolling
radius re with the vertical load kept constant while slowly rolling over the
trapezium cleat. The effective road plane slope tanβy follows from the ratio of the
horizontal force variation and the vertical load. The calculations are based on the
two-cam tandem concept of Fig.10.11. The tandem is moved over the original
road profile and the effective height and slope are obtained. From the derivative
of βy the effective rolling radius is found by using Eq.(10.23) which also contains
the two very small additional contributions. It is observed, that a good agreement
between test and calculation results can be achieved. The use of the quarter sine
basic curve function gives very similar results.

Figures 10.19-23 present the results of rolling over the same cleat at different
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Fig. 10.18. Rolling over a trapezium cleat (length:50mm, height: 10mm). Measured and
calculated variation of vertical axle displacement, horizontal longitudinal force and
effective rolling radius at three different constant vertical loads. Measurements
carried out on the Delft flat plank machine (very low speed) and calculations
conducted with the use of the tandem cam technique (Fig.10.11) and Eq.(10.22).
Tandem cam parameters according to Table 10.1.
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Fig. 10.20.  Same as Fig.10.19 but at different speed and initial vertical load .
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Fig. 10.21.  Same as Fig.10.20 but at different speed.
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Fig. 10.25. The horizontal force variation when traversing a pothole while the wheel is being
braked at three different levels of brake torque (MB = ca. 4, 375, 850Nm respect-
ively, Zegelaar 1998). Experiments on 2.5m drum, calculations using parameters
according to Fig.10.9.

speeds while the axle location is kept fixed. The responses of the vertical, fore
and aft forces and the wheel angular speed have been indicated. In addition, the
power spectra of these quantities have been shown. Especially at the higher loads
the calculated responses appear to follow the measured characteristics quite well
up to frequencies around 50Hz or higher. Figure 10.24 demonstrates the
application to a more general road surface profile. It shows the responses of the
tyre when moving over a series of different types of cleats that resembles an
uneven stretch of road. 

Finally, in Fig.10.25 the test and simulation results conducted by Zegelaar
(1998) have been depicted, representing a more complex condition where the tyre
is subjected to a given brake torque (brake pressure) while the wheel rolls over
a pothole at fixed axle location. The complex longitudinal force response
conditions that are brought about by load and slip variations induced by tyre
modal vibrations and road unevennesses are simulated quite satisfactorily using
the SWIFT model including obstacle geometric filtering.

10.1.6. Effective Road Plane and Road and Wheel Camber

Before introducing the more complex situation of road camber in addition to
forward slope and thereafter the inclusion of wheel camber, a more precise
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account will be given of the notion of the effective road plane with a clear
definition of the effective road plane height.

Effective Road Plane Height

In Figs.10.3 and 10.5 the effective height -w is considered as being assessed at
a constant axle height above the reference plane that coincides with the initial flat
level road surface. In Fig.10.26 the alternative case is illustrated where the
effective height is assessed at constant vertical load FV. The following formula
covers both cases. The effective height is defined as:
 (10.26)w' za & ρzV

where za denotes the vertical axle displacement and  the vertical tyreρzV
deflection when loaded on a flat level road with load FV. With an assumed linear
tyre spring characteristic we get:

 (10.27)ρzV ' FV CFz

For the case that the effective height is found at a constant vertical load FV , the
initial vertical deflection is . Consequently, by consideringza0' ρzo' ρzV
(10.26), the variation in effective height equals the change in axle height. 

If the axle height is kept constant, we have and the formulaza' za0' ρzo
becomes:  which corresponds with Eq.(10.3).w' ρzo& ρzV

In Fig.10.26 the actual position of the effective road plane is defined as the
location of the point of intersection of effective road plane and the vertical line
through the centre of the vertical wheel. Its height below the horizontal reference
plane is designated as zw .
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With the small effect of the rolling resistance force Fr = fr FN first included
and then neglected, the normal force becomes in terms of the vertical load:

 (10.28)FN'
FV

cosβy& frsinβy

.

FV

cosβy

Consequently, the normal deflection becomes:

 (10.29)ρz '
FN

CFz

'

ρzV

cosβy& frsinβy

.

ρzV

cosβy

The effective road plane height follows from Fig.10.26 by inspection and reads:

 (10.30)zw'w&
ρz

cosβy

%ρzV% ro

1&cosβy

cosβy

.w&ρzV tan2βy%ro

1&cosβy

cosβy

After introducing the actual effective height wN and using (10.26) and (10.29):

 (10.31)w'' w&
ρz

cosβy

%ρzV . w&ρzVtan2βy ' za&
ρzV

cos2βy
the expression for the effective road plane height becomes:

 (10.32)zw' w'%ro

1&cosβy

cosβy
Obviously, on a flat sloping road surface the height zw does not depend on the
vertical load, that is on . As a consequence, it follows from (10.30) that theρzV
effective height w does depend on the vertical load. To avoid this load
dependency, the actual effective height wN has been introduced. Equation (10.31)
defines the relationship between the two quantities. Equation (10.32) shows that
the effective road plane is located slightly lower than the height of the middle of
the tandem cam connection line that is defined as -wN indicated in Figs.10.1 and
10.12.

After having established the actual effective height and slope, e.g. by using
the tandem cam technique, the normal tyre compression and loaded radius can
be calculated by using Eqs.(10.29,10.31). We obtain for the loaded radius at
given vertical axle location za and influence of the rolling resistance neglected:
 (10.33)rl ' ro& (za&w' ) cosβy

We may use Eq.(9.218) or (7.46) to find the normal deflection  (for now atρz
wheel camber γ = 0). It is seen, that the effective road plane height zw is not
needed to determine the deflection and that the actual height wN suffices.

Road and Wheel Camber

With the effective road plane height properly defined, we can now introduce a
road transverse slope. By considering a tilt angle of the effective road plane
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Wheel plane in vertical and in tilted position. Road feeler senses angles βy and βxN.

brought about by rotating around the line of intersection with the wheel centre
plane, that is about the xe axis, the loaded tyre radius rl remains unaffected. It
may be noted, as indicated in the figure, that the thus obtained road camber angle
βx is slightly different from the transverse slope angle βxN that may be defined as
the angle between the horizontal wheel spin axis and the line of intersection of
the effective road plane and the vertical plane through the wheel spin axis. We
have the relation:  . tanβx' ' tanβx cosβy

As indicated in the middle diagram, the transverse slope may be detected by
a double track tandem cam ‘road feeler’. The four cams are guided along vertical
lines that are positioned symmetrically with respect to the two vertical planes,
one passing through the wheel spin axis and the other through the line of
intersection of the wheel centre plane and the horizontal plane that may be
approximately defined to pass through the lowest point of the tyre undeformed
peripheral circle, that is at a distance equal to ro from the wheel centre.

In case we have a tilted wheel, again by rotating the wheel around the line of
intersection, that is around the xe axis, the road feeler is oriented at a slightly
different yaw angle and the detected road transverse slope differs a bit from βxN.

The case of combined road and wheel camber is illustrated in the right-hand
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Fig. 10.28.  The double-track tandem-cam road feeler  moving over an oblique step.
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Fig. 10.29.  Road feeler with more cams on the four edges to improve accuracy.

diagram of Fig.10.27. The tyre camber angle γ (relative to the road plane) results
from subtracting the wheel axle tilt angle γaN and the road plane camber angle βx.
It may again be noted that γaN differs from the global wheel inclination angle γa

defined about a horizontal x axis. In the presence of wheel camber, the loaded
radius results from the adapted Eq.(10.33):

 (10.34) rl cos γa' ' rl cos(γ%βx) ' ro& (za&w')cosβy

Equation (9.218) or (7.46) can now be used to obtain the normal deflection ρz
but now with tyre camber angle γ included.

In Fig.10.28 the situation is depicted for an upright wheel rolling over an
oblique step. Schmeitz has conducted extensive experimental and model studies
for a tyre rolling over such types of non-symmetric road unevennesses. For more
information we refer to Schmeitz (2004), and Schmeitz and Pacejka (2003). To
achieve more accurate results, additional cams (say three) may be inserted along
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the four edges (with calculated slopes averaged) when running over non-
symmetrical obstacles, such as oblique steps or strips, Fig.10.29, exhibiting
transverse slope variations with short wavelength (<ca.0.2m), see Fig.10.30.

The inclusion of the non-lagging part, as discussed in Sec.7.2.4, is needed to
get good agreement with low speed flat plank test results. The effect shows up
when the effective road plane changes in height and exhibits a varying transverse
slope angle βx , cf. Fig.10.31. The expressions for the two side slip velocity
components parallel to the local effective road plane, cf. Eqs.(7.42a,b), now
contain a term that originates from the effective road warp dβx/ds:

 (10.35)Vsy ' V e
ay% V e

azsinγ &rl

dγa'

d t
1

cosγ
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(10.36)Vsy1' V e
ay& rsy

dγa'

d t
%(rl& rsy)

dβx

d t
cosγ

where  represents the axle velocity components parallel to the currentV e
ay,z

effective road system of axes (xe, ye, ze).
In Fig.10.32 example results are presented of experimental and model
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simulation results of the tyre moving at constant axle height at a speed of 59
km/h over an oblique strip (height 10 mm, width 50 mm) mounted at an angle of
43 degrees with respect to the drum axis (wheel slip angle and wheel camber
angle remain zero). The variations of the wheel spindle forces Kx,y,z and moments
Tx,z and the wheel angular velocity Ω are presented as functions of time and as
power spectral densities versus frequency. Note: the output forces and moments
Kx,y,z and Tx,z are the same as the quantities Kaξ,η,ζ and Taξ,ζ expressed by the
equations (9.195-9.200), also cf. Fig.9.25. Again, it is seen that a reasonable or
good correspondence can be achieved. The various tyre-wheel resonance
frequencies can be observed to show up: vertical mode at 78Hz (Kz), rotational
mode at 35Hz (Kx and Ω), camber mode at 46Hz (Ky, Tz and Tx) and yaw mode
at 54Hz (Tz).

10.2.  Three Advanced Dynamic Tyre Models: 
SWIFT, FTire, RMOD-K

Three relatively recent and advanced dynamic tyre models have been discussed
at a CCG Seminar held at the Technical University in Vienna, September 2004.
These commercially available models are: FTire, RMOD-K and SWIFT. The
present section gives a comparative outline of these models. For further study we
may refer to the original seminar material, cf. CCG (2004). The text below is
largely reproduced from Chapter 2 of the state-of-the-art paper by Lugner,
Pacejka and Plöchl (2005).

Outline of the Three Dynamic Models

The three models manifest different ways of approach, different levels of
complexity and as a result differences in computational effort. Agreement with
experimental data may be significantly different depending on the type of
application.  The three models all aim at similar motion input ranges and types
of application. These include: steady-state (combined) slip, transients and higher
frequency responses, covering at least the rigid body modes of vibration of the
tyre belt. The models are designed to roll over three-dimensional road
unevennesses, typically exhibiting the enveloping properties of the tyre. In
addition, the models can cover situations where the forward speed vanishes, its
sign may reverse and parking manoeuvres may follow. Moreover, the models can
handle moving road surfaces. 

The program packages offer simplified and/or more refined versions that may
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Fig. 10.33. General configuration of the SWIFT model featuring rigid belt ring, residual
stiffnesses, contact patch slip model and  double-track tandem-cam road feeler with
resulting effective road inputs.

be chosen depending on less or more demanding types of application. Of course,
considerable differences in required CPU time are involved.

SWIFT (or in the context of Delft-Tyre: MF-Swift) is a model of relative
simplicity in representing the actual physical structure of the tyre. However, the
model relies heavily on experimental evidence concerning the tyre-road slip
properties, thereby enabling the generation of slip characteristics of unmatched
accuracy (Magic Formula). The belt is represented by a rigid ring with residual
springs that connect the ring with the contact patch, cf. Fig.10.33. This
simplification limits the model bandwidth to ca. 80Hz. Contact dynamic
behaviour is represented by an approximate description of the exact frequency
response characteristics of the non-linear brush model. The wavelength of
horizontal tyre motions is limited to not less than ca. 10cm. Rolling over road
unevennesses is accomplished through the introduction of the so-called effective
road plane that is defined by the vertical positions of a 2-d tandem or 3-d
multiple set of oval cams that move over the actual, possibly sharp edged road
surface. Scaling factors can be used to handle changes that may occur in e.g.
frictional and service conditions. Besides the common over the road full-scale
tyre slip measurements, some special tests and straightforward rolling
experiments, notably over (oblique) cleats, to determine parameters pertaining
to dynamic rolling behaviour are required. Approximate estimation of a part of
the parameters is a possible popular alternative. The much simpler but faster
Magic Formula quasi-steady-state or transient tyre model, MF-Tyre, is limited
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Fig. 9.80. (FTire)
see separate file

Fig. 10.34. FTire flexible belt representation by a number of segments elastically attached to
each other and to the wheel rim. Segments are provided with tread blocks. 

to ca. 10Hz, relatively large motion wavelengths and smooth road surfaces. At
steady-state, SWIFT becomes identical to this simpler version. Easy switching
from the simplest to the most complex dynamic 3-d versions is possible.
Parameterisation and visualisation is made simple through the use of MF-Tool.
More information on MF-Swift can be found in the preceeding sections of the
present chapter and through Delft-Tyre.

The model FTire, cf. Gipser et al. (1997) and Gipser (1999), features a
flexible belt provided with a large number of friction elements (on tread blocks).
The flexible belt is modelled by 80 to 200 segments each possessing five degrees
of freedom, including twist and bending (about circumferential axis). They are
connected mutually and with respect to the wheel rim by non-linear spring-
damper elements, cf. Fig.10.34. To each of the segments 1000 to 10000 friction
elements are attached through 5 to 50 tread blocks. Through these elements
normal and frictional forces are generated. Friction functions are used that make
distinction between stitching and sliding friction. The tread blocks may represent
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Fig. 9.81. (RMOD-K)
see separate file

Fig. 10.35. RMOD-K finite element structure representation. Belt mesh and complete cross
section element.

(simple) tread pattern designs. A thermal model can give rise to changes in
temperature of structure and contact surface, thereby varying friction and
inflation pressure and thus stiffness properties. In addition, the model features
a tread wear model based on the concept of friction power. The contact patch
contour and pressure distribution follow from the model’s flexible properties.
The model can roll over arbitrary uneven, possibly sharp edged, road surfaces.
The band width of the model is limited to ca. 150Hz (up to first-order bending
modes). Horizontal motion wavelengths to not smaller than 5 to 15cm. Special
measurements are required to assess geometry, inertia and stiffness/damping,
friction and material properties. Parameterisation may be conducted with the aid
of (oblique) cleat tests or through estimation schemes or by calculations with
FETire, a finite element detailed tyre model. A much simpler, rigid belt, model
is available for much faster computations but limited to 100Hz and relatively
smooth surfaces with wavelengths larger than twice the contact patch length.
Data compatibility and interface enables easy switching between models. A
handling and fitting tool is available.

The model RMOD-K, cf. Oertel (1997) and Oertel and Fandre (1999), gives
a detailed finite element description of the actual tyre structure, Fig.10.35. It
features a flexible belt that is connected to the rim with a simplified,
preprocessed, sidewall model with pressurised air. The belt is modelled by one
or more layers that interact with each other. Road contact is realised through an
additional sensor layer. In sensor points the normal and frictional forces are
calculated. The contact area, with possible gaps, and pressure distribution result
from the rolling and compressed model calculations. The complexity of the
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model may be reduced depending on the type of application: from fully FEM to
hybrid and discretised structure representations. Three-dimensional uneven road
surfaces can be dealt with very well with this sophisticated model. The
computational effort, however, remains relatively high. Friction functions are
included that allow the generation of both adhesion and sliding areas with friction
levels that depend on temperature (WLF transformation) and contact pressure.
A very much simpler model is available that is based on a rigid belt
representation and a separate model for the calculation of the footprint
dimensions and the pressure distribution. Contact dynamics is analytically
treated in the areas of adhesion. Applications are limited to smooth roads and ca.
100Hz.  Also for these models handling and fitting aids are available.

Remarks

Obviously, the complex physically based models are better suited to examine
the effects of the change of a physical parameter such as material stiffness and
cross section contour. The more empirically oriented models are better equipped
to investigate the effect of changing performance parameters such as cornering
and vertical  stiffnesses without affecting remaining properties.



Chapter 11

MOTORCYCLE DYNAMICS

11.1.  Introduction

The single track vehicle is more difficult to study than the double track
automobile and poses a challenge to the vehicle dynamicist. Stability of motion
is an important issue and it turns out that the stabilising actions of the human
rider are essential to properly handle the vehicle. Steady-state cornering
behaviour can be analysed in a straightforward manner together with the
examination of the stability of the equilibrium motion. While for an automobile
only the lateral and yaw degrees of freedom are minimally needed to perform
such an analysis, a single track vehicle requires in addition the inclusion of the
roll degree of freedom for the steady-state cornering study and the steer angle as
a free motion variable to examine the stability. For better correspondence with
reality also the torsion of the front frame with respect to the mainframe about an
axis perpendicular to the steering axis is of importance. When the non-linear
problem at higher cornering accelerations is investigated, a major difficulty is
formed by the fact that the separation of lateral and vertical motions is not
possible since due to the roll angle of the motorcycle a strong interaction between
in-plane and lateral motions occur. This is in contrast to the situation of a double
track vehicle where the roll angle remains relatively small. 

Performance of the vehicle in terms of handling properties is a matter that
can be studied theoretically only if a proper model of the stabilisation capabilities
of the human rider is available. While in an automobile the driver normally uses
the steering wheel to control the vehicle direction of motion, the pilot of a motor
cycle has two or three quantities to his disposal to steer and stabilise the vehicle.
These are: the steer angle or  the steer torque and the lean angle (and possibly the
lateral shift) of the upper torso.

In the past, a number of researchers studied the performance of the single
track vehicle. Noteworthy is the very early theoretical study of Whipple (1899)
on the stability of the motion of the bicycle with the tyres assumed to be rigid.
Sharp (1971) was one of the first to investigate the motorcycle’s stability using
a proper tyre model. Later, the torsional compliance of the frame was introduced
(Sharp and Alstead 1980a and Spierings 1981) which appeared to have a marked
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effect on the stability of the wobble mode (steering oscillations). In 1980,1983
Koenen reported on an elaborate study on the stability also at large lateral
curving accelerations which involve large roll angles and interaction of in-plane
and lateral dynamics of the complex system. As the model representing the
vehicle becomes more complex and impacts from road obstacles become more
demanding to model the tyre, e.g. the kick-back phenomenon , multi-body vehicle
models and advanced dynamic tyre models become indispensable for proper and
efficient research. We refer to the following publications: Iffelsberger (1991),
Wisselman et al. (1993), Breuer et al. (1998), Sharp et al. (2001a) and Berritta
et al. (2000). Significant experimental results relating to the influence of design
parameters on the damping of the main oscillatory modes have been given by
Bayer (1988), Takahashi et al. (1984) (tyre parameters), Hasegawa (1985) and
Nishimi et al. (1985). In 1978, 1985 and 2001 Sharp published extensive
reviews of the state of the art existing at these dates. We refer to these sources
for further study.

In the present chapter we will first establish geometrical relationships of the
vehicle also at large roll angles with the steer angle being kept small; then
discuss modelling of tyre forces, derive the linear equations of motion using the
Lagrangean method and study the motion at relatively small lateral accelerations.
For the steady-state cornering motion the understeer coefficient will be assessed
that provides information on the variation of the steer angle with increasing
speed of travel at a given radius of turn. In addition, the associated steer torque
will be determined. For the linear system the stability of motion with its various
possibly unstable modes will be investigated. The effects of driving and braking
as well as of the aerodynamic drag will be included. In Section 11.5.3 typical
changes in vibrational modes that may occur at large roll angles are discussed.

A relatively simple rider model that accomplishes feed-back control will be
introduced that is able to stabilise the vehicle motion. Step response to handling
inputs of the rider may then be investigated successfully. Inputs considered are:
steer torque and lean torque. The lateral offset of the centre of gravity will be
treated as a constant small parameter that affects straight running behaviour.
Important literature is available on rider behaviour both as an active controller
and stabiliser and as a passive part of the structure. We refer to the publications:
Weir (1972), Nishimi et al.(1985), Katayama et al. (1988,1997),  Cossalter et
al. (1999) and Biral et al. (2001). The first one studies stabilising feedback
control, the second reference deals with passive rider model behaviour, the third
couple of papers discuss, among other things, manoeuvring effort while the latter
two papers address the problem of optimal manoeuvrability. Ruijs and Pacejka
(1985) uses feed-back control loops to stabilise the unmanned motorcycle with
a stabilising rider-robot. 
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Fig. 11.1.  Motorcycle model configuration.

Similar to the treatment of steady-state cornering behaviour of automobiles
we will demonstrate the assessment of the handling diagram for the motorcycle
also covering large lateral accelerations. From the diagram established, the steer
angle required to negotiate a given steady-state cornering manoeuvre can be
assessed. Also the steer torque is determined. Examples of results will be
discussed. The responses to other inputs such as cross wind and transverse slope
of the road surface have not been investigated. The introduction of such input
quantities into the model may, however, be easily accomplished.

11.2.  Model Description

In Fig.11.1 the motorcycle has been depicted while it moves at a roll angle φ of
the mainframe and with a steer angle δ of the handlebar about a steering axis
that, in the neutral upright position, shows a steering head (rake) angle g with
respect to a vertical line and a caster length tc. The reference point A that lies on
the line of intersection of the plane of symmetry of the vehicle and the road plane
and is located in the upright position below the centre of gravity of the
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(11.1)

mainframe, moves forwards with a velocity u and in lateral direction with a
velocity v. The line of intersection moves over the road surface and shows a yaw
angle ψ, the time rate of which is denoted by r. The mainframe roll angle φ  is
measured as the angle between the plane of symmetry and the normal to the road
surface. As depicted in the figure, an additional degree of freedom may be
introduced associated with the torsional flexibility of the front (steerable) frame,
possibly including a portion of the mainframe, with respect to the centre part of
the mainframe. To model this, an axis of rotation is  introduced perpendicular to
the steering axis about which (a part of) the front frame can rotate with twist
angle β. The rider has a lean degree of freedom (relative angle φr about a
longitudinal axis) of its upper torso (with mass mr) and may exert (internal)
moments about the steer and lean axes. Also, a small lateral shift ym of the c.g.
of mainframe and yr of the rider may be included leading to a joint offset ymr. The
offsets are of the same order of magnitude as the roll angle and will be used in
the steady-state analysis. Air drag is accounted for by the introduction of a
longitudinal force Fd acting at a height hd on the vehicle in the mainframe centre
plane. Finally, the various feed-back control loops have been introduced in the
equation for the steer angle to simulate possible rider control.

11.2.1.  Geometry and Inertia

The geometrical dimensions of the motorcycle and the location of the centres of
gravity of the four connected bodies (mainframe including lower part of the rider
and rear wheel, upper torso of the rider, front upper frame and front subframe
including front wheel) are defined by quantities given in the figure. The following
relations exist between geometrical parameters:

af = ac! {hf sing !(ef + tc)}/cosg
as = ac! {hs sing !(es + tc)}/cosg
ss = sc ! {hs! (es + tc) sing }/cosg
hβ = sc cosg + tc sing
sk = sc ! tc /tang
hk = tc /sing

The last three dimensions have not been indicated in the figure.
The masses of the mainframe, the front upper frame, the front subframe and

the upper torso are denoted as mm , mf , ms and mr respectively. The magnitude
of total mass m, the possibly shifted c.g. of mmr = mm + mr, the wheel base l and
the location of the centre of the total mass centre with respect to the rear and
front wheel axles (distances a and b) and above the ground (height h) become:
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(11.2)

(11.3)
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Fig.11.2. Rear view of motorcycle with tyre cross section and possible c.g. offset indicated.

m = mm + mf + ms+ mr

mmr = mm + mr

l = ac + bc

b = {mmr bc + mf (af + bc) + ms (as + bc)}/m
a = l ! b
h = (hm mm + hf mf + hs ms + hr mr)/m

The inertial quantities (provided with subscript 0) that would apply in case of a
rigid rider (lean angle remains zero) may be retrieved by using the following
equations where Irx is moment of inertia of the rider’s upper torso about its
longitudinal axis; Irz is assumed to be incorporated in the mainframe inertia:

mm0 = mmr0 = mm + mr

hm0 = (hm mm + hr mr )/mm0

Imx0 = Imx + hm 
2 mm + Irx + hr 

2 mr!hm 
2

0 mm0

Imxz0 = Imxz  + Irxz

Products of inertia, except Imxz of the mainframe, will be neglected. 
The cross sections of the tyres are assumed to have a finite crown radius rc1

and rc2 (front and rear). These radii are responsible for the creation of the major
part of the tyre overturning couples Mx1,2. Moreover, the heights of the c.g.’s are
affected by these crown radii when running at large roll angles. Figure 11.2
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illustrates such a situation.
Important is the notion of the so-called contact centre or point of intersection

C that lies below the wheel spin axis and on the line of intersection of wheel
centre plane and road surface. We may refer to Fig.4.27 and the related
discussion. For the rear wheel the centre plane coincides with the plane of
symmetry of the (assumedly symmetric) mainframe. Rotation of the mainframe
about the line of intersection gives rise to an increase of the normal load of the
tyre. At constant vertical load, a simultaneous lift of the vehicle must occur.
Consequently, the distance of the centre of gravity to the line of intersection will
increase from h to hφ as indicated in the figure. With a weighted average crown
radius

rc = (b/l) rc1 + (a/l) rc2 (11.4)

we find:
hφ  = h + rc (1!cosφ )/cosφ (11.5)

At large roll angles also the caster length tc should be adapted. We find
approximately with δ  assumed small:

tcφ  = tc + rc1 sing (1!cosφ)/cosφ (11.6)

In the linear analysis restricted to small angles, these extensions are of no
importance.

11.2.2.  The Steer, Camber and Slip Angles

To determine the side force Fy and the moments Mx and Mz acting on the front
and rear wheels, the respective slip and camber angles are needed as input. For
the rear wheel these angles can be obtained in a straightforward way. The front
wheel poses a problem because we have an attitude of the wheel plane that is
defined by at least three successive rotations. In Fig.11.3 several triads have been
introduced which are needed to define the orientation of mainframe and front
wheel. The line of intersection of the mainframe centre plane and the road plane
coincides with the x axis. The origin of the horizontal moving axes system (x, y,
z) is the reference point A indicated in Fig.11.1 with forward and lateral velocity
components u and v. Furthermore, this system rotates about the vertical axis with
yaw rate r = . The mainframe rotates about the x axis giving rise to the rollψ0

angle φ. The rotated system of axes (xφ , yφ , zφ) is attached to the mainframe. In
the mainframe centre plane the steering axis is positioned at an angle of
inclination (the rake angle g) with respect to the zφ axis. The triad (x

g
, y

g
, z

g
) is

also attached to the mainframe but with a z
g
 axis along the inclined steering axis.

The system (xδ , yδ , zδ) is attached to the upper part of the front frame that is
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rotated with steer angle δ with respect to the (x
g
, y

g
, z

g
) frame. Finally, we may

introduce the twist angle β (not considered in Fig.11.3, cf. Fig.11.1) giving rise
to the system of axes (xβ , yβ , zβ) with the yβ axis running along the wheel spin
axis. We now introduce a unit vector s directed according to the wheel spin axis,
that is along the yβ axis. The components of this vector along the axes of the
moving horizontal system (x, y, z) will now be determined by successive rotation
transformations. The result of each successive step is indicated by a subscript
that denotes the frame with respect to which the unit vector is regarded. We have

s
β
'

0

1

0

, s
δ
'

1 0 0

0 cosβ &sinβ

0 sinβ cosβ

s
β

, s
g
'

cosδ &sinδ 0

sinδ cosδ 0

0 0 1

s
δ

,

(11.7)

s
n
'

cosg 0 sing

0 1 0

&sing 0 cosg

s
g

, s '

1 0 0

0 cosn &sinn

0 sinn cosn

s
n
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Fig. 11.4.   Top view of the single track vehicle showing the front and rear slip angles.

s '

&δcosg % βsing

cosn & sinn (δsing % βcosg)

sinn % cosn (δsing % βcosg)

s '

&δcosg % βsing

1& n (δsing % βcosg)

n % δsing % βcosg

In the subsequent analysis we will approximate the situation by assuming small
steer and twist angles. This is certainly admissable. For the non-linear steady-
state cornering problem, the roll angle should be allowed to attain magnitudes
larger than 45E. Of course, the rake angle g which is a system parameter, will be
regarded to be large. With δ and β assumed small, the unit vector reduces to:

(11.8)

which in case of a completely linear analysis, with also the roll angle assumed
small, reduces to:

(11.9)

The ground steer angle δN and the camber angle γ1 can now easily be determined
from the components of the unit vector. We find for the non-linear expressions:

(11.10)tanδN ' &
sx

sy

'

δcosg & β sing
cosn & sinn (δ sing % βcosg)

(11.11)sinγ1 ' sz ' sinn % cosn (δ sing % β cosg)

and for the linearised approximations:

(11.12)δN ' δcosg & β sing
(11.13)γ1 ' n % δ sing % β cosg

For the non-steered rear wheel we simply have a camber angle
(11.14)γ2 ' n

The slip angles are assumed to remain small and read at steady state by
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considering Fig.11.4:

(11.15)

α1 ' δN &
1
u

(v % ac r)

α2 ' &

1
u

(v & bc r)

For the dynamic non-steady-state situation the linearised model will be
employed. The slip angles then become, including the time rate of changes of δ
and β:

α1 ' δ cosg & β sing & 1
u

(v%acr& tcδ
0

& scβ
0 )

(11.16)
α2 ' &

1
u

(v&bcr )

With the camber and slip angles now derived, we can formulate the resulting side
force and moments. First, however, the normal loads are to be established. These
are affected by the fore and aft load transfer caused by aerodynamic drag and
braking or driving forces.

11.2.3.  Air Drag, Driving or Braking and Fore and Aft Load Transfer

Apart from the forces and moments acting from road to tyres, we will consider
the aerodynamic drag force Fd that is assumed to act in longitudinal backward
direction in the pressure centre a distance hd above the road surface (in upright
position). We will here define the drag force to depend quadratically on the speed
u as follows:

(11.17)Fd ' CdA u 2

Due to the action of the drag force Fd and the longitudinal tyre forces Fxi , load
transfer arises from the front to the rear wheel. The increase of the rear normal
load which (by neglecting the overal aerodynamic lift) is equal to the decrease
of the front normal load.

The sum of the longitudinal tyre forces is denoted as Fx,tot. The remaining
force for the acceleration of the vehicle in longitudinal direction becomes:

(11.18)Fax ' Fx,tot& Fd

which results in the forward acceleration:

(11.19)ax '
1
m

Fax
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Fz1o '
b
l

mg , Fz2o '
a
l

mg

and from this the acceleration forces acting on the four individual masses Faxm

= axmm , Faxr = axmr , Faxf = axmf  and Faxs = axms.
With the moment arms hn (cf. Fig.11.2) and hdn the amount of load transfer

becomes:

(11.20)∆Fz '
1
l
(hdnFd % h

n
Fax)cosn

which for small roll angles reduces to:

 (11.21)∆Fz ' ∆Fz0 '
1
l
(hd Fd % hFax)

The resulting vertical wheel loads now become:

 (11.22)Fz1 ' Fz1o& ∆Fz , Fz2 ' Fz2o% ∆Fz

and at small roll angles:

 (11.23)Fz1 ' Fz10 ' Fz1o& ∆Fz0 , Fz2 ' Fz20 ' Fz2o% ∆Fz0

with the initial wheel loads:

(11.24)

The imposed braking force is assumed to be distributed over the front and rear
wheels in proportion to the wheel loads as would occur in straight ahead motion,
that is: according to the loads (11.23). We have at braking (Fx,tot < 0):

(11.25)Fx1 '
Fz10

mg
Fx,tot , Fx2 '

Fz20

mg
Fx,tot

and at driving:

(11.26)Fx1 ' 0 , Fx2 ' Fx,tot

These forces will act as parameters in the formulae for the tyre forces as
described in the subsequent subsection.

It may be noted that in the rolled position the longitudinal drag and
acceleration forces will also produce a moment about the vertical z axis through
reference point A. This gives rise to an increase at the rear and a decrease at the
front of the side forces to be generated by the tyres almost in proportion to the
changes in normal load (not exactly because of the effect of the pneumatic trails).
This is essentially different from what happens with the automobile.
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11.2.4.  Tyre Force and Moment Response 

Linear Model

We will take into account the transient response of the side force Fy and aligning
torque Mz to changes in slip angle and camber angle. However,  the non-lagging
part of the response will be disregarded. On the other hand, the overturning
couple Mx is assumed to respond instantaneously to changes in camber. For the
transient responses the relaxation length σ will be used as parameter in the first-
order differential equations. These equations describe the responses of the
transient slip or deflection angles αN and γN which in steady state become equal
to the input slip and camber angles α and γ. We obtain for tyre i (i = 1 or 2):

(11.27)1
u
σ
αiαiN
0 % αiN ' αi

(11.28)1
u
σ
γiγiN
0 % γiN ' γi

which gives rise to the side force at small slip and camber angles:

(11.29)Fyi ' CFαiαiN % CFγiγiN

For the aligning torque stiffness against wheel camber we introduce the effect of
the longitudinal force Fxi by considering a finite crown radius rci assuming that
the lateral shift of the line of action of the longitudinal force changes
instantaneously with the camber angle. We find for the aligning torque:

(11.30)Mzi ' &CMαiαNi % C'MγiγNi & rci Fxiγi

Note, that we have disregarded here the other influences of the longitudinal force
Fxi on the side force and the aligning torque as expressed e.g. by Eqs.(4.45-48).
To Mz one might add the turnslip moment Mz

* (5.82) and Mz,gyr (5.178,7.49). 
Finally, we have the overturning couple indicated in Fig.11.2 assumed here

to depend only on the camber angle. In the linearised version we have:

(11.31)Mxi ' &CMxγiγi

Obviously, we have neglected here the small effect of the lateral distortion due
to the side force. The coefficients are assumed to depend on the normal load as
follows (omitting subscript i):

(11.32)CFα ' CFαo /(1%d5γ
2)

(in the linear model d5 = 0) with
(11.33)CFαo ' d1 Fzo % d2 (Fz & Fzo )

(11.34)CFγ ' d3 Fz

(11.35)CMα
' e1 Fz
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(11.36)C'Mγ
' e2 Fz

and
   with   (11.37)CMxγ ' e3 Fz e3 ' rc

We introduce the pneumatic trails t
αo (>0) of the side force due to side slip and

tγo (<0) of the camber force:

(11.38)t
αo '

CMα

CFαo

, t
γo ' &

C'Mγ

CFγ

Also the relaxation lengths depend on the normal load. This appears to occur
in a way similar to that of the change in cornering stiffness. Experimental
evidence shows that the relaxation length for side slip is close to the one for
camber. The non-lagging part that (although small) exists in the response to
camber changes is disregarded here. We define:

 (11.39)σ
α
' σ

γ
' f1 Fzo % f2 (Fz & Fzo)

Non-Linear Model

For the non-linear force and moment description we will make use of the Magic
Formula in a simplified version. The values of the parameters involved have
been listed in Table 11.1 at the end of the present Section 11.2. The similarity
method will be employed to incorporate the effect of the imposed fore and aft
force Fx. We will assume here that the cornering stiffness CFα is not affected by
Fx and that the vertical shift is small with respect to D0. We have for the side
force (again omitting subscript i):

(11.40)C ' d8

(11.41)K ' CFα

(11.42)D0 ' d4 Fz /(1%d7γ
2)

(11.43)D ' D 2
0 & F 2

x

(11.44)B ' K /(CD0)

(11.45)SHf ' CFγγ' /CFα

(11.46)SV ' d6 Fzγ' D /D0

(11.47)SH ' SHf& SV /CFα

(11.48)α'Feq ' (D0/D) (α' % SHf ) & SHf
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(11.49)Fy ' D sin[Carctan{B (α'Feq% SH)} ]% SV

and for the aligning torque using the pneumatic trail and the side force solely due
to side slip:

(11.50)α'eq0 ' (D0 /D)α'

(11.51)Fyα ' Dsin[Carctan(Bα'eq0)]

(11.52)Bt ' e7

(11.53)Ct ' e8

(11.54)Br ' e9 /(1 % e4γ
2)

(11.55)Cr ' e10 /(1 % e5γ
2)

(11.56)t
α
' t

αocos[Ct arctan(Btα'eq0)]/(1%e5γ
2)

(11.57)Mzro ' C'Mγ
arctan(e6γ' )/e6

(11.58)Mzr ' Mzro cos[Cr arctan(Brα'eq0)]

(11.59)Mz ' & t
α

Fyα% Mzr& rc Fx tanγ

in which the term with the product FxFy has been disregarded.  Finally, we define
for the overturning couple using formula (4.126) while neglecting the vertical
and lateral tyre deflection:

(11.60)Mx ' &rc Fz tanγ

Since the non-linear analysis will be limited to steady-state conditions, the input
slip and camber angles α and γ may be used directly instead of the transient
angles αN and γN.

As an example, in Figs.11.5 and 11.6, the steady-state characteristics for Fy

and Mz vs α have been plotted for a number of γ values for the front and rear
tyres for the two cases: free rolling and braking. The characteristics of the freely
rolling tyre are similar to the experimentally found curves (extending from !6
to +6 degrees slip angle) reported by De Vries and Pacejka (1998a). The
parameter values have been listed in Table 11.1.

The non-linear analysis may be improved by employing the full Magic
Formula description as given in Chapter 4 or the special motorcycle version
presented in Sec.11.6.1, covering large camber angles but restricted to moderate
slip angles. In the present analysis these equations may be used for κ= 0, with
the similarity method employed to include the effects of the given longitudinal
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Fig. 11.5. Side force and aligning torque characteristics for the freely rolling front and rear 
motorcycle tyre model at a series of camber angles.

force Fx. If instead of the force Fx the longitudinal slip κ  is imposed or results
from wheel rotational dynamics with imposed braking or driving effort, the
complete Magic Formula model with combined slip may be used. For the present
study this is a less practical option. 

In the diagrams of Figs.11.5,11.6 the side force curves show a mainly
sideways shift at increasing camber angle. The moment curves are moved
upwards while their shape is changed. The upward shift is a consequence of the
spin torque that results from the wheel inclination angle. At braking (Fig.11.6)
the aligning torque at camber is considerably increased in magnitude because of
the direct contribution of Fx (<0) which is represented in (11.59) by the last term.
It is observed, that due to the longitudinal force, the maximum level of the side
force is reduced.
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Fig. 11.6. Side force and aligning torque characteristics for the braked front and rear
motorcycle tyre at a series of camber angles.

Table 11.1.  Parameters of hypothetical front (,1) and rear (,2) motorcycle tyre model

d1,1     14 d2,1    9 d3,1    0.8 f1,1    0.00015

d1,2     13 d2,2    4 d3,2    0.8 f1,2    0.00015

e1,1     0.4 e2,1    0.04 e3,1 (=rc1 )    0.08 f2,1    0.0001

e1,2     0.4 e2,2    0.07 e3,2 (=rc2 )    0.1 f2,2    0.0001

d4,1     1.2 d5,1    0.15 d6,1    0.1 d7,1    0.15

d4,2     1.2 d5,2    0.4 d6,2    0.1 d7,2    0.15

d8     1.6 e4    10 e5    2 e6    1.5

e7     50 e8    1.1 e9    20 e10    1
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d
dt

MT
Mv

%r MT
Mu

' Qv

d
dt

MT
Mr
&v MT

Mu
%u MT

Mv
' Qr

d
dt

MT
Mqj0

&

MT
Mqj

%

MU
Mqj

%

MD
Mqj0

' Qj

11.3.  Linear Equations of Motion

For the dynamic analysis of the vehicle motion we restrict ourselves to small
deviations from the rectilinear path. The differential equations will be kept linear
with the forward speed u considered as a constant parameter. We will derive the
equations using the modified equations of Lagrange (1.28) derived in Chapter 1.
After adding the dissipation function D to include damping in the system, these
equations read for the variables v and r (=dR/dt) and subsequently for the
remaining generalised coordinates qj (here: j = 3, 4, 5 or 6):

(11.61)

The generalised forces are found from the virtual work (using ∆ instead of δ):

(11.62)∆W ' 3
j'1

6
Qj ∆qj

with qj referring to the quasi coordinate y and to the generalised coordinates ψ,
φ, φr , δ and β. To establish the equations we will assess successively the kinetic
and potential energies, the dissipation function and the virtual work. The terms
appearing in the resulting expressions will be restricted to terms of the second
order of magnitude. The velocity uand the connected wheel speeds of revolution
Ωi = u/ri , the vehicle weight mg and the aerodynamic drag Fd and longitudinal
force Fx,tot are quantities of the zeroth order of magnitude whereas the variables
v and the generalised coordinates are of the first order of magnitude. Also, the
imposed lateral offset ymr of the combined mainframe and rider mass centre is
considered as a quantity of the first order of magnitude. Products of first order
of magnitude quantities become terms of the second degree. Terms of higher
degree will be neglected as these would give rise to second or higher degree terms
in the final differential equations, which we intend to keep linear (only first
degree terms). 

The pitch angle θ  of the mainframe which does not represent a degree of
freedom is of the second order of magnitude and should be accounted for in the
expressions for the energies. Expressed in terms of the generalised coordinates
we find the second degree constraint equation, cf. Eq.(11.1):



533MOTORCYCLE DYNAMICS

(11.63)
lθ ' &hk (δ sing%βcosg) (φ% 1

2
δsing% 1

2
βcosg)%

&sk(φβ%δβ sing% 1

2
β 2 cosg)

The Kinetic Energy 

Translational and angular velocities of the six bodies are to be expressed in terms
of v and the generalised coordinates (and tentatively θ ) and their time
derivatives. We find for the longitudinal, lateral and vertical velocities of the c.g.
of the mainframe plus rear wheel (except polar moment of inertia Iwy2) with mass
mm (body1):

um ' u&hmrn&hmθ
0

&ymr
(11.64)vm ' v%hmn

0

wm ' &bcθ
0

and for the angular velocities:
ωmx ' n0

(11.65)ωmy ' θ0

ωmz ' r
The velocities of the rider upper torso with mass mr  (body 2): 

ur ' u&hrrn&srrnr&hrθ
0

&yrr

 (11.66)vr ' v%hrn
0 %yr

0 % srnr
0

wr ' &bcθ
0

and for the angular velocities:

ωrx ' n0 %nr
0

(11.67)ωry ' θ0

ωrz ' r

The velocities of the front frame with mass mf  (body 3 with z axis parallel to
steer axis): 

uf ' u&hfrn&ef rδ&hfθ
0

 (11.68)vf ' v%hfn
0 %efδ

0

%af r

wf ' & (bc%af )θ
0

and
ωfx ' n0 cosg& r sing
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(11.69)ωfy ' θ0

ωfz ' n0 sing% r cosg%δ0

For the front subframe plus front wheel (except polar moment of inertia Iwy1)
with mass ms  (body 4 with z axis parallel to steer axis):

us ' u&hsrn&es rδ% ss rβ&hsθ
0

 (11.70)vs ' v%hsn
0 %esδ

0

& ssβ
0

%as r

ws ' & (bc%as )θ0

and
ωsx ' n0 cosg& r sing%β0

(11.71)ωsy ' θ0

ωsz ' n0 sing% r cosg%δ0

For the front wheel angular velocities (bodies 5 and 6 only possessing polar
moments of inertia Iwy1,2 possibly extended with effective moment of inertia ngIey

of other rotating parts reduced to the wheel rotational speed):

(11.72)ωwy1 ' &Ω1%γ1(δ'0 %r)

and for the rear wheel:

(11.73)ωwy2 ' &Ω2%n r

where

 (11.74)Ω1 '
u
r1

, Ω2 '
u
r2

with r1 and r2 denoting the front and rear wheel (effective rolling) radii. Due to
symmetry of the undisturbed system, the Ω’s do not need to be regarded as
variables in our linearised system equations and non-holonomic constraint
equations do not occur. The kinetic energy becomes, in general, summed over the
six bodies:

(11.75)T' 1

2
Σ

6

k'1
mk(u

2
k %v 2

k %w 2
k )%

%

1

2
Σ

6

k'1
{Ixkω

2
xk%Iykω

2
yk%Izkω

2
zk&2(Ixykωxkωyk%Iyzkωykωzk%Izxkωzkωxk)}

The products of inertia will be neglected except Izx1 =Imxz of the mainframe. The
velocities uk etc. appearing in (11.75) correspond to the quantities given by the
expressions (11.64-74). The time derivative of the pitch angle θ  is obtained from
expression (11.63).
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The Potential Energy and the Dissipation Function

The potential energy is composed of contributions from torsional spring
deflections: twist angle β and lean angle nr with stiffnesses cβ and cnr respect-
ively, and the heights of the centres of gravity of the various bodies. These
heights become expressed in terms of the generalised coordinates and θ :

For body 1 with c.g. lateral offset ym :

 (11.76)&zm ' hm(1& 1

2
n

2)%bcθ&ymn

For body 2 with c.g. lateral offset yr :

 (11.77)&zr ' hr&
1

2
(hr&sr)n

2
&

1

2
sr(n%nr)

2
%bcθ&yrn

For body 3:

 (11.78)&zf ' hf&
1

2
hfn

2
&efδn&

1

2
efδ

2sing% (bc%af )θ

For body 4: (11.79)

&zs'hs&
1

2
hsn

2
&esδn%ssβn&

1

2
esδ

2sing%ssδβ sing% 1

2
ssβ

2cosg%(bc%as)θ

Furthermore, we have the torsional deflections nr and β. The complete potential
energy is now written as follows:

 (11.80)U ' &mmgzm&mrgzr&mfgzf&msgzs %
1

2
c
nrnr

2
%

1

2
c
β
β2

Again, Eq.(11.63) should be employed to express θ, appearing in the formulae
(11.76-79), in terms of the generalised coordinates.

If we consider viscous damping to be present in the steer bearings and
possibly also around the lean and twist axes we obtain for the dissipation
function with kδ , knr and kβ denoting the respective damping coefficients:

 (11.81)D '

1

2
k
δ
δ

2
0

%

1

2
k
nrnr

2
0 %

1

2
k
β
β2
0

The Virtual Work

Through the virtual work the generalised forces each associated with a
generalised coordinate can be assessed. The forces which act from the
environment upon the vehicle are the horizontal ground forces and moments, the
aerodynamic forces and the gravitational force component in longitudinal
direction in case of a forward slope or the dynamic longitudinal d’Alembert
forces acting in the mass centres which are in equilibrium with the longitudinal
forces generated by the tyres. The option of considering a forward slope that at
given aerodynamic drag and driving or braking forces is just able to maintain a
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constant forward velocity would make the analysis correct as in that case the
coefficients of the linear equations are time independent (cf. Eq.(3.123) with
(3.126) where this is not the case). The longitudinal acceleration ax appearing in
the ensuing equations may be considered equal to the longitudinal component of
the acceleration due to gravity that would arise if the vehicle continuously runs
over a road with equivalent forward slope. 

With the various forces and moments that act upon the vehicle in and around
the respective points of application the virtual work becomes:

 (11.82)

∆W ' Fx1∆x1%Fy1∆y1%Mz1(∆δ'%∆ψ)%Mx1∆γ1%

%Fx2∆x2%Fy2∆y2%Mz2∆ψ%Mx2∆n%

&Fd∆xd%M
δ
∆δ%M

nr∆nr%

&ax(mm∆xm%mr∆xr%mr∆xr%ms∆xs)

The virtual displacements expressed in terms of the generalised coordinates turn
out to read:

∆x1 ' (δcosg&β sing) (∆y%ac∆ψ)% (tcδ%scβ)∆ψ%h
β
β∆δ

∆x2 ' 0
∆y1 ' ∆y%ac∆ψ

∆δ' ' cosg ∆δ&sing ∆β
∆γ1' ∆n% sing ∆δ%cosg ∆β
∆y2 ' ∆y&bc∆ψ (11.83)

∆xd ' &hdn ∆ψ&hd∆θ

∆xm' & (hmn%ym)∆ψ&hm∆θ

∆xr ' & (hrn% srnr%yr)∆ψ&hr∆θ

∆xf ' & (hfn%efδ)∆ψ&hf ∆θ

∆xs ' & (hsn%esδ& ssβ)∆ψ&hs ∆θ

where ∆θ can be expressed in the generalised coordinates by taking the variation
of θ (11.63).

Now, we may compare (11.82), after having substituted herein the
expressions (11.83), with the formulation of the virtual work according to
Eq.(11.62) which becomes:

 (11.84)
∆W ' 3

j'1

6

Qj ∆qj '

' Qv∆y%Qr∆ψ%Q
n
∆n%Q

nr∆nr%Q
δ
∆δ%Q

β
∆β

As a result, the generalised forces Qj are obtained which are to be inserted at the
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right-hand sides of the Lagrangean equations (11.61).

Complete Set of Linear Differential Equations

All the necessary preparations to set up the equations have been completed. To
establish the equations, the operations with the energies as indicated in (11.61)
can now be carried out. The resulting set of equations are completed with the
four first-order differential equations for the transient slip and camber angles
front and rear and the linear equations for the side forces, the aligning torques
and the overturning couples together with expressions of the slip and camber
angles all resulting from the analysis of Section 11.2. Note that the tyre model
coefficients, CFα1, σα1 etc., depend on the current vertical wheel load Fzi = Fzi0,
Eqs.(11.23, 11.33-39). The total order of the system turns out to be 14.

With a given speed of travel u and the total longitudinal tyre force Fx,tot, the
air drag Fd, the vertical tyre loads Fz10 , Fz20 and the individual longitudinal tyre
forces Fx1,2 can be assessed using the equations (11.17, 11.18, 11.19, 11.21,
11.23, 11.24, 11.25, 11.26). The initial wheel loads (at stand-still) Fz1o , Fz2o are
directly associated with the vehicle mass distribution, Eq.(11.24). 

In the equations the imposed handlebar torque Mδ and lean torque Mnr appear
in the right-hand members. The tyre side forces and moments are tentatively put
on the right-hand side as well. In the equation for the steer angle the control
terms have been added.

The equations for successively the variables v, r, n, nr , δ, β, α'1, γ '1, α2' and
γ2' become as follows:

v :
(mm +mf +ms +mr)( +ur) +(mf af +ms as)  +0v 0r

+(mm hm+ mf hf +ms hs +mrhr)  +mr sr +(mf ef +ms es) !ms ss +n̈ nr
¨ δ̈ β̈

!Fx1 (cosg δ-sing ) =  Fy1 +Fy2 (11.85)β

r :
(mf af +ms as)( +ur) +{mf af

2+ms as
2+Imz +(Ifx +Isx)sin2

g +(Ifz +Isz)cos2
g}0v 0r

  +{mf hf af +ms hs as!Imxz +(Ifz +Isz!Ifx!Isx) sing cosg }  +n̈

!{Iwy1 /r1 +(Iwy2 +ng Iey )/r2}u  +n0

+{mf ef af +ms es as +(Ifz +Isz)cosg} !(Iwy1 /r1) u sing  +δ̈ δ0

!(ms ss as +Isx sing ) !(Iwy1 /r1) u cosg  +β̈ β0

!Fd hd !Fx1 {(tc + ac cosg )  + (sc!ac sing) } +n δ β

! ax{mh  +mr sr +(mf ef +ms es) !ms ss } =n nr δ β

= ac Fy1!bc Fy2 + Mz1 + Mz2 + mmr ax ymr (11.86)
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n :
(mm hm+ mf hf +ms hs +mr hr)( +ur) +{Iwy1 /r1 +(Iwy2 +ng Iey )/r2}u r +0v

+{mf hf af +ms hs as!Imxz +(Ifz +Isz!Ifx!Isx) sing cosg } +0r
+{mfhf

2+mshs
2+mmhm

2+mrhr
2+Imx+Irx+(Ifx+Isx)cos2

g+(Ifz+Isz)sin2
g} +n̈

!(mm hm +mf hf +ms hs +mr hr) g +(Irx+mr sr hr) !mr sr g +n nr
¨ nr

+{mfefhf+mseshs+(Ifz+Isz)sing} +(Iwy1/r1)ucosg !(tcFz1+mfefg+mses g)δ̈ δ0 δ

!(ms ss hs!Isx cosg) !(Iwy1 /r1) u sing !(sc Fz1!ms ss g)  = β̈ β0 β

= Mx1 + Mx2 + mmr g ymr (11.87)

nr :

mr sr ( + ur) + (Irx + mr sr hr)  - mr sr g +0v n̈ n

(Irx + mr sr
2) + k

φr  + (c
φr - mr sr g)  =   Mr (11.88)nr

¨ nr
0 nr

δ :
(mf ef +ms es)( +ur)+(Iwy1 /r1)sing ur +{mf ef af +ms es as +(Ifz +Isz)cosg} +0v 0r

+{mf ef hf + ms es hs + (Ifz + Isz) sing } !(Iwy1 /r1) u cosg +n̈ n0

!(tc Fz1 + mf ef g + ms es g)  +n

+(mf ef
2 +ms es

2 +Ifz +Isz) + kδ !(tc Fz1 +mf ef g +ms es g) sing  +δ̈ δ0 δ

!ms es ss !(Iwy1 /r1) u !{(sc Fz1!ms ss g) sing + Fx1hβ}  +β̈ β0 β

+ gv v + gr r + gdφ  + gφ  + gdδ  + gδ  =n0 n δ0 δ

 = ! tc Fy1 + Mz1 cosg + Mx1 sing + Mδ (11.89)

β :

!ms ss !(ms ss as +Isx sing ) !{ms ss!(Iwy1 /r1) cosg }u r +0v 0r
!(ms ss hs!Isx cosg) +(Iwy1 /r1) u sing !(sc Fz1!ms ss g) +n̈ n0 n

!ms es ss + (Iwy1 /r1) u !(sc Fz1!ms ss g) sing  +δ̈ δ0 δ

+ (ms ss
2 + Isx) + kβ + {cβ!(sc Fz1!ms ss g)cosg }  =β̈ β0 β

 = !sc Fy1!Mz1 sing + Mx1 cosg (11.90)

transient slip and camber angles:
 + u u (11.91)σ

α1αN10 αN1' α1

+ u u (11.92)σ
γ1 γN10 γN1' γ1

+ u u (11.93)σ
α2αN20 αN2' α2

 + u u (11.94)σ
γ2γ N20 γN2' γ2

tyre forces and moments (coefficients depend on wheel load (11.23, 11.33-39)):
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Fy1 =  CFα1 + CFγ1 (11.95)αN1 γN1

Fy2 =   CFα2 + CFγ2 (11.96)αN2 γN2

Mz1 = !CMα1 + C’Mγ1 !rc1Fx1 (11.97)αN1 γN1 γ1

Mz2 = !CMα2 +C’Mγ2 !rc2Fx2 (11.98)αN2 γN2 γ2

Mx1 = !CMxγ1 (11.99)γ1

Mx2 = !CMxγ2 (11.100)γ2

slip and camber angles:

      (!v!ac r +tc + sc )/u + cosg !sing (11.101)α1' δ0 β0 δ β

+ sing + cosg (11.102)γ1' n δ β

      (!v +bc r)/u (11.103)α2'

(11.104)γ2' n

the rider feedback control gains, occurring in Eq.(11.89), depend on the speed
of travel u and are assessed here by trial and error:

gv = gvo /u, gr = gro /u, gdn = gdno (1!u/uc)/u,
g
n

= g
no , gdδ = gdδo /u, gδ = gδo (11.105)

The steer torque Mδ is considered to act in addition to the stabilisation steer
torque, that results from feedback control, and is represented by the terms
containing the control gains in Eq.(11.89).  

For the mass centre lateral offset we have introduced for abbreviation:

mmr ymr = mm ym +mr yr   with  mmr = mm + mr (11.106)

If the steer and roll angles remain sufficiently small so that it may be assumed
that geometric linearity still prevails we may investigate the influence of larger
wheel slip by using for the tyre side forces and moments the non-linear functions
of α í, γ í , γi, wheel load Fzi and the braking/driving force Fxi according to the
Eqs.(11.40-60).

For the baseline configuration of the linear vehicle model the rider is
considered rigid (cn r64). With the rider upper torso released, the parameter
values of Table 11.2 hold. The tyres parameter values have been chosen as listed
in Table 11.1. The model configuration may be considered as typical for a heavy
motorcycle. When a rigidly connected rider upper torso is considered (baseline
configuration with nr = 0), the relevant parameters result from Eqs.(11.3).

For the linear system defined, the eigenvalues and the steady-state steer angle
and steer torque per unit path curvature have been established for a series of
values of the speed of travel u (=V). In addition, a number of parameters related



540 MOTORCYCLE DYNAMICS

to both the vehicle construction and the tyres have been changed in value to
examine their influence.

Table 11.2. Parameters of vehicle in baseline configuration but with rider upper torso released
 (in baseline configuration cnr64). Rider control gains g with cross-over velocity uc

mm  300 kg mf   15 kg ms    25 kg mr     50 kg

Imx    20 kgm2 Imz   20 kgm2 Imxz      4 kgm2 Irx 4.75kgm2

Ifx   0.5 kgm2 Ifz  0.3 kgm2 Isx   1.0 kgm2 Isz  0.7 kgm2

Iwy1   1.0 kgm2 Iwy2  1.0 kgm2 Iey 0.06 kgm2

ac   0.9 m bc  0.6 m ef 0.05 m es  0.05 m

sc   0.7 m tc  0.1 m r1   0.3 m r2    0.3 m

hm   0.55 m hf  0.8 m hs   0.4 m hd  0.75 m

sr   0.4 m hr  0.9 m kδ  0 Nms/rad

kβ  50 Nms/rad cβ  25kNm/rad kn r  20 Nms/rad cn r 350Nm/rad

g   9.81 m/s2 ng  1.5 g   0.5 rad CdA  0.2 kg/m

uc     15 m/s gvo !500 gro     100 gdno !900

gno !10 gdδo     150 gδo      50

11.4.  Stability Analysis and Step Responses

Free Uncontrolled Motion

In a series of diagrams the variation of the eigenvalues as a function of speed has
been presented. The diagram of Fig.11.7 represents the situation corresponding
to the baseline configuration defined by Tables 11.1,11.2 but with the rider
regarded as a rigid element of the mainframe body.The upper diagram gives the
real part of the eigenvalues of this 12th order system versus speed indicating the
degree of instability (if positive) or damping (stable, if negative). The second
diagram presents the variation of the imaginary part of the eigenvalues that
represent the frequencies of the different modes of vibration (in rad/s). The third
diagram depicts the variation of the eigenvalues in the complex plane. Along the
curves the speed changes as indicated.
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The weave mode is a relatively low frequency oscillatory motion in which the
whole vehicle takes part. This mode exhibits a possibly dangerous unstable yaw
and roll motion at higher speeds (in our case above a speed of ca.165km/h) with
a frequency of 3 to 4 Hz. At low speeds the frequency decreases and  the mode
becomes unstable and constitutes the phenomenon where the uncontrolled vehicle
falls over. At very low speed it is observed that the complex pair of roots with
a positive real part changes into two positive real roots constituting the divergent
unstable modes associated with capsizing of the whole machine and of the front
frame about the inclined steer axis (the latter is observable with the motorcycle
on its centre stand and with the front wheel clear of the ground).  The frequency
of the oscillation can be found from the two lower plots. In the high speed
unstable range the frequency of the weave mode appears to be around 27 rad/s
or ca. 4 Hz. The capsize mode can in certain cases become (moderately) unstable
beyond a relatively low critical velocity. The eigenvalue remains real and,
consequently, the motion does not show oscillations. In our case, this mode
remains stable. The third mode that is of interest is the wobble mode which is a
steering oscillation that can become unstable in a range of moderate speeds (in
our case between ca. 45 and 70 km/h). The frequency in the unstable range
appears here to take values around 55 rad/s or ca. 8 Hz as can be seen in the two
lower plots with the imaginary part as the ordinate. The frequency is mainly
influenced by the front frame inertia, the mechanical trail and the front tyre
cornering stiffness. The remaining modes are well damped and consequently of
less interest.

Starting out from the baseline configuration (with air drag) the effect of
changes in several system parameters has been investigated. To get a clear
picture of the role various parameters play in stabilising or destabilising this
single track vehicle, their values have been changed drastically. Figure 11.8
shows the resulting stability characteristics. For clarity, the wobble mode curves
have been shown separately in the lower diagram. From the results we may
conclude the following:

1. The model shows that absence of air drag (case 1) slightly stabilises the
weave mode and destabilises the wobble mode.

2. Torsional rigidity of the mainframe (case 2, large c) appears to be of crucial
importance especially for the manner in which the wobble manifests itself.
High stiffness or disregarding the torsional compliance gives rise to a (too)
high critical speed. A more flexible frame (baseline configuration) causes the
wobble to occur in a limited range of speed around 50km/h which turns out
to be experienced also in reality.

3. Almost vanishing relaxation lengths (rapid tyre response) drastically
suppresses the wobble instability.
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4. Making the tyre almost rigid (with in addition to very small σ : very large
cornering stiffness and very small pneumatic trail, case 4) would drastically
suppress the high speed weave but gives rise to violent wobble over a large
range of speed. A much larger camber force stiffness can not be technically
realised even with a very stiff solid wheel. It would increase the low speed
unstable weave range and stabilise the high speed weave; wobble is almost
not affected (not shown).

5. Making only the aligning torque stiffnesses very small destabilises the high
speed weave mode and stabilises the wobble mode. The capsize root is made
more negative.

6. Even a considerable decrease of the camber aligning moment stiffness has
very little effect, at least in the case of zero or very small longitudinal tyre
forces. The same holds for the overturning couple stiffness that is: a small
crown radius (not shown). The smaller camber aligning moment stiffness
does have an influence on the capsize stability. As indicated in the diagram,
capsize instability now shows up and occurs beyond a speed of around 20
km/h.

7. The fundamental role of the gyroscopic coupling terms becomes evident
when the polar moments of the wheel are considerably reduced (case 7). First,
the low speed unstable weave range is stretched to almost 70km/h and
second, the wobble becomes violently unstable up to very high levels of
speed. It may be concluded that the gyroscopic effect of the rotating wheels
is largely responsible for the fact that the motorcycle is capable of moving in
a stable manner. 

8. Reduction of the rake angle to an almost vertical steer axis orientation with
the caster length kept the same would strongly destabilise the wobble mode.

9. At the same time reducing the caster length as well (case 9) would strongly
destabilise the weave mode which unveils the fundamental effect of
introducing the steer axis backwards inclination. 

Effects of more realistic levels of variation of the system parameters have been
presented in the stability diagrams of Fig.11.9. Comparison with the curves that
represent the baseline configuration (0) reveals that (again, curve numbers
correspond to list numbers below):

S A 20% smaller front relaxation length stabilises the wobble mode and has
practically no effect on the weave and capsize modes.

S A smaller rear relaxation length stabilises the wobble mode in a lesser
degree and stabilises the weave mode. No effect on the capsize mode.

S Moving the centre of gravity of the mainframe plus rider 10cm forwards
turns out to strongly stabilise the weave mode. However, it destabilises the
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Fig. 11.9.  Effect of realistic changes in parameter values on stability characteristics.    
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wobble. Capsize is not affected.
S Lowering both centres of gravity over 10cm stabilises both the weave and

wobble modes a little. The capsize mode becomes more stable.
S Adding steer damping does, of course, stabilise the wobble mode. However,

it adversely affects the weave mode stability.

For the free control situation we finally consider the influence of driving or
braking and the addition of a degree of freedom: the rider lean angle measured
with respect to the mainframe roll angle. Figure 11.10 shows the stability
diagram of the baseline configuration at zero net acceleration force (11.18) Fax

= 0 (rear wheel driving force just withstands the air drag so that speed is
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constant), at braking (11.25) Fax = -1500N and at driving (11.26) Fax = 1500N.
It is observed that braking destabilises the wobble mode which is mainly due to
the increased normal load at the front wheel that gives rise to larger relaxation
length and cornering and aligning stiffnesses, the effects of which were shown
in Fig.11.9. The terms with Fx1δ in Eq.(11.86) (destabilising) and with hβ Fx1β

in Eq.(11.89) (stabilising) have a smaller effect. The terms in Eqs.(11.85,11.89)
with Fx1 appear to largely neutralise the stabilising effects of the increased front
wheel load.

When driving, the longitudinal force is generated at the rear wheel only.
Obviously, wobble is completely suppressed. Weave, however, appears to show
up already at considerably lower speeds.

As depicted in Fig.11.11, the introduction of the lean angle of the rider as an
additional generalised coordinate with torsional stiffness and damping with
respect to the mainframe gives rise to a decrease of the critical velocity for weave
instability while the wobble mode is hardly affected. The lean angle is introduced
to enable the study of the response of the vehicle motion to a step change in lean
torque Mr which is defined to act between upper torso and mainframe about the
longitudinal lean axis.

Step Responses of Controlled Motion

We will study the responses of the vehicle motion to a unit step of the imposed
steer torque M* and of the lean torque Mr. This, as a first attempt to investigate
the transient handing quality of the vehicle. First, the motorcycle must be
stabilised in the range of speed we want to cover. For this, the various feed-back
signals have been provided with gains defined by Eq.(11.105) and Table 11.2.
In Fig.11.12 the six gains have been presented as a function of the speed of
travel. Similar functions have been used by Ruijs (1985) in the feed-back control
loops to stabilise the unmanned motorcycle with stabilising rider-robot. The
peculiar change in sign that occurs in the gain from roll rate to steer torque is
essential to stabilise both the low and the high speed weave. 

The resulting stability diagram is presented in Fig.11.13. Comparison with
Fig.11.10 shows that adopted feed-back gains considerably enlarges the stable
velocity range especially at the low end. An additional control action using the
lean torque (and as a consequence moving the rider c.g. laterally) would be
necessary to further push back the low speed instability which here appears to
correspond to an unstable lean mode. At such low speeds, steering would be
almost ineffective to move the contact point laterally and thereby stabilise the
motion.

In Fig.11.14 the resulting unit step responses have been shown for the case
of zero Fax. The figure depicts the variations of the yaw rate r, the steer angle δ,
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Fig. 11.13. The stability diagram with feed-back steer torque control of Fig.11.12 activated.

the mainframe roll angle n and the upper torso roll angle n +nr . Two values of
speed have been considered: 35 and 70 km/h. The results are most interesting.
We observe that as a result of a positive change in steer torque (to the right) first
a positive steer angle arises with also positive yaw rate (to the right). After a
short time, a change in sign occurs and a negative yaw rate is being developed
with a negative steer angle. It is seen, that during this short transition time the
roll angle begins to build up in the correct direction (to the left) that belongs to
the final steady-state curving situation. This variation in the motion variables is
similar to what would be observed in reality. The uncontrolled vehicle is stable
at the speed V=35km/h (Fig.11.11). If at this speed the stabilisation controller
would not be activated, the motorcycle exhibits a similar response but with
angles and yaw rate becoming larger and with less damped wobble and weave
vibrations. 
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Fig. 11.15. The step responses of motion variables to unit steer and rider lean torque while
braking, Fax =!1500N (with rider stabilising control).
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The lean torque response shows initially a negative roll angle  which is the
result of counteracting the imposed (internal) lean torque. After the initial phase,
the angle becomes positive. Also the steer angle and with that the yaw rate turn
out to become negative in the initial phase which causes the contact points to
move in the right direction (to the left). The steady-state situation is reached after
low frequency damped lean mode oscillations. If the controller is not activated,
a very similar response with now low frequency damped weave oscillations
(Fig.11.11) occurs. Now, it becomes clear that it is mainly the gyroscopic couple
(plus camber aligning moment) that steers the front wheel initially in the right
direction. Analysis shows that the hardly visible small positive steer angle peak
right after the lean torque step change is due to the mechanical trail and the
aligning stiffness of the front wheel (tc and CMα1).

At the higher speed of V=70km/h the responses show the same tendencies but
with much smaller steer angles and yaw rates. The weave is more damped and
the wobble less. Without controller the wobble becomes unstable and a violent
steering oscillation at ca. 9Hz is developed. 

With the lean degree of freedom disregarded, only the response to steer torque
can be considered. The resulting motion responses turn out to get  close to those
depicted in the left-hand diagrams of Fig.11.14 with the curves for n+nr deleted.
The low frequency oscillation that is predominant at the lower speed is now
attributed to the weave mode. The uncontrolled system (Fig.11.7) is just stable
at 35km/h and behaves similar to the controlled one albeit that somewhat larger
weave and wobble vibrations and a larger steady-state response arise. At 70km/h
the unstable wobble vibration develops again.

Figure 11.15 presents the results for the system while the brakes are applied
(Fax =!1500N). The course of the various signals show similar tendencies as
occurs in the unbraked situation. The obvious differences are the lowly damped
wobble vibration that is seen to occur at 70 km/h (cf. Fig.11.13) and the much
smaller steady-state responses (cf. Fig.11.20 of next section). These differences
are primarily due to the accompanied load transfer. 

11.5.  Analysis of Steady-State Cornering

When a steady-state cornering condition is reached equilibrium of forces and
moments exists. We consider the equilibrium in lateral direction, about the
vertical axis and about the line of intersection of mainframe centre plane and
road plane; this in addition to the static equilibrium of forces in vertical direction.
In the approximate analysis the small c.g. forward offsets of the steerable front
and subframes ef and es will be neglected. In addition, the twist angle β and the
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rider lean angle nr will be disregarded. Instead, we will study the effect of a
sideways shift ymr of the centre of gravity of the combined mainframe and rider.
Once the side forces and the roll angle have been assessed at a given lateral
acceleration, the slip angles can be determined and from their difference with the
given non-dimensional path curvature, l/R,  the steer angle can be estimated. By
considering the equilibrium about the steering axis the steer torque needed to
maintain the curving motion is derived.

First, an approximate linearised theory is developed. The findings will be
compared with the exact steady-state solutions of the linear differential equations
(11.85-94) with the nr degree of freedom deleted. After that, the theory is
extended to larger roll angles and the non-linear handling diagram is established
for the steadily cornering motorcycle.

11.5.1.  Linear Steady-State Theory

The theoretical expressions for the coefficients concerning the steady-state
turning behaviour and the c.g. lateral offset effects will be developed in several
successive stages starting with the simplest case in which tyre moments,
gyroscopic effects and air drag are disregarded and ending with the ultimate
configuration in which all these items are included and driving or braking may
be considered. First, the required roll and steer angles will be assessed and with
these results the expression for the steer torque determined.  

Wheel Moments and Air Drag Neglected

As an introduction, we will first discuss the simple case where the air drag,
longitudinal tyre forces and all the tyre moments about the vertical axis are
disregarded. That means that the aligning moment, the overturning couple and
the spin (camber) moment are set equal to zero. Moreover, we neglect the
gyroscopic couples. 

For the lateral wheel forces we find as in Chapter 1, Subsection 1.3.2,
Eq.(1.61) for the automobile with pneumatic trails neglected (equilibrium in
lateral direction and about the vertical axis):

(11.107)
Fy1

Fz1o

'

Fy2

Fz2o

'

ay

g
'

ur
g

The roll angle ny needed to maintain equilibrium about the longitudinal x axis
when a lateral offset ymr of the centre of gravity of the combined mainframe and
rider exists (cf. Figs.11.1,11.2) equals:
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 (11.108)ny ' &
mmrymr

mh
The additional roll angle of the motorcycle that arises while cornering becomes:

(11.109)n&ny '
ay

g
'

ur
g

The front and rear camber angles read in terms of the roll angle and the ground
steer angle, cf. Eqs.(11.12-14):

(11.110)γ1 ' n % δN tang

(11.111)γ2 ' n

The slip angles result from Eq.(11.29), primes omitted, with (11.107-111). We
find:

(11.112)CFα1α1 ' (Fz1o&CFγ1)n % CFγ1δ' tang & Fz1ony

(11.113)CFα2α2 ' (Fz2o&CFγ2)n & Fz2ony

These equations show the importance of the difference between camber stiffness
(N/rad) and initial tyre load (N) in view of the sign of the slip angles. Obviously,
in general, side slip is needed to accomplish lateral/yaw equilibrium. It may be
realised, that at higher speeds the steer angle is much smaller than the roll angle,

.|δ' | << |n |
With the wheel base l= ac + bc and the Eqs.(11.15) we find the relationship

between the ground steer angle (= δ cosg) on the one side and the non-δ'
dimensional path curvature l/R=lr/u and the difference of slip angles on the
other:

(11.114)δN '
l
R
% α1 & α2

With the use of (11.112,11.113) the ground steer angle may now be written in
terms of   the non-dimensional path curvature l/R, the lateral acceleration ay and
the c.g. offset ymr:

(11.115)ζδN '
l
R
% η

ay

g
% ηy

mmrymr

mh
where we have introduced the steer angle coefficient ζ which is a bit larger than
unity:

(11.116)ζ ' ζoo ' 1 %
CFγ1

CFα1

tang

the understeer coefficient η  of the simplified system:
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 (11.117)η ' ηoo '
Fz1o

CFα1

&

Fz2o

CFα2

&

CFγ1

CFα1

&

CFγ2

CFα2

and the c.g. offset coefficient ηy:

(11.118)ηy ' ηyoo '
CFγ1

CFα1

&

CFγ2

CFα2

Since we have proportions occurring in the right-hand member of (11.117) which
are all of the same order of magnitude it is evident that the understeer coefficient
of the single track vehicle is quite different from its counterpart that is found for
the automobile where only the first two terms appear in the simplified analysis
while ζ is assumed equal to one. The ratio of camber and cornering stiffness
front relative to rear is of decisive importance for the sign and magnitude of the
understeer coefficient and consequently also for the difference in slip angle front
and rear which follows from (11.114,11.115):

(11.119)ζ (α1&α2) ' 1&ζ l
R
% η

ay

g
% ηy

mmrymr

mh
where the first term in the right-hand member vanishes if the rake angle equals
zero making ζ=1. 

When the motorcycle moves straight ahead (l/R=ay=0) Eqs.(11.115,11.119)
show that a steer angle and difference in slip angles would arise solely as a result
of the c.g. offset and depend on the difference of the ratios of camber and side
slip stiffnesses front and rear.
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The general course of steer angle and roll angle versus speed of travel at
given path curvature and c.g. lateral offset has been illustrated in Fig.11.16. The
coefficients ξ and ξy will be defined below.

The actual steer angle δ of the handlebar about the inclined steer axis with
rake angle g is obtained from the ground steer angle δN by dividing this angle by
cosg as has been formulated by Eq.(11.12) with twist angle β set equal to zero.

If fore and aft load transfer due to aerodynamic drag is considered, the lines
of Fig.11.16 are not quite straight anymore. The understeer coefficient η
corresponds to the slope of the line in the diagram if air drag is neglected. This
may be compared with the theory for the automobile where ζ is taken equal to
unity and air drag is disregarded (Fig.1.10). If, at high speed, air drag is not
negligible, η is found as the slope of the characteristic that arises if ζδN!l/R is
plotted against ay/g with the speed V held constant while the curvature increases
with growing lateral acceleration. If we would plot ζδN versus ay/g, again, in this
linear theory with constant speed, a straight line arises which now has a slope
equal to lg/V 2 + η. For the sake of convenience the above definition for the
degree of understeer has been adopted although a more proper definition might
be ηN=(Mδ /M(ay/g))R =(η /ζ)/cosg.

Discussion of numerical results (Table 11.3) follows after more adequate
approximations have been developed. For the simple theory developed so far the
coefficients ξ and ξy appearing in the diagram are equal to unity. Below, we will
see the effect of tyre width and gyroscopic couples on these roll angle
coefficients.

Tyre Overturning and Gyroscopic Couples Included

Closer consideration of the roll equilibrium around the line of intersection reveals
that instead of (11.109) we actually have with also the caster length tc taken into
account (cf. Eq.(11.88) with (11.2)):

mghn&mhay&(Iwy1 /r1% Iwy2 /r2) ur%Fz1 tcδ%Mx1%Mx2&mmrgymr' 0

(11.120)
The third term represents the sum of gyroscopic couples. With
Eqs.(11.13,11.14,11.31) we obtain for the roll angle:

(11.121)n'
(mh% Iwy1 /r1% Iwy2 /r2) ay% (CMxγ1 sing&Fz1tc)δ&mmr gymr

(mgh&CMxγ1&CMxγ2)

Inspection of the values of parameters as listed in Tables 11.1,11.2 leads to the
conclusion that the steer angle δ has a negligible effect on the relationship
between roll angle n and ymr and also between n and lateral acceleration ay =ur
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if δ <<~ 30(ay /g). With δ expressed in radians it is expected that at not too low
speed, this condition will soon be satisfied in the more interesting range of
operation. 

We will henceforth use the approximate expression for the roll angle with the
δ  term in (11.121) neglected:

(11.122)n ' ξ
ay

g
&ξ y

mmr ymr

mh
where the tilt coefficients ξ and ξy read:

 (11.123)ξ ' g
mh% Iwy1 /r1% Iwy2 /r2

mgh&CMxγ1&CMxγ2

 (11.124)ξy '
mgh

mgh&CMxγ1&CMxγ2

The quantities appear to be a little larger than unity due to the gyroscopic action
and the width of the tyres (finite crown radii). The tilt coefficients become in the
baseline configuration (Tables 11.1,11.2):

 (11.125)ξ ' 1.21 , ξy ' 1.18

An effective tilt angle nN (the angle of the dashed line, through tyre contact point
and mass centre, indicated in Fig.11.1 with respect to the vertical) may be
defined. We have:

(11.126)nN '

n

ξy

With the additional moments about the x axis now introduced, we find for the
understeer coefficient:

(11.127)η ' ηo '
Fz1o

CFα1

&

Fz2o

CFα2

&ξ
CFγ1

CFα1

&

CFγ2

CFα2

and the c.g. offset coefficient:

 (11.128)ηy ' ηyo ' ξy

CFγ1

CFα1

&

CFγ2

CFα2

while the steer angle coefficient ζ  remains unchanged:

(11.129)ζ ' ζo ' 1 %
CFγ1

CFα1

tang

The numerical values  listed in Table 11.3 will be discussed later on.
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Tyre Yaw Moments Included

Because of the obvious sensitivity to slight variations in tyre parameters we
should examine the influence of the remaining (yaw) moments due to side slip
and camber acting on the tyre. When taking into account the tyre aligning
torques and the moment applied by the air drag force (assumed to act parallel to
the x axis) we find for the tyre side forces from the equilibrium conditions:

 (11.130)Fy1 ' CFα1α1%CFγ1γ1 '
1
l

bmay&hd Fdn&Mz1&Mz2

(11.131)Fy2 ' CFα2α2%CFγ2γ2 '
1
l

amay%hd Fdn%Mz1%Mz2

in which the lateral acceleration ay can, with (11.122), be expressed in terms of
the roll angle φ and the c.g. offset ymr. The aligning torques are:

 (11.132)Mzi ' &CFαi tαiαi% CMγiγi

with camber aligning torque stiffness that without the action of the longitudinal
tyre force is defined by (11.36). The camber angles can be expressed in terms of
the roll angle and the slip angles by using the relations (11.109,11.110,11.113).
We have:

 (11.133)γ1 ' n % δN tang ' n%
l
R
%α1&α2 tang

(11.134)γ2 ' n

From the thus created two equations the two unknown slip angles αi can be
solved and expressed in terms of the known path curvature l/R,  roll angle n and
c.g. offset ymr. By substituting the expression (11.114):

(11.114)δN '
l
R
% α1 & α2

in the relationship (11.115):

   (11.115)ζδN '
l
R
% η

ay

g
% ηy

mmrymr

mh
and using again (11.122) the steer angle, understeer and c.g. offset coefficients
ζ, η and ηy can finally be assessed. The resulting expressions read:

 (11.135)ζ ' 1%
CFγ1

CFα1

%

1
CFα1

%

1
CFα2

t
α1CFγ1%CMγ1

l(
tang

with the effective wheel base

(11.136)l( ' l& t
α1% t

α2
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and 

 (11.137)

η ' λ1

Fz1o&ξCFγ1

CFα1

&λ2

Fz2o& ξCFγ2

CFα2

%

&

ξ

l(
1

CFα1

%

1
CFα2

CMγ1%CMγ2%Fd hd

and

(11.138)

ηy ' ξy λ1

CFγ1

CFα1

&λ2

CFγ2

CFα2

%

%

1
l(

1
CFα1

%

1
CFα2

CMγ1%CMγ2%Fd hd

in which the coefficients λ1 and λ2 have been introduced:

(11.139)λ1 ' 1% 1
l(

CFα1%CFα2

CFα2

t
α1

(11.140)λ2 ' 1& 1
l(

CFα1%CFα2

CFα1

t
α2

which are close to unity (around 1.03 and  0.95 respectively in the baseline
configuration changing a little depending on load transfer).

In Table 11.4, appearing further on, the values that η and ηy take in the
baseline configuration (Tables 11.1,11.2) for the cases without and with air drag
(in the latter case at speeds 1 and 160 km/h) have been listed together with the
current wheel loads and air drag force.

Driving and Braking Forces Included

Applying longitudinal forces to the tyres through braking or driving have three
effects on the handling behaviour of the vehicle occurring through the tyres.
First, we have the direct effect (only at braking) due to the sideways component
of the front wheel longitudinal tyre force that arises as a result of the steer angle.
Then, we have two indirect effects brought about by changes in tyre behaviour
due to the longitudinal force (notably in the camber aligning torque coefficient
CMγ), and due to the induced load transfer. In addition, the longitudinal
acceleration inertia forces acting in the mass centres exert a moment about the
vertical z axis if we have a roll angle n and possibly a c.g. lateral offset ymr. The
front and rear lateral tyre forces now become, instead of the right-most members
of Eqs.(11.130,11.131):
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 (11.141)Fy1'
1
l

bmay&lFx1δ'&(hd Fdn%Mz1%Mz2%max hn%mmrax ymr)

 (11.142)Fy2'
1
l

amay%(hd Fdn%Mz1%Mz2%max hn%mmrax ymr)

with the tyre aligning torques according to (11.132) but with the total camber
aligning torque stiffness now expressed as (according to (11.30)):

(11.143)CMγi ' C'Mγi & rci Fxi

The same procedure is followed as before and we find the coefficients ζ, η and
ηy augmented for the presence of vehicle acceleration ax and longitudinal tyre
forces Fx1. The terms that are to be added to the expressions (11.135,11.137,
11.138) (for zero acceleration, Fax =0, cf. (11.19)) read respectively:

 (11.144)∆ζFx ' λ1

Fx1

CFα1

 (11.145)∆ηFx ' &

ξ

l (
1

CFα1

%

1
CFα2

mhax

 (11.146)∆ηy,Fx '
ξy

l (
1

CFα1

%

1
CFα2

CMxγ1%CMxγ2

ax

g

Numerical Results

For the parameter values of the baseline configuration the various handling
coefficients have been presented in Tables 11.3 and 11.4 together with the
calculated air drag, wheel loads and possibly braking or driving forces (for a
given acceleration force Fax). Table 11.3 shows the values obtained when using
the simpler expressions for the coefficients which result when the gyroscopic and
overturning couples and/or the  aligning torques are neglected, according to the
theories covered by the Eqs.(11.107-118) and (11.120-129). The influence of air
drag results here from the induced load transfer. Table 11.4 presents the results
when all the moments are accounted for and also braking and driving may be
considered. The equations concerned are (11.130-140) and (11.141-146). First
of all, when we compare the different stages of approximation, it is observed that
the influence of the various wheel and tyre moments is essential in generating
more correct values of understeer and c.g. offset coefficients, η and ηy.
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Table 11.3. Handling coefficients with tyre aligning moments neglected. 
     Fz1o= 1732N, Fz2o= 2094N, cos g = 0.878;  Eqs(11.116-118,11.123-129)

 V   Fd    Fz1    Fz2 ξ ξy ζo ηoo ηo ηyoo ηyo

  km/h     N     N     N     -     -     -     -     -     -     -

     0      0   1732    2094   1.214   1.18   1.031   0   0   0   0

   160      0   1732   2094   1.214   1.18   1.031   0   0   0   0

   160    395   1534   2291   1.217   1.183   1.03   0.013   0.016  !0.01  !0.01

Table 11.4. Handling coefficients with tyre aligning moments and driving and braking included.
  Fz1o= 1732N, Fz2o= 2094N, cosg = 0.878; Eqs.(11.123-124,11.135-138,11.144-146)

 V   Fd Fax    Fx1    Fx2    Fz1    Fz2 ξ ξy ζ η ηy

 km/h     N     N     N     N     N     N      -     -     -    -     -

    1     0      0      0      0   1732   2094   1.214   1.18   1.034    0   0.014

  160     0      0      0      0   1732   2094   1.214   1.18   1.034    0   0.014

  160   395      0      0   395   1534   2292   1.217   1.183   1.033    0   0.023

    1     0    1500      0  1500   1137   2689   1.222   1.188   1.028    0     0

    1     0  !1500  !912  !588   2327   1499   1.207   1.173   1.008    0   0.034

  160   395    1500      0  1895    940   2886   1.225   1.19   1.026    0     0

  160   395  !1500  !615  !490   2129   1697   1.209   1.176   1.016    0   0.042

The steer angle coefficient ζ is much less affected by the tyre moments while the
roll angle coefficients ξ and ξy are influenced considerably by the gyroscopic
and/or overturning couple coefficients; note that these coefficients take the value
one in the simplest approximation according to Eqs.(11.108,11.109).  

The last two columns of Table 11.4 indicate that for the conditions considered
the understeer coefficient shows large changes but keeps the same negative sign,
which means: steering less to the right for a right-hand turn if speed is increased.
In automobile terms one would speak of an oversteered vehicle. However, the
steer angle does not serve as an input quantity and the speed where the steer
angle changes sign is not a critical speed beyond which instability occurs. It is
the steer torque that acts as the input variable and when at a given path radius
a change in sign of the steer torque would arise at a certain velocity, the system
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becomes unstable because in that situation the last term of the characteristic
equation of the system becomes negative. We then have divergent instability
corresponding to the capsize mode that becomes unstable beyond a critical speed
as illustrated in the diagram of Fig.11.8, case 6 with very small camber aligning
stiffness. 

The sign of the c.g. offset coefficient appears to change from positive to
negative in the case of accelerating at low speed. When the rider hangs to right-
hand side (ymr >0 making n<0) while moving straight ahead, steering to the right
is normally required to compensate for the camber forces pointing to the left.
This appears to be true except when the rear wheel driving force produces
sufficient positive yaw moment through the finite crown radius. 

As was already clear from the relevant expressions, the influence of speed on
the coefficients occurs if air drag is included in the model. At the high speed of
160km/h the effect of air drag becomes quite noticeable. This would be much
less at a speed of say 100km/h because of the quadratic speed influence. 

As was to be expected, the longitudinal tyre forces have a large effect on the
two coefficients. When driving with Fax =1500N, coefficient η changes from
!0.0177 to !0.0204. At the high speed, much more driving force at the rear
wheel is needed to overcome the air drag and realise the aimed acceleration.
Oversteer has increased a lot with respect to the situation at zero acceleration
(first and third row). The driving force and the opposite inertia force form a
couple around the vertical axis (because of the roll angle) that tries to turn the
vehicle more into the curve. At braking more understeer arises caused by the
forward inertia force exerting an outward couple about the z axis and the
sideways component of the front wheel braking force that does the same, trying
to straighten the vehicle’s path. 

As an example we might further analyse the case represented by the last row
of Table 11.4. If the motorcycle would be negotiating a circular path with a
radius of 200 times the wheel base, l/R = 0.005, R = 300m, at V = 160km/h
(=44.4m/s) the lateral acceleration becomes ay = V2/R = 6.58m/s2 = 0.67g. As a
consequence, the roll angle becomes n = ξay /g = 1.209×0.67 = 0.81rad = 46E.
The ground steer angle takes the value: δr = (l/R + ηay /g)/ζ = !0.0027/1.016 =
!0.00266rad = !0.15E and the handlebar steer angle δ = δr/cosg = !0.17E. It
is obvious that with this high lateral acceleration the assumption of linearity is
not valid. A smaller path curvature would have been a better choice. If the centre
of gravity of the mainframe plus rider is located a distance ymr = 1cm to the right
of the vehicle centre plane, a roll angle n = !ξy mmrymr /mh = !1.176×350×0.01/
(390×0.59) = !0.018rad = !1.03E results at straight line running. The ground
steer angle is predicted to amount to δr = ηy mmrymr /mh = 0.0423×350×0.01/
(390×0.59) = 6.38×10-4rad = 0.036Eand the handlebar steer angle δ = 0.041E.
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Fig. 11.17. Steer, roll and slip angles per unit non-dimensional path curvature l/R vs speed
squared V 2 =ayR (left: non-accelerating, right: braking) according to the exact and
approximate theories. 

In Figs.11.17,18 this case where the brakes are applied is further examined for
speeds ranging from 1 to 100km/h also showing the variation of the slip angles.

In Fig.11.17 the left-hand diagram is presented for the non-accelerating
vehicle with air drag included (rows 1 and 3 of Table 11.4) showing the variation
of the roll angle and the ground steer angle vs speed squared. In addition, the
variation of the front and rear slip angles has been depicted. The almost straight
lines result from computations with the steady-state version of the differential
equations (11.85-94) with the rider lean degree of freedom deleted. An additional
(dotted) line shows the variation of the ground steer angle according to the
approximate analytical results corresponding to those listed in Table 11.4. Only
very slight differences appear to occur between the approximate (β disregarded
and δ term in Eq.(11.121) neglected) and exact results for the ground steer angle,
slip angles and  roll angle. According to the exact computations, the twist angle
β amounts to ca. 0.5% of the roll angle n. Note that the difference in slip angles
α2!α1 practically equals l/R minus the ground steer angle δr (ζ being very close
to unity). We may calculate the slip angles following the analytical approach
through an explicit expression by using the equations (11.148,11.149) for the
lateral tyre force components caused by side slip, given later on.

The right-hand diagram of Fig.11.17 refers to the situation that arises when
the brakes are applied (fifth and last row of Table 11.4). Again, an excellent
correspondence between the approximate and exact solutions occurs. Obviously,
the vehicle performs now in a less oversteered manner as was already concluded
from the less negative value of η in Table 11.4. The front slip angle is less
negative to make the side force more positive to counteract the sideways
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Fig. 11.18. Steer, roll and slip angles per m lateral c.g. offset ymr that occur at straight line
motion (according to the exact and approximate theories). 

component of the front wheel braking force. At the same time, the rear slip angle
is made slightly larger to help compensate for the positive yaw moment that
arises from the braking forces, their points of application being shifted to the
right because of the finite crown radii. Under this condition of braking, β appears
to become somewhat smaller.

Finally, Fig.11.18 shows the variation of the various angles per unit lateral
c.g. offset. It is seen that the influence of speed is very small and that the
agreement between approximate and exact results is good. Both slip angles are
positive thereby neutralising the camber forces which point to the left because
of the negative roll angle that arises to compensate for the c.g. location lateral
offset. At braking, the centre of gravity remains above the line connecting the
contact points of the tyres. The forward load transfer reduces the rear camber
force which allows a decrease of the rear slip angle. As α1 increases only a little
to balance both the increased camber force and the sideways component of the
front wheel braking force, the steer angle needs to become larger to keep α1!δr

equal to α2. In both cases, β  is equal to ca. 5% of n and will have a relatively
large effect on the actual value of steer angle of the handle bar δ (cf. Eq.(11.12)).
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The Steer Torque

By considering Eq.(11.89) with β neglected the following steady-state expression
for the steering couple is obtained:

(11.147)

M
δ
' tc Fy1 %

& tc Fz1γ1 %

% (1/r1 ) Iwy1 ay sing %
&Mx1 sing %
&Mz1 cosg %
% (mf ef % mses)(ay& gγ1 )

Like we did with the steer angle, we wish to develop an expression for the steer
torque in terms of path curvature l/R, lateral acceleration ay and c.g. offset ymr.
For this, first the relationship with ay, n, γ1 and δr will be established. With the
aid of relationships assessed before the desired expression can be derived.

In the first term of expression (11.147) the side force of the front wheel
appears which is determined using Eq.(11.141). For this, but also for the fifth
term of (11.147), the sum of aligning torques is needed. The torque due to side
slip follows by multiplying the side force due to side slip Fyαi with the pneumatic
trail t

αi.This part of the side force is found by subtracting from the total side
force the part due to camber. The also appearing side force due to side slip of the
rear wheel can be eliminated by employing the expression for the sum of side slip
forces obtained from (11.130,11.131,11.141,11.142):

 (11.148)Fyα1%Fyα2 ' may& lFx1δ'&CFγ1γ1&CFγ2n

The following relation for the front wheel side slip force is finally obtained: 

                     Fyα1(l&t
α1%t

α2)' bmay&(l%t
α2) Fx1δ'&(hdFd%mhax)n&mmrymrax%

%t
α2(may&CFγ1γ1&CFγ2n)&CMγ1γ1&CMγ2n&lCFγ1γ1

(11.149)
The expression for Fyα1 can be used to determine the slip angle α1 (= Fyα1/CFα1)
or directly the aligning torque due to side slip Mzα1 by multiplying !Fyα1 with the
pneumatic trail t

α1. Similarly, we obtain Mzα2. The remaining part of the aligning
torque due to wheel camber Mzγ1 is obviously found by multiplying the camber
aligning torque stiffnes CMγi (11.143) with the camber angle γi. The resulting
expression for the steer torque turns out to read:
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M
δ
'

tc%t
α1cosg

l(
(b%t

α2) may& (l%t
α2) CFγ1γ1& t

α2CFγ2n%

&CMγ1γ1&CMγ2n& lFx1δ' & (hdFd%mhax)n&mmrymrax %

& tc(Fz1&CFγ1)&CMxγ1 sing%CMγ1 cosg γ1%

%
1
r1

Iwy1 sing ay% (mfef%mses)(ay&gγ1)

The front wheel camber angle γ1 may be written in terms of n and δr with
Eq.(11.133). On their turn, n and δr can be expressed in l/R, ay and ymr with the
use of Eqs.(11.122) and (11.115). At this stage we may improve the result for
Mδ by approximately accounting for the term with δ in (11.121) which we
neglected. Due to a steer angle, the contact point shifts sideways and a roll angle
is needed to keep the motorcycle in balance. The approximate correction for n
becomes:

 (11.151)∆φ ' &

b tc

l h cosg
δ'

with the steer angle equation

(11.115)ζδN'
l
R
%η

ay

g
%ηy

mmrymr

mh
and the roll angle equation (11.122) the corrected roll angle can be assessed:

(11.152)n ' ξ
ay

g
& ξy

mmr ymr

mh
&

btc

lh cosg
δ'

and also the front wheel camber angle:
(11.133)γ1 ' n % δN tang

Especially at low speeds and when the front brake is applied, the improvement
can become considerable. Obviously, this is due to the camber aligning torque
in which the longitudinal force may play a predominant role, cf. Eq.(11.143).

It is possible now to write Eq.(11.150) in the following non-dimensional
form:

 (11.153)
M

δ

Fz1o l
' µR

l
R
% µa

ay

g
% µy

mmrymr

mgh

The expressions for the steer torque coefficients are too elaborate to be
reproduced here. Numerically, however, their values can be easily assessed
directly from the original Eq.(11.150) together with Eqs.(11.122,11.152,11.133).

In Fig.11.19 the general course of the non-dimensional steer torque (11.152)

(11.150)
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Fig. 11.19. The non-dimensional steer torque due to path curvature 1/R and c.g. lateral offset
ymr and the variation with lateral acceleration ay or speed V.

has been depicted. The initial value at speed nearly zero is governed by the
coefficients µR and µy while the slope equals µa.

Numerical Results

For the baseline configuration, and the various conditions examined in Table
11.4, the values for the three steer torque coefficients have been listed in Table
11.5. 

Table 11.5. Steer torque coefficients; Eq.(11.152)

 V   Fd Fax    Fx1    Fx2    Fz1    Fz2 µR µa µy

  km/h     N     N     N     N     N     N     -     -     -

    1     0      0      0      0  1732  2094  !0.05  !0.01  0.1118

  160     0      0      0      0  1732  2094  !0.05  !0.01  0.1118

  160   395      0      0     395  1534  2292  !0.04  !0.01  0.1104

    1     0    1500      0   1500  1137  2689  !0.03  !0.01  0.080

    1     0  !1500  !912  !588  2327  1499  !0.02  !0.05  0.1729

  160   395    1500      0   1895    940  2886  !0.03  !0.01  0.079

  160   395  !1500  !615  !490  2129  1697  !0.03  !0.04  0.1624
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Figure 11.20 depicts the variation of the steer moment with the speed squared
computed according to the approximate analytical equation (11.150) (dotted line)
and with the exact equations (11.85-94) (including β but with nr = 0) together
with contributing components. These components correspond with the terms of
expression (11.147) and with the relevant terms of Eq.(11.89). In the
contribution from the front wheel aligning torque (11.59) we distinguish the part
directly attributed to Fx1 and the remaining part indicated with . TheMz"
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component indicated in the diagram by :Fx1 contains the former part plus the
term with Fx1 already appearing in the β coefficient in Eq.(11.89). In both cases
examined (without and with braking) the approximate total moment closely
follows the course of the exact solution. The difference is largely due to the fact
that in the approximate theory the twist angle has been neglected. 

In all cases, the initial torque (V60) at cornering is negative (µR < 0) which
means that when turning to the right an anti-clockwise steer torque is required.
This appears to be mainly due to the direct action of the front normal load the
axial component of which (Fz1γ1) forms with the arm tc a moment about the
steering axis. Also the tyre aligning torque with the negative slip angle of the
front wheel (Fig.11.17) helps to make the steer torque negative. In the braking
case, the front wheel brake force considerably increases the negative steer torque.
The weights of the steerable front and subframes have an almost negligible
effect, while the gyroscopic action and the front wheel side force have a tendency
to make the steer torque positive. 

Finally, Fig.11.21 gives the moment response to lateral offset of the centre of
mass of the combined rider and mainframe. The approximation is less good than
we have seen so far. The deviation is largely due to the omission of the twist
compliance. Because of the small side forces in this straight ahead motion we see
only a very small direct effect of Fy1. At braking, the tyre torques become larger
in magnitude due to the increased front slip angle and steer angle (camber), cf.
Fig.11.18.

As an illustration, we consider again the case that the motorcycle runs in a
curve with a radius of 200 times the wheel base, l/R = 0.005, R = 300m, at V =
160km/h (= 44.4m/s) the lateral acceleration becomes ay = V2/R = 6.58m/s2 =
0.67g. The vehicle is being braked and the last row of Table 11.5 applies. As a
consequence, the non-dimensional torque becomes Mδ /(Fz1o l)=µR l/R +µa ay/g =
!0.029×0.005!0.0363×0.67 = !0.0245 or in dimensional form: Mδ =
!0.0245×1732×1.5= !63.7Nm. At 50km/h we would obtain: Mδ /(Fz1o l) =
!0.0245×0.005!0.0451×0.0655 = !0.63×0.005 = !0.0031 and Mδ=!8.05Nm
 The value !0.63 corresponds to the value found in Fig.11.20 at V = 50km/h. 

For a c.g. offset of 1cm one would find a steer torque at straight ahead
running at 160km/h: Mδ /(Fz1o l)=µymmrymr /mh = 0.1624×350×0.01/ (390×0.59)
= 0.0025 and Mδ = 0.0025×1732×1.5 = 6.5Nm. The value 100×0.0025 = 0.25
may be predicted from Fig.11.21, where ymr = 1m, at 160km/h.
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11.5.2. Non-Linear Analysis of Steady-State Cornering

In this section the so-called handling diagram will be established for the motor-
cycle. In that diagram the variation of the (ground) steer angle can be found as
a function of the lateral acceleration for a given speed of travel or for a selected
value of path curvature. As an additional information, the variation of the
associated steer torque will be given. The diagram is similar to the handling
diagrams established for the motorcar in Chapter 1. The relatively large roll
angle calls for special attention to assess the equilibrium condition for the front
and for the rear tyre.

A Simple Approximation

To introduce the problem we will again first neglect all the tyre moments and the
gyroscopic couples as well as the air drag. We then have the equilibrium
conditions stated before:

(11.154)
Fy1

Fz1

'

Fy2

Fz2

'

ay

g
'

ur
g

while the roll angle and the front and rear camber angles become with δ
neglected with respect to the large n:

(11.155)tann '
ay

g
and

(11.156)γ1 ' n

(11.157)γ2 ' n

Consequently, for a given roll angle n we know the lateral acceleration, both side
forces and the camber angles. From the non-linear tyre side force characteristic
that holds for the camber angle at hand and the vertical load (here equal to the
static load) it must now be possible to assess the slip angle that produces
together with the camber angle the desired side force. When we do this for both
the front and rear wheels the difference in slip angles can be found and the
handling curve can be drawn. At a given path curvature the ground steer angle
is then easily found by using the approximate relationship:

(11.158)δN '
l
R
% α1 & α2

Figure 11.22 shows the normalised side force characteristics according to the
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baseline configuration together with the equilibrium curves where the camber
angle equals the roll angle belonging to the side force. In Fig.11.23 the resulting
handling curve with speed lines forming the handling diagram has been
presented. The speed lines indicate the relationship between lateral acceleration
and path curvature for given values of speed:
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(11.159)
l
R
'

gl

V 2

ay

g

In the figure, the equilibrium curves of Fig.11.22 have been reproduced. By
horizontal subtraction of these curves the handling curve is obtained. The
horizontal distance between selected speed line and the handling curve equals the
ground steer angle. The slope of the handling curve with respect to the vertical
axis at zero lateral acceleration corresponds to the understeer coefficient in the
linear theory η /ζ = Mδr /M(ay/g) at constant l/R. By using Eq.(11.10) with twist
angle neglected and steer angle assumed small with respect to the roll angle we
find the actual steer angle:

(11.160)δ '
δN

cosg
cosφ

The theory given above turns out to be too crude to give a reasonably
accurate result. To improve the analysis, the tyre moments and the gyroscopic
couples should be accounted for. We may also include the effect of air drag and
braking or driving forces.

To set up the equations for the steady-state cornering situation, we need to
consider the conditions for equilibrium in the directions of the x, y and z axes and
about these three axes and for the steer torque: about the steering axis. We will
do this for the general case with air drag introduced and with braking or driving
forces acting on the front and rear wheels and possibly with a given sideways
shift of the centre of gravity. The twist angle β is neglected and the lean angle nr

is disregarded since at steady-state turning its effect is similar to that of the c.g.
lateral offset.  The steer angle δ is considered small with respect to the roll angle.
Also the wheel slip angles are assumed to be relatively small (smaller than ca.
10 degrees). 

Equilibrium Conditions for the Complex Configuration

The condition of equilibrium in longitudinal direction can be met by making the
driving force equal to the air drag force. This means that Fx,acc = 0 or Fx2 = Fd.
When a different driving force or when braking forces are applied, equilibrium
can only be assured (ax = 0) when the vehicle runs on an upward or downward
slope. If this is not the case, we may speak of a quasi equilibrium situation in the
longitudinal direction. We have the equation (where the small longitudinal
component of the side force Fy1 δr has been neglected):

 (11.161)max ' Fx,acc ' Fx1 % Fx2 & Fd

In lateral direction equilibrium occurs if
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(11.162)may ' Fy1 % Fy2 % Fx1δN

and in vertical direction if

(11.163)mg ' Fz1 % Fz2

About the x axis we have the condition:

(11.164)
&may h

φ
cosn%mgh

φ
sinn%mmr gymrcosn%

& (Iwy1Ω1% Iwy2Ω2)r cosn%Fz1 tcnδ cosn%Mx1%Mx2' 0

about the y axis:

(11.165)
max h

n
cosn & mmrax ymrsinn %

% aFz1 & bFz2 % hdnFd cosn ' 0

and about the z axis:

(11.166)
max h

n
sinn%mmrymrax cosn%

%aFy1&bFy2%aFx1δN % Mz1%Mz2%hdnFd sinn' 0

The wheel normal loads Fz1,2 are found from the Eqs.(11.163) and (11.165). The
longitudinal tyre forces Fx1,2 are distributed according to Eq.(11.25) and as
before, the acceleration force Fx,acc is used as parameter in the handling diagrams
to be developed.

With Mya introduced for abbreviation:

(11.167)Mya' max h
n

cosn&mmr ymrax sinn%hdnFd cosn

where hn and hdn are defined by Eq.(11.5) with if relevant h replaced by hd, we
obtain the loads:

(11.168)

Fz1 '
1
l

(bmg & Mya)

Fz2 '
1
l

(amg % Mya)

The two side forces are found from the Eqs.(11.162) and (11.166). If we
introduce for abbreviation:

(11.168)Mza' max h
n

sinn%mmrax ymrcosn%Mz1%Mz2%hdnFd sinn

we obtain:

(11.170)

Fy1 '
1
l

(bmay & lFx1δN & Mza)

Fy2 '
1
l

(amay % Mza)
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with (from Eq.(11.10) with β = 0)

 (11.171)δN ' δ
cosg
cosn

From Eq.(11.164) an expression for the lateral acceleration can be obtained.
After using Eq.(11.60) for Mxi and the corrected effective rolling radii rin:

(11.172)rin ' ri & rci % rcicosn

and neglecting the very small contribution of δ  to the moment about the x-axis
we find by using the factor βx defined as

 (11.173)βx '
mh

n

mh
n
%

1
r1n

Iwy1%
1

r2n

Iwy2

for the lateral acceleration ay = ur:

(11.174)
ay

g
' βx 1 &

rc1 Fz1 % rc2 Fz2

mgh
n

cosn
tann %

mmrymr

mh
n

The Handling Diagram

For a given tann and ymr the corresponding lateral acceleration ay can be
computed by using (11.174). If we disregard, as a first step, the influence of δr
and the aligning torques Mz1,2 in Eqs.(11.170,11.169) we can calculate the front
and rear side forces Fy1,2 belonging to ay. With the approximation (11.156,
11.157) the camber angles are taken equal to the roll angle of the main frame. It
is then possible through iteration to assess the values for the slip angles α1,2

belonging to the calculated Fy’s and the known camber angles γ1,2 with the loads
obtained from (11.168,11.167). From the slip angles and the camber angles
established, the aligning torques Mz1,2 can be estimated for the next computation
step (for a given next incremented roll angle n) by extrapolation. Also the
ground steer angle δr  is estimated for the next step. This is done by using the
equations (11.158) after having selected a value for the forward speed V = u.
Now, a more accurate value for the side forces that belong to the equilibrium
state can be found from Eqs.(11.170) with (11.169). For a series of successive
values of n the values of α1 and α2 may be computed in this way, resulting, when
plotted against ay /g, in the equilibrium curves for the front and rear wheels
(equivalent to the effective axle characteristics of Chapter1). From the difference
α1!α2 the handling curve is obtained. If air drag Fd = CdA u

2 and/or a front wheel
longitudinal force Fx1 are considered, the handling curve changes with speed and
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Fig. 11.24. Handling diagram for complex model with all tyre moments and gyroscopic couples
included. Air drag = 0 which makes the diagram valid for all speeds V. Curves for
roll angle, front and rear slip angles and steer torque (different for each speed).

the handling diagram holds only for the selected value of speed u. If air drag and
front wheel braking are disregarded, a generally valid single handling curve with
a series of speed lines arises as depicted in Fig.11.24. The slope at ay = 0 is
(Mδr/M(ay/g))R =η/ζ.

In these diagrams also the slip angles and the actual roll angle have been
plotted (in abscissa direction). As an additional information, the diagram
contains curve(s) for the steer torque Mδ possibly changing with speed of travel
V (.u). How this quantity is assessed will be discussed in the subsection below.

The Steer Torque

The steer torque that is applied to the handle bar by the rider in a steady turn can
be found by considering the equilibrium about the steering axis. The resulting
expression is similar to the one given by Eq.(11.147) but now extended to cover
large roll angles. We find with the caster length tcφ according to Eq.(11.6):

(11.175)

M
δ
' tcn Fy1 cosγ1 & tcn Fz1 sinγ1 %

% (1/r1n) Iwy1 ur sing cosn %
&Mx1 sing & Mz1 cosg cosγ1 %

% (mf ef % mses)(ur cosγ1 & g sinγ1 )

with the aligning torque according to Eq.(11.59):

 (11.176)Mz1 ' & t
α1 Fyα1% Mzr1& rc1 Fx1 tanγ1
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In the computations, we can use the correct expression for the camber angle γ1

according to Eq.(11.13) with β = 0 because the steer angle δ  is now available.
This δ dependency causes the moment to change with path curvature and thus
produces different curves for each speed value even if air drag is disregarded
(Fig.11.24). The slope of the steer torque curve with respect to the vertical at ay

= 0 corresponds to µa Fz1o l, cf. Table 11.5.

Results and Discussion of the Non-Linear Handling Analysis

For a number of situations the handling diagram has been established for the
baseline configuration and presented in the diagrams of the Figs.11.24-28. The
following cases have been examined:

S No air drag, no braking or driving forces, no off-set of c.g. (Fig.11.24).
S With air drag and a rear wheel driving force necessary to withstand the air

drag so that the forward acceleration equals zero (Fax =0: neutral situation)
(V=30m/s=108km/h) (Fig.11.25).

S Braking: total deceleration force !Fax =1500N (V= 108km/h) (Fig.11.26).
S Hard braking: total deceleration force !Fax = 2500N (V = 108km/h)

(Fig.11.27).
S Neutral but now with lateral shift ymr = 5cm of the combined mass of main

frame and rider (V= 108km/h) (Fig.11.28). 

The following interesting observations may be made:

S The tyre/wheel moments have a considerable influence on the resulting
handling characteristic, Fig.11.24. Much more oversteer appears to occur
when compared with Fig.11.23. This was already concluded from the linear
theory.

S Air drag does not change handling behaviour very much if the speed is not
much higher than 100km/h. The steer torque at the speed of 108km/h appears
to reach a peak, decreases and changes in sign in the higher lateral
acceleration range (Fig.11.25) where Fy1 and Mx1 in (11.175) become
dominant. 

S Braking causes the ground steer angle to become larger while the steer torque
changes towards the negative direction especially at higher lateral
accelerations (Fig.11.26, note the change in scale for the steer torque).

S Hard braking (Fig.11.27) tends to change the slope of the handling curve into
understeer at large lateral accelerations. Also, the maximum lateral
acceleration that can be reached is reduced. Larger steer angles arise in the
higher ay range of operation. Also the steer torque increases considerably in
magnitude.
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Fig. 11.25. The handling diagram with air drag considered and zero forward acceleration (V
= 108km/h). 

S The lateral c.g. shift of 5cm gives rise to large changes in the diagram as
indicated in Fig.11.28.  It shows that the changes are largely due to horizontal
shifts of the curves. We may compare the graph with that of Fig.11.25.
Initially, at zero lateral acceleration (corresponding to Figs.11.18,11.21) a
negative roll angle occurs while the ground steer angle and the steer torque
are positive (which corresponds to (ηy/ζ)mmrymr/mh and (µy mmrymr/mh)Fz1ol
respectively). At a certain level of the lateral acceleration the steer torque
reaches a minimum.
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Fig. 11.27. The handling diagram at hard braking (V = 108 km/h).
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centre of gravity of combined rider and mainframe mass (V = 108 km/h).

The path curvature where these minima of the steer moment or maxima of -Mδ

occur constitutes the boundary of monotonous instability. At larger curvature the
capsize mode becomes unstable. This is analogous to what was found for the
automobile where the input is the steer angle and its maximum at a given speed
of travel corresponds to the boundary of divergent (monotonous) instability (cf.
Fig.1.20).
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at a roll angle of one radian. The speed varies from 25 to 250 km/h.

11.5.3. Modes of Vibration at Large Lateral Accelerations

The free vibrations that occur after a slight disturbance in a high lateral
acceleration cornering manoeuvre is considerably complex in nature. Koenen
(1980, 1983) studied the eigenvalues and eigenvectors of the linear homogeneous
differential equations that result after linearisation of the non-linear set of
equations at given steady-state levels of operation. The original non-coupled in-
plane and lateral out-of-plane modes of vibration appear to strongly interact with
each other at larger roll angles. The weave mode occurring at straight ahead
running intertwines with the bounce and pitch modes and form three different
modes of vibration in which both the in-plane and lateral degrees of freedom play
a role. As a result, unstable cornering weave oscillations may arise. Similarly,
the wobble mode may interact with the wheel hop mode of the front wheel which
manifests itself by a violent combined steering and vertical wheel oscillation. As
an example, we present in Fig.11.29 the set of root loci in the complex plane (the
eigenvalues) for both the case of straight ahead motion where we have uncoupled
in-plane and out-of plane vibrations and the case where the motorcycle moves
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along a circular path at an average roll angle of one radian (from Koenen’s
work). The bounce, pitch and hop modes appear to become almost speed
independent at vanishing roll angle. In a curve, all the modes do depend on the
speed of travel. In the sharp high lateral acceleration curving motion considered,
the cornering weave root loci appear to be shifted completely to the right-hand
side of the imaginary axis. The wobble mode is destabilised as well. The higher
frequency twist mode (flexible frame torsion mode) keeps an individual course.

11.6.  Motorcycle Magic Formula Tyre Model

For single track vehicles that may corner at possibly very large roll angles a
modified set of equations has been developed. To properly cover large camber
angles De Vries and Pacejka (1998a)  has adapted the original Magic Formulae.
Additional changes have been introduced regarding the aligning torque and
combined slip and the resulting complete set has been listed below. The scaling
factors λ and Eqs.(4.E1-E8) still apply. The equations of the remaining set which
have been modified are indicated by means of an asterisk (*). The resulting
characteristics appear to be quite accurate also at large camber angles (>30deg.)
but then limited to slip angles less than ca. 6 degrees (for the cases considered).

One of the notable alterations is introduced in the formula for the lateral
force, Eq.(11.E19). Here the slip angle and the camber angle have been treated
in a more equally valued and independent manner than in the original equation
(4.E19). A vertical shift did not appear to be necessary anymore. The sum of the
two shape factors Cy and Cγ is not allowed to exceed the value 2 to prevent the
side force from becoming negative at large slip and camber angles. Figure 11.30
illustrates the structure of the formula generating the Fy vs α characteristic for
a given value of γ. It is seen that with respect to the situation of Fig.4.7, the basic
sine curve is shifted sideways as a result of the presence of a camber angle. 

A draw-back of the adapted formulae is the fact that at a given large value
of α or γ the asymptotic level of the side force that is approached at increasing
large value of γ or α respectively may (unintentionally) become (much) too low.

Another feature that differs from the original model concerns the creation of
the aligning torque. The part  is now obtained by multiplying the pneumaticMz'
trail with the side force that is attributed to the side slip and not to the camber
angle (indirectly through camber induced side slip). This may, especially at large
camber angles, be closer to the actual physical mechanism. This part of the side
force, denoted with Fy,γ=0 , is obtained from the same Eqs.(11.E19-28) by setting
γ= 0.
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Fig. 11.30. The structure of the for motorcycle tyres adapted Magic Formula rendering the
side force vs slip angle characteristic for a given camber angle.

Examples of computed characteristics compared with experimentally assessed
curves for both pure slip at various camber angles and combined slip conditions
are presented in Sec.11.6.2, Figs.11.30,11.31. 

11.6.1.  Full Set of Tyre Magic Formula Equations

Equations (11.E1-E8) are omitted as they are identical with Eqs.(4.E1-E8).

 Longitudinal Force  (pure longitudinal slip)

 (11.E9)Fxo' Dx sin[Cx arctan{Bxκx&Ex (Bxκx&arctan(Bxκx ))}]%SVx

 (11.E10)κx ' κ % SHx

 (11.E11)Cx ' pCx1 @λCx

 (11.E12)Dx ' µx@Fz

 (11.E13)µx ' (pDx1% pDx2 dfz) @λ
(

µx (>0)

 (11.E14)Ex ' (pEx1 % pEx2 dfz % pEx3 df 2
z ) @{1 & pEx4 sgn(κx )} @λEx (#1)
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Kxκ ' Fz @ (pKx1%pKx2 dfz ) @exp(pKx3 dfz ) @λKxκ

(' BxCxDx ' MFxo /Mκx at κx'0 ) (' CFκ) (11.E15)

(11.E16)Bx ' Kxκ /(Cx Dx % εx)

       (cf. (11.E70)) *(11.E17)SHx ' & (qsy1FzλMy%SVx )/Kxκ

 (11.E18)SVx ' Fz @ (pVx1% pVx2 dfz) @{|Vcx|/(εVx% |Vcx|)} @λVx @λNµx

Lateral Force  (pure side slip)

 *(11.E19)
Fyo ' Dy sin[Cy arctan{Byαy&Ey (Byαy& arctan(Byαy ))} %

% C
γ
arctan{B

γ
γ&E

γ
(B

γ
γ& arctan(B

γ
γ ))}]

(Cy % C
γ
< 2)

 (11.E20)αy ' α( % SHy

 (11.E21)Cy ' pCy1 @λCy (>0)

 (11.E22)Dy ' µy@Fz

(11.E23)µy ' {pDy1 @exp(pDy2 dfz) / (1%pDy3 γ
2 )}@λ(µy (>0)

*(11.E24)Ey ' {pEy1 % pEy2 γ
2
% (pEy3% pEy4 γ )sgn(αy )} @λEy (#1)

 (11.E25)Kyαo' pKy1 FNzo sin[pKy2 arctan{Fz ((pKy3%pKy4 γ
2)FNzo )}]λKyα

(' ByCyDy' MFyo /Mαy at αy' 0 if γ ' 0) (' CFα)

 (11.E26)Kyα ' Kyαo / (1%pKy5 γ
2 )

(11.E27)By ' Kyα /(Cy Dy % εy)

 *(11.E28)SHy ' pHy1 @λHy

 *(11.E29)C
γ
' pCy2@λCγ

(>0)

 (11.E30)
Kyγ ' (pKy6%pKy7 dfz) @Fz @λKyγ

(' B
γ
C

γ
Dy ' MFyo Mγ at αy' γ ' 0) (' CFγ

)

 *(11.E31)E
γ
' pEy5@λEγ

(#1)

*(11.E32)B
γ
' Kyγ (C

γ
Dy % εy)
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Aligning Torque  (pure side slip)

 (11.E33)Mzo ' MzoN % Mzro

 *(11.E34)MzoN ' & to @Fyo,γ'0

 (11.E35)to' t (αt )' Dt cos[Ct arctan{Btαt&Et (Btαt&arctan(Btαt ))}]@cosNα

 *(11.E36)αt ' α
(

 (11.E37)Mzro' Mzr(αr) ' Dr cos[arctan(Brαr )]

 *(11.E38)αr ' α
(

% SHr

*(11.E39)γz ' γ @λKzγ

 *(11.E40)SHr ' qHz1% qHz2 dfz% (qHz3% qHz4 dfz)γ

 (11.E41)Bt' (qBz1%qBz2 dfz%qBz3 df 2
z ) @(1%qBz5 |γ |%qBz6 γ

2) @λKyα /λ(µy (>0)

 (11.E42)Ct ' qCz1 (>0)

 (11.E43)Dto ' Fz @ (Ro /FNzo ) @ (qDz1% qDz2 dfz ) @λt

 (11.E44)Dt ' Dto @ (1% qDz3|γ|% qDz4γ
2)

Et' (qEz1%qEz2 dfz%qEz3 df 2
z ) @ 1%(qEz4%qEz5 γ ) 2

π

arctan(BtCtαt) (#1)

*(11.E45)

 ( preferred: ) (11.E46)Br ' qBz9 @λKy /λ(µy%qBz10 ByCy qBz9' 0

    (11.E47)
Dr'Fz Ro{(qDz6%qDz7 dfz)λMr%(qDz8%qDz9 dfz)γz%

%(qDz10%qDz11 dfz)γz|γz|}cosNα @λ(µy

 (11.E48)Kzαo ' Dto Kyαo ('~&MMzo /Mαy at αy' γ'0) (' CMα
)

(11.E49)
Kzγo'Fz Ro (qDz8%qDz9 dfz)λKzγ

('~ MMzo /Mγ at α'γ'0) (' CMγ
)
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Longitudinal Force   (combined slip) 

(11.E50)Fx ' Gxα @Fxo

 (11.E51)Gxα'cos[Cxαarctan(BxααS)]/Gxαo (>0)

 (11.E52)Gxαo'cos[Cxαarctan(BxαSHxα)]

 (11.E53)αS ' α
(

% SHxα

 (11.E54)Bxα ' (rBx1%rBx3γ
2)cos[arctan(rBx2κ )] @λxα (>0)

 (11.E55)Cxα ' rCx1

 (11.E57)SHxα ' rHx1

Lateral Force   (combined slip)

 (11.E58)Fy ' Gyκ @Fyo % SVyκ

 *(11.E59)Gyκ'cos[Cyκarctan(ByκκS)]/Gyκo (>0)

 *(11.E60)Gyκo' cos[Cyκarctan(ByκSHyκ)]

 (11.E61)κS ' κ % SHyκ

 (11.E62)Byκ ' (rBy1%rBy4γ
2) cos[arctan{rBy2 (α(& rBy3)}] @λyκ (>0)

 (11.E63)Cyκ ' rCy1

 (11.E65)SHyκ ' rHy1

 (11.E66)SVyκ ' DVyκ sin[rVy5 arctan(rVy6κ )] @λVyκ

 (11.E67)DVyκ ' µy Fz @ (rVy1% rVy2 dfz% rVy3 γ ) @cos[arctan(rVy4α
( )]

Normal Load

 (11.E68)
Fz ' pz1 @ (FNzo /Ro) @max(ρz , 0) @λCz ($0)

(CFz ' MFz /Mρz ' pz1λCz FNzo /Ro )

Overturning Couple

 (11.E69)Mx ' Fz Ro @ (qsx1&qsx2γ%qsx3 Fy /FNzo) @λMx
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αt,eq ' α
2
t %

Kxκ

KyαN

2

κ 2
@sgn(αt )

αr,eq ' α
2
r %

Kxκ

KyαN

2

κ 2
@sgn(αr )

Rolling Resistance Moment

*(11.E70)My ' &Fz Ro @ (qsy1%qsy2 Fx /FNzo) @λMy

Aligning Torque   (combined slip)

 (11.E71)Mz ' MzN % Mzr% s @Fx

 (11.E72)MzN ' & t @FyN

 (11.E73)t't(αt,eq)'Dtcos[Ctarctan{Btαt,eq&Et(Btαt,eq&arctan(Btαt,eq))}]@cosNα

 (11.E74)FyN ' Fy,γ'0& SVyκ

 (11.E75)Fy,γ'0 ' Gyκ @Fyo,γ'0

 (11.E76)Mzr ' Mzr (αr,eq ) ' Dr cos[arctan(Brαr,eq )]

 (11.E77)s ' Ro @{ssz1% ssz2 (Fy /FNzo ) % (ssz3% ssz4 dfz )γ} @λs

(11.E78)

(11.E79)

11.6.2. Measured and Computed Motorcycle Tyre Characteristics 

As an example and similar to the presentation of the car and the truck tyre
characteristics in Chapter 4, the characteristics of a 160/70 ZR17 motorcycle
tyre have been collected in the diagrams of Fig.11.31 and 11.32. Again, at
braking, the moment is difficult or impossible to model more accurately.
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Fig. 11.31. Force characteristics of a 160/70 ZR17 motorcycle tyre. Modified Magic Formula
computed results compared with data from measurements conducted with the Delft
Tyre Test Trailer.
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Fig. 11.32. Aligning torque characteristics of a 160/70 ZR17 motorcycle tyre. Modified Magic
Formula computed results compared with data from measurements conducted with
the Delft Tyre Test Trailer.



Chapter 12

TYRE STEADY-STATE AND DYNAMIC 
TEST FACILITIES

At various automotive and tyre industrial companies and at a number of
universities and institutes, test facilities are available for performing full-scale
tyre measurements to assess the tyre force and moment generation properties.
The test installation may be built on a truck or trailer that is equipped with a
special wheel suspension and guidance system to which a measuring hub is
attached. Typically, with such an over the road testing equipment, moderate
speeds up to ca. 120 km/h can be reached. The frequencies with which the steer
angle can be varied is relatively low. The camber angle is changed mechanically
or through a hydraulic cylinder. The vertical load may be set at a desired average
level; the load variations caused by road unevennesses may be filtered out.
Commonly, the longitudinal slip results from the controlled application of the
brake pressure. In very few cases the wheel angular velocity is controlled
through a hydraulic motor that acts relative to the vehicle’s road wheel speed of
revolution. In such a way, the test wheel drive and brake slip can be varied in a
controlled manner. In some devices, water can be sprayed in front of the test
wheel to create wet road conditions. The measuring hub contains strain gauge or
piezo-electric force measuring elements. With these test facilities usually
measurements are conducted at quasi steady-state conditions. Typically, a side
slip or brake slip sweep may be imposed at a low rate. After processing,
correcting and averaging the signals, the steady-state force and moment slip
characteristics are obtained.

The large indoor test stands usually operate along similar lines. These rigs
are based on an imitated road surface provided by the surface of a drum or by
that of a flat track (endless belt). Somewhat higher frequencies of changing
vertical axle position and yaw angle can usually be achieved (up to ca. 2 to
8Hz). Drum test stands have been built with diameters ranging from 2 to ca. 4-
5m. With the larger drums the tyre usually runs or can also be run on the inner
surface. This configuration makes it possible to mount realistic road surface
segments and to maintain a layer of water on the inner surface thereby enabling
testing at wet or icy (and even snowy) conditions. External drums of 2.5 to 3m
diameter are more often encountered. Also, flat bed and flat plank test rigs are
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Fig. 12.1.  The Delft Tyre Test Trailer.

used. Typically, but not always, these machines operate at very low speed of
travel of either the plank or the wheel axle. Also turn table or swing arm devices
exist which are constructed to measure turn slip properties.

On the drum test stand a measuring tower or a special wheel guidance
system with a force measurement platform or hub can be positioned. For
dynamic higher frequency tyre tests very stiff rigs are required (or very soft
seismic systems). Special equipment is used that is often limited to a specific
application to allow the system to become light and sufficiently rigid, that is:
high first natural frequency. Devices exist dedicated to specific tasks such as
systems with: axle fixed (but adjustable in height) to assess tyre non-uniformity,
cleat response or response to brake pressure variations; axle forced to perform
only vertical axle oscillations to assess the vertical dynamic stiffness and the
response of the longitudinal force; axle to perform only yaw angle variations to
assess the tyre dynamic steer response.

In Fig.12.1 a picture is shown of the TU-Delft Tyre Test Trailer, cf. Eldik
Thieme (1960), now owned and operated by TNO-Automotive, Helmond, the
Netherlands. The trailer, that is to be replaced by a newly constructed semi-
trailer in 2005, has two measuring stations. One for passenger car size tyres and
e.g. F1 tyres limited to not so large camber angles and on the other side a new
system specially designed for motorcycle tyres that can handle also large camber
angles. The car wheel can be subjected to a fixed or sweeping steer angle (-18
to +18 deg.) and the camber angle can be mechanically set at given values from
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Fig. 12.2.  The MTS flat track test machine.

-5 up to 30 deg., cf. pp.210,211 for example test results. At the motorcycle test
side the wheel camber angle can be swept from -20 to 70 deg. or set at a fixed
angle, cf. pp.584,585. The wheels can be braked up to wheel lock. The three
forces and two moments (that is: except the brake torque) are measured with
measuring hubs: a large strain gauge based and a compact piezo-electric based
system respectively. Water can be sprayed at a controlled rate in front of the test
tyre.

Figure 12.2 depicts the flat track machine constructed by MTS. The upper
structure, in which the steering axis is located, can be tilted about a line that
forms the line of intersection of the wheel centre plane and the belt that imitates
the road surface. Through this configuration a pure camber or wheel inclination
angle variation can be created (at zero steer angle). A very early example of such
a system is the large ‘Tread Mill’ of (formerly) Calspan, Buffalo, that can also
handle larger truck tyres, cf. pp.212,213 for test results. The belt is supported
by two drums and underneath the tyre by a flat air or water bearing surface. The
lateral stabilisation of the belt is accomplished by controlling the yaw or the tilt
angle of one of the drums. The test wheel can be driven and braked in a slip
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Fig. 12.3. Internal drum test stand originally possessed and operated by Porsche.

3.80m

continuously variable hydraulic 
wheel drive/brake motor

internal
drum

Fig. 12.4. The Karlsruhe University internal drum test stand. 
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controlled manner. For a special test result cf. p.211, Fig.4.30.
 Figures 12.3 and 12.4 show the layout of two internal drum test stands, cf.
Bröder, Haardt, Paul (1973) and Krempel (1967). The drum of Fig.12.3 can also
be used on its outer surface with a maximum speed of 250 km/h. These large rigs
are operated at the Karlsruhe University of Technology. The arrangement of the
wheel loading, tilting and steering system enables centre point steering and tilting
about a line that touches the inner drum surface and lies in the wheel centre
plane. The order of changing the wheel attitude angles: first steering about the
always vertical axis and then tilting about the new (still horizontal) x-axis,
ensures that each of the angles, defined about and with respect to the vertical,
remains unchanged when the other is varied. Of course, this principle also holds
for the system of Fig.12.1 but not for the flat track machine of Fig.12.2. The
configuration of Fig.12.4 exhibits a hydraulic wheel drive motor with which the
wheel slip ratio can be controlled. Here, the force measuring unit rotates together
with the wheel. This avoids the otherwise necessary constructional measure to
suppress parasitic forces and cross-talk such as the brake torque interaction with
aligning torque that arises due to slight misalignment. With a stationary
measuring hub, a double Cardan coupling drive shaft (including a length change
compensation element) is an example of such a measure which ensures that
practically only the drive/brake torque is transmitted to the wheel. Instead of a
pair of these couplings, a set of two membranes (thin flexible discs) or other
devices (see Fig.12.6) may be used. Accurate alignment remains necessary. With
the UMTRI configuration (University of Michigan) cross-talk has been
prevented by positioning the brake system between the non-rotating, stationary
measuring system and the wheel. One of the drawbacks of rotating measuring
systems is the fact that the sensitivity about the vertical axis (for the small
aligning torque) can not be chosen larger than the sensitivity about the horizontal
longitudinal axis about which the moment may become relatively large.

Figure 12.5 shows the Delft flat plank machine, cf. Eldik Thieme (1960) and
Higuchi (1997), now owned by the Eindhoven University of Technology. With
this rig accurate measurements can be conducted at a low speed of 2.3cm/s. The
plank has a maximum stroke of 7.5m and can be tilted about the longitudinal
centre line on the test surface. Hereby, pure camber step responses can be
established. The wheel axle, equipped with a measuring hub, can be steered,
cambered and the wheel can be braked. The vertical axle position or the vertical
tyre load can be adjusted. Cleats can be mounted on the plank surface. Typically,
tyre static stiffness tests (vertical, longitudinal, lateral, yaw and camber),
transient (step) side slip and camber tests (relaxation lengths and non-lagging
part), impulse turning and low speed cleat tests are performed on this machine,
cf. pp.236, 351, 501 and Pacejka (2004).
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road surface  (sledge)cleat measuring hub 

air spring system wheel carrier 

surface canting 
    mechanism     

Fig. 12.5.  The flat plank machine with road canting system.

The indoor drum test facility of the Delft University of Technology is based
on two coupled drums with a diameter of 2.5m that can run up to a maximum
speed of 300km/h. On top of one of the drums a measuring tower (for low or
moderate frequency yaw and brake experiments, cf. Fig.9.37) can be installed
(not shown). This rig, cf. Eldik Thieme (1960) and Maurice (2000), can be
turned about a vertical axis that passes through the tyre contact centre and
through the top of the drum surface. 

On the other drum a rig can be mounted that is designed for measuring in-
plane tyre dynamics, Fig.12.6, cf. Zegelaar (1998). Much care has been taken
to make the rig sufficiently rigid. This resulted in a lowest natural frequency of
just over 100 Hz which allows the use of test data up to ca. 70 Hz. In addition,
to avoid force and moment cross-talk, the brake shaft is connected with the wheel
shaft through an intermediate shaft with two flexible couplings. These couplings
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Fig. 12.6. Dynamic brake and cleat test facility in side and front view. Tests may be conducted
up to ca. 65Hz enabling the assessment of tyre/wheel in-plane inertia and stiffness
parameters including residual stiffnesses and rigid modes of vibration.

represent an alternative solution for the double Cardan coupling of Fig.12.3.
They are flexible in all directions except about the axis of rotation. If properly
aligned, this ensures that only the brake torque is transmitted to the wheel and
that other parasitic forces and moments are largely suppressed. The brake torque
is measured with strain gauges attached to the intermediate coupling shaft. A
hydraulic servo system is used to control the brake pressure fluctuations
(bandwidth up to ca. 60Hz). Piezo-electric load cells placed on top of the



593TYRE STEADY-STATE AND DYNAMIC TEST FACILITIES

hydraulic
actuator

piezo-electric
measuring hub
and
steering head

drumhinge

Fig. 12.7. The trailing arm ‘pendulum’ test rig exciting the tyre almost purely laterally.
Frequencies up to ca. 25 Hz adequate for assessing the tyre relaxation length and
gyroscopic couple parameter.

piezo-electric
measuring hub
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hydraulic
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Fig. 12.8. The yaw oscillation test rig featuring centre point steering. Frequencies up to ca. 65
Hz enabling the assessment of tyre out-of-plane inertia and stiffness parameters
including residual stiffnesses and rigid modes.

bearings of the wheel shaft provide the signals from which the forces and
moments that act on the wheel (except the brake torque) can be derived. With
this machine, dynamic brake tests (pp.477, 481) and cleat tests (pp.502-505 and
511) are conducted. In a different set-up the machine is used for response
measurements to vertical axle oscillations (<20Hz), cf. p.371.

On the other drum rigs may be mounted for out-of-plane tyre dynamic
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experiments. One is the trailing arm ‘pendulum’ test stand, cf. Vries et al.
(1998a) and Maurice (2000), with at one end a vertical hinge and at the other the
steering head (for adjusting the average slip angle) with piezo-electric measuring
hub (cf. Fig.12.7). At that point the arm is excited laterally up to ca. 25 Hz by
means of a hydraulic actuator. The wheel load is adjusted by tilting the vertical
hinge slightly forward. The arm length is 1.65m and the tyre is subjected to an
almost purely lateral slip variation. The rig is useful to assess the overall
relaxation length and the gyroscopic couple parameter. The idea of the pendulum
concept originates from Bandel et al. (1989). They designed and used an actual
freely swinging pendulum rig.

In Fig.12.8 the so-called yaw oscillation test stand, Maurice (2000), is
depicted that can be used for tests around an average steer angle that can be set
at a value between -5 to +5 degrees. The structure is light and very stiff. The two
guiding members with flexible hinges intersect in the vertical virtual steering axis
that is positioned in the wheel centre plane (centre point steering). A hydraulic
actuator is mounted to generate the yaw vibration (typically random with a
bandwidth of 65Hz). The wheel axle is provided with a piezo-electric measuring
hub. The tyre is loaded by mechanically adjusting the axle height above the drum
surface. Test results are presented on pp.478,479 and 482.
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List of Symbols

a distance front axle to c.g.; half of contact length
ax longitudinal acceleration
ay lateral acceleration
aµ slip velocity dependency coefficient for friction
Ar rolling resistance coefficient
b distance rear axle to c.g.; half contact width
B stiffness factor in 'Magic Formula' 
B1 brake force of rolling wheel
c stiffness; factor
cc lateral carcass stiffness per unit length
cgyr

non-dimensional gyroscopic coefficient
cpx,y tread element stiffness per unit length of circumference
c’px tread element longitudinal stiffness per unit area
C cornering stiffness ; sum front and rear
Ci cornering stiffness, sum left and right
C contact centre (point of intersection)
C shape factor in 'Magic Formula' 
CdA air drag coefficient
CFx longitudinal stiffness of standing tyre
CFy lateral stiffness of standing tyre
CFz stiffness of tyre normal to the road
CFα cornering stiffness
CFκ longitudinal slip stiffness
CFγ camber stiffness for side force
CFn spin stiffness for side force
Cgyr tyre gyroscopic coefficient
CMα aligning torque stiffness
CMγ camber stiffness for aligning torque
CMn spin stiffness for aligning torque
CMψ torsional yaw stiffness of standing tyre
CMxγ overturning couple stiffness against camber
Ccx,y carcass horizontal stiffness of standing tyre
Cgyr gyroscopic coefficient
dfz normalised change in normal load, Eq.(4.E2)
dt tread depth
D peak factor in 'Magic Formula'; dissipation function
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E curvature factor in 'Magic Formula'
e caster length; tread element deflection
f trail of c.g.
fr rolling resistance coefficient
Fax force for forward acceleration
Fd air drag force
Fx,tot sum of longitudinal tyre forces
Fx longitudinal tyre force
Fy lateral tyre force
Fz vertical (normal) tyre force (load) (>0), in Chap.9: Fz <0
Fr rolling resistance force (>0)
FN tyre normal force (>0)
FNo reference vertical load, nominal load (= |Fzo|)
FV tyre vertical force
FH tyre longitudinal horizontal force
g acceleration due to gravity; feedback rider control gain
G weighting factor
h height
H height; sharpness factor in 'Magic Formula'
H transform; Hurwitz determinant
i %!1
iz radius of inertia
I moment of inertia
Iw wheel polar moment of inertia
Ip wheel polar moment of inertia
j %!1
k radius of inertia; viscous damping coefficient
K centrifugal force; force acting in belt, wheel centre
l wheel base
ls shift; two-point follower length
lb length of basic curve
lf offset
l unit vector along line of intersection
m mass; fraction of 2a where adhesion occurs
mc contact patch mass (dummy)
mt tyre mass
mm mass of mainframe (including lower part of rider)
mmr mass of mainframe plus rider
mr mass of upper torso
MB,D brake, drive torque
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Mx overturning couple
My rolling resistance moment
Mz (self) aligning torque
M’z (self) aligning torque due to lateral deflections
Mz

* aligning torque due to longitudinal deflections
Mz,gyr gyroscopic couple
Mδ steer torque
n number of elements; frequency [Hz]
n unit vector normal to the road =(0,0,!1)T

nst steer system ratio
p Laplace variable [1/m]
pi inflation pressure
q average vehicle yaw resistance arm; generalised coordinate
q contact force per unit length of circumference, vector
Q generalised force
r yaw rate; tyre (loaded) radius
rc radius of carcass (belt), unloaded; cross section crown radius
ryo free tyre radius varying along cross section contour, ryo = ryo(yco)
re effective rolling radius of freely rolling wheel
rf free unloaded tyre radius
rl loaded radius
ro free unloaded tyre radius (= Ro)
R radius of curvature
Ro free unloaded tyre radius (= ro)
s forward position of neutral steer point; half track width 
s Laplace variable; travelled distance
ssx κ  (practical slip component)
ssy tanα  (practical slip component)
s unit vector along wheel spin axis
S wheel slip point; impulse; string tension force
SV,H vertical, horizontal shift
t pneumatic trail; time
tc caster length
tr rise time
t unit vector in road plane perpendicular to line of intersection l
T kinetic energy; moment acting around belt, wheel centre
u forward velocity of c.g.; longitudinal deflection
U potential energy
v lateral velocity of c.g.; lateral deflection
V speed of travel of c.g. (with x, y components) 
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V speed of travel of wheel centre (with x, y components)
Vc speed of contact centre C (with x, y components)
Vg speed of sliding (with x, y components)
Vo reference velocity =%gRo

Vr wheel linear speed of rolling (= Vcx!Vsx)
Vs wheel slip velocity of slip point S (with x, y components)
Vx longitudinal speed component of wheel centre
Vs

* velocity of contact patch mass (with x, y components)
w vertical road (effective) profile (positive downwards)
W work
x,y,z longitudinal, lateral, vertical displacement
x,y,z coordinates with respect to moving axes system, z axis vertical
xo,yo,zo global coordinates
x2,y2,z2 global coordinates
X longitudinal horizontal tyre force
X,Y,Z global coordinates
yco distance from wheel centre plane
ymr lateral offset of mmr c.g.

α wheel (side) slip angle; axle (side) slip angle 
α road transverse slope angle
αN transient tyre slip angle
αa virtual axle slip angle
β vehicle side slip angle; tyre yaw torsion angle 
βx,y road transverse, forward (effective) slope angle
βgyr gyroscopic wheel coupling coefficient, Eq.(6.35)
γ camber (wheel inclination) angle
γN transient tyre camber angle
Γ unit step response function
δ steer angle of front wheels
δo .l/R, steer angle at V60
∆ increment
g roll steer coefficient; rake angle of steering axis
g string length ratio, Eq.(5.153); eff. roll. radius gradient  !Mre/Mdt

gγ camber stiffness reduction factor
gNL non-lagging part
g small quantity to avoid singularity
ζ damping ratio; spin factor (=1 if spin influence is disregarded)
ζh height ratio, Eq.(6.36)
ζα cornering stiffness load transfer coefficient
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ζγ camber stiffness load transfer coefficient
η understeer coefficient; effective rolling radius gradient !Mre/Mρz

ηy c.g. offset steer coefficient
θ tyre model parameter, Eqs.(3.6,3.24,3.46) 
θ angular displacement about η axis; pitch angle
θc string model composite parameter, Eq.(5.160)
κ longitudinal wheel slip
κN transient longitudinal tyre slip
κ* damping coefficient due to tread width
λ wavelength; root characteristic equation
λ fraction of 2a where adhesion occurs; user scaling factor
µ coefficient of friction
ρ tyre radial (vertical) deflection
ρx,y,z tyre longitudinal, lateral, normal deflection
σ relaxation length; load transfer coefficient
σ theoretical slip, vector, Eq.(3.34)
σ* intersection length in string model with tread elements
σc string model length parameter, Eq.(5.153)
σc contact patch relaxation length
τ roll camber coefficient
n body roll angle; spin slip
nN transient spin slip
nt turn slip
k phase angle
ψ yaw angle; steer angle
ψc1 compliance steer angle
ψio toe angle
ω frequency [rad/s]
ωo undamped natural frequency
ω1,2 natural frequencies
ωn damped natural frequency
ωs path frequency [rad/m]
Ω wheel speed of revolution
ξ,η,ζ moving axes system, η axis along spin axis, ξ horizontal

Subscripts and superscripts

a axle; from belt to wheel rim centre
b belt; from belt centre to rim
c compliance (steer)
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c contact patch; from contact patch centre to belt; crown; contour
D drag
e effective
eff effective (cornering stiffness)
eq equivalent
f free, unloaded; of front frame
g global
i 1: front, 2: rear
L,R left, right
m of mainframe
mr of mainframe plus rider
NL non-lagging
o original; initial; average 
o unloaded; nominal; at vanishing speed; natural
r roll; rolling; rolling resistance; of residual spring; of rider
s slip; from road surface to contact patch; of front sub-frame
sl at verge of total sliding
sf side force (steer)
ss steady state
st static
stw steering wheel
t transition from adhesion to sliding
w wheel
x,y,z forward (longitudinal), lateral (to the right), downward
zr residual (torque)
ξ,η,ζ along, around ξ,η,ζ axes
1,2 front, rear; leading, trailing edge
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Sign Conventions for Force and Moment and Wheel Slip



Appendix  2

TreadSim

A Matlab program for the calculation of steady-state force and moment response
to side slip, longitudinal slip, camber and turn slip using a brush model with up
to three rows of tread elements and a flexible carcass. Cf. Chapter 3, Section 3.3
and Figs.3.35,3.38.

% **   TreadSim.m  **    

%   **   tread element following model   **
%   **   one, two or three rows   **  

% **   stationary response to lateral, longitudinal, camber and turn slip   **
% **   carcass rigid with only lateral compliance effect in Mz   **
% **   or
% **   carcass lateral, yaw and bending compliance   **
% **   with approximate slip speed dependent friction coefficient   **  
% **   conicity, ply-steer, correction factors for lateral roll and camber distortion  ** 
% **   calculation of forces Fx, Fy and moment Mz (and t) 
%        as function of kappa, alpha or a/R
%       (with kappa, a/R =aphit, gamma or alpha as changing motion parameter)
% **   option for making deformation picture for one set of motion variables**

clf;
picture=1;   % if =1 then single set of values of motion variables is given and diagrams of 

   % force distribution and of carcass and tread elements deformation are produced
rigid=0;  % =1 if carcass is rigid, else =0
if rigid ==1
iitend=1; % =1 (no iterations at rigid carcass!)
else
iitend=5;     % =5....25 (number of iterations depends on carcass compliance)
end;
n=20;          % number of elements -1
nrow=3;       % number of rows (1 or 2 or 3)
a=0.1;         % half contact length [m]

if picture ==1 % single set of values of motion variables
   alphapict= 4; % slip angle in degrees
   gammapict= 0; % camber angle in degrees
   Rpict= 1.00000000; % turnslip = a/Rpict,  path curvature radius Rpict in m
   kappapict= -0.0; % long. slip (from -1 to ....)
   n=30;
end;   

% if running variable (abscissa) (then =1 else =0)
alpharuns=0; % slip angle
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kapparuns=1; % longitudinal slip ratio
aphitruns=0; % non-dimensional turnslip (aphit=a/R)

            % if not chosen as running variable but as changing parameter (then =1, else =0)
gammapar=0;
aphitpar=0;
alphapar=1;
kappapar=0;

        % side slip angle: alpha range and step [deg] (if chosen as running variable)
alphdegminr=-25.01;
alphdegmaxr=25;
g1a=0.05; g2a=0.2;        % deltalphdegr=g1a*abs(alphadeg)+g2a (varying alpha increment)
        % longidinal slip ratio: kappa range and step [-] (if chosen as running variable)
kappaminr=-0.99; % negative: braking
kappamaxr= 0.8; % positive: driving
g1k=0.1; g2k=0.01;% deltakappar=g1k*abs(kappa)+g2k  (varying kappa increment) 

% non-dim. turnslip: aphit (=a/R) range and step [-] (if chosen as running parameter)
aphitminr=0.01;
aphitmaxr=0.7;
g1t=0.01; g2t=0.01; % deltaphitr=g1t*abs(aphit)+g2t   (varying aphit increment)

% constant motion parameters 
% (overruled if chosen as changed parameter or as running variable)

alphadeg=0;   % [deg]      (slip angle) 
gammadeg=0;    % [deg]    (camber angle)
R=10000000;     % [m]        (aphit=a/R;   non-dimensional turnslip) 
kappa=0; % [-]          (long. slip ratio)

aphit=a/R; 
jmax=1; 
deltgamdeg=0; gamdegmin=gammadeg;             
deltalphdeg=0; alphdegmin=alphadeg;              
deltaphit=0; aphitmin=aphit;                     
deltakappa=0; kappamin=kappa;                  

        % changed motion parameters (number, minimum, step)

if gammapar==1  % **gamma** as changed motion parameter [deg]:  
jmax=6; gamdegmin=-5; deltgamdeg=5;              
end;
if aphitpar==1  % **aphit (=a/R)** as changed motion parameter [-]:  
jmax=12; aphitmin=-0.3; deltaphit=0.1;               
end;
if alphapar==1  % **alpha** as changed motion parameter [deg]: 
jmax=5; alphdegmin=0.000001-2; deltalphdeg=2;           
end;
if kappapar==1  % **kappa** as changed motion parameter [-]:  
jmax=1; kappamin=-0.0; deltakappa=-0.05;        
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end;

% system parameters

re=0.3;        % effective rolling radius [m]
Fz=3000;       % normal load [N]
Vc=30;         % speed of contact centre [m/s]
mu0=1;         % friction coefficient [-]
amu=0.03; % speed dependency coefficient for mu [s/m]

% ( mu=mu0/(1+amu*Vbi) ); 0.03
CFkappaFz=15; % long. slip stiffness over Fz [-]
CFkappa=CFkappaFz*Fz; %[N/-] from this: cp=(1/(nrow*2*a*a))*CFkappa;
%  cornering stiffness coeff. CFalpha/Fz [-] is calculated if alpharuns=1 for last param. case
%  a (half contact length) defined above                  
b=0.08;        % half contact width [m]
brow=0.05; % half effective contact width [m]
 if nrow==1 
 brow=0; 
end;
alphadegply=0; % ply-steer equivalent slip angle [deg]
gammadegcon=0; % conicity equivalent camber angle [deg]

%stiffnesses of tyre carcass at contact patch at base of tread elements 
        % (as if measured on bare tyre) 
y0=0.00;         % initial lateral off-set (vo) , if rigid: Mz=Mz-c*Fx*Fy-y0*Fx  (0.005)

if rigid==0
 cyaw= 6000.000;  % [Nm/rad]    8000
 cbend=4000.000;  % [mN]        8000
 clat= 100000;  % [N/m]       suggested:  clat=Fz/(0.15*a) 200000   
 else
 cyaw= 10000000; % [Nm/rad]  
 cbend=10000000; % [mN]       
 clat= 10000000; % [N/m]  
 c=1/100000;  % c=(1-epsyFy)/clat ,

% Mz=Mz-c*Fx*Fy-y0*Fx, (0.5/200000), c is used if ‘rigid’
end;
    %resulting stiffness of tread elements, per row, per unit of circumfernce 
cp=(1/(nrow*2*a*a))*CFkappa;
theta=(1/3)*CFkappa/(mu0*Fz); % not used         

     % correction parameters
epsyprime=0.0;   % reduction factor for moment arm of Fx causing yaw distortion (slope);
              % arm =~(1-epsyprime)*ymeff   (0.5)

       % where ymeff represents effective lateral displacement of belt in contact zone
epsyrgamma=4;   % moment (Mz) arm for Fx due to sideways rolling caused by camber =

      %  ygamroll=epsyrgamma*gamma*b; if abs(ygamroll)>b: ygamroll=b*sign(gamma)
epsyFy=0.0; % reduction factor moment(Mz)arm for Fx due to sideways rolling caused by Fy
              % and the counter effect of longitudinal deflection
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              % total moment {Mz) arm= ymeff= ym0+ydefl(1-epsyFy)+ygamroll  
epsdrgam=0.0;     % coefficient for reduced change eff. rolling radius left/right                      

                  % caused by camber
              % delta_re_Right=~ -(1-epsdrgam)*gamma*brow; suggestion: epsdrgam                %
(=epsxgamma)=epsgamma
epsgamma=0.0;   % reduced camber curvature coefficient (will be >0) due to distorsion        
      % (=epsygamma) 

       % resulting camber contactline curvature (at mu=0)
       % 1/Rgamma=(1/re)*(1-epsgamma)*sin(gamma)

         % end of parameter settings

         % start of computation
a2=a*a; a3=a2*a;
nCFa=0; CFalphaFz='?';

if picture==1
   jmax=1;
   alphadegmin=alphapict;
   gamdegmin=gammapict;
   aphitmin=a/Rpict;
   kappamin=kappapict;
end;   

           % **  begin gamma, aphit(=a/R), alpha or kappa-loop (as motion parameter) **
for j=1:jmax            
gammadeg=gamdegmin+(j-1)*deltgamdeg;              
aphit=aphitmin+(j-1)*deltaphit;                        
alphadeg=alphdegmin+(j-1)*deltalphdeg;
kappa=kappamin+(j-1)*deltakappa;                        

alpha=alphadeg*pi/180;
gamma=(gammadeg+gammadegcon)*pi/180;
singam=sin(gamma);
cs0=alphadegply*pi/180;         % initial belt slope due to ply-steer
cc0=(1/re)*(1-epsgamma)*singam;% initial belt lateral curvature due to camber and conicity
ym0=-0.5*cc0*a2;         % initial belt lateral position at contact centre resulting from camber
                    % at mu=0. This is a guess; then, y0i=cs0*a at leading edge (x=a)
ygamroll=epsyrgamma*singam*b;  % moment arm of Fx due to sideways rolling at camber
 if abs(ygamroll)>b
 ygamroll=b*sign(gamma);
 end;

cs=cs0;
cc=cc0;
ym=ym0;
Fy=0; Mzprime=0; Fym1=0; Mzm1=0; 
if alpharuns==1
alphadeg=alphdegminr;
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imax=round((log(abs(1-g1a*alphdegminr/g2a))+log(abs(1+g1a*alphdegmaxr/g2a)))/g1a)+2;
end;
if kapparuns==1
kappa=kappaminr;
imax=round((log(abs(1-g1k*kappaminr/g2k))+log(abs(1+g1k*kappamaxr/g2k)))/g1k)+2;
end;
if aphitruns==1
aphit=aphitminr;
imax=round((log(abs(1-g1t*aphitminr/g2t))+log(abs(1+g1t*aphitmaxr/g2t)))/g1t)+5;
end;

if picture==1
   alphadeg=alphapict;
   alpha=alphadeg*pi/180;
   kappa=kappapict;
   aphit=a/Rpict;
   alphadegminr=alphapict;
   kappaminr=kappapict;
   aphitminr=a/Rpict;
   imax=1;
end;   

for ia=1:imax      % **  begin kappa or alpha or a/R (if running variable) ia-loop **

if alpharuns==1
alpha=pi*alphadeg/180;
Fym1=Fy; % needed for calculation of cornering stiffness
end;
R=a/(aphit+0.0001); 
Fy=0; Mzprime=0; % initial value for iteration

                           % **  begin carcass deflection iteration, iit-loop **
for iit=1:iitend
slope=Mzprime/cyaw;      
cs=cs0+slope;    % belt slope at contact centre w.r.t. wheel plane
curve=Fy/cbend;          
cc=cc0-curve;       % belt lateral curvature in contact zone
ydefl= Fy/clat;     
ym=ym0+ydefl;      % belt lateral position at contact centre w.r.t. wheel plane
yFyroll=-epsyFy*ydefl;
ymeff=ym+ygamroll+yFyroll;    %effective moment (Mz) arm for Fx

for iLR=1:nrow    % **  begin left (iLR=1) and right row (iLR=2) loop (if one row: nrow=1)
   if nrow==1 
      ibLR=0; bLR=0;
   end;
   if nrow==2
      ibLR=(2*iLR-3); bLR=ibLR*brow;
   end;   
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   if nrow==3
      ibLR=(iLR-2); bLR=ibLR*brow;   % left: bLR=-brow,  mid: bLR=0,  right: bLR=+brow
   end;

psidot= -Vc/R;

Vcx=Vc*cos(alpha);       
Vsx= -Vcx*kappa;         
Vsy= -Vcx*tan(alpha);    
Vr=Vcx-Vsx;
omega=Vr/re;
VcxLR=Vcx-bLR*psidot;
VsxLR=Vsx-bLR*psidot+bLR*omega*(1-epsdrgam)*singam;
VsyLR=Vsy;
VrLR=Vr;

deltat=2*a/(n*VrLR);
deltax=2*a/n;
xi=a; x(1)=a; 
ei=0; exi=0; eyi=0; Fxim1=0; Fyim1=0; Mzim1=0; 
px(1)=0; py(1)=0; pz(1)=0; p(1)=0;                 
sliding=0;
                     % **  begin i-loop: passage through contact length 
for  i=2:n+1               
eim1=ei; exim1=exi; eyim1=eyi;
xi=xi-deltax; xi2=xi*xi;
x(i)=xi;
dybdximean=cs+cc*(xi+0.5*deltax);
ybi=ym +cs*xi+0.5*cc*xi*xi+bLR;
ybieff=ymeff+cs*xi+0.5*cc*xi*xi+bLR;
Vbxi=VsxLR;
Vbyimean=VsyLR + (xi+0.5*deltax)*psidot - VrLR*dybdximean;
Vbi=sqrt(Vbxi*Vbxi+Vbyimean*Vbyimean); Vb(i)=Vbi;      % belt point velocity
mu=mu0/(1+amu*Vbi);
pzi=0.75*Fz*(a2-xi2)/(a3*nrow); pz(i)=pzi;       % vertical pressure distribution (qz)
deltasxi=deltat*Vbxi;
deltasyi=deltat*Vbyimean;

if sliding>0           % element is sliding
ei=mu*pzi/cp;
 if i==2 
 eim1=0.00001;
 exim1=-eim1*Vbxi/Vbi;
 eyim1=-eim1*Vbyimean/Vbi;
 end;
gi=0.5*eim1*((exim1-deltasxi)*(exim1-deltasxi)+(eyim1-deltasyi)*...

(eyim1-deltasyi)-ei*ei)/(exim1*(exim1-deltasxi)+eyim1*(eyim1-deltasyi));
exi=(1-gi/eim1)*exim1-deltasxi;
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eyi=(1-gi/eim1)*eyim1-deltasyi;
ein=sqrt(exi*exi+eyi*eyi);
exi=(ei/ein)*exi;   %correction
eyi=(ei/ein)*eyi;   %correction
pxi=(exi/ei)*mu*pzi;
pyi=(eyi/ei)*mu*pzi;
 if gi<0                      % element starts to adhere to the road
 sliding=0;
 exi=-deltasxi+exim1;
 eyi=-deltasyi+eyim1;
 ei=sqrt(exi*exi+eyi*eyi); e(i)=ei;
 pii=cp*ei;
 pxi=cp*exi;
 pyi=cp*eyi;
  if pii>mu*pzi
  pxi=(exi/ei)*mu*pzi;
  pyi=(eyi/ei)*mu*pzi;
  pii=mu*pzi;
  sliding=1;
  end;
 end;
else                           % element is adhering to the road
exi=-deltasxi+exim1;
eyi=-deltasyi+eyim1;
ei=sqrt(exi*exi+eyi*eyi); e(i)=ei;
pii=cp*ei;
pxi=cp*exi;
pyi=cp*eyi;
 if pii>mu*pzi              % element starts to slide    
 sliding=1;
  if i==2 
  eim1=0.00001;
  exim1=-eim1*Vbxi/Vbi;
  eyim1=-eim1*Vbyimean/Vbi;
  end;
 ei=mu*pzi/cp;                
 gi=0.5*eim1*((exim1-deltasxi)*(exim1-deltasxi)+(eyim1-deltasyi)*...

(eyim1-deltasyi)-ei*ei)/(exim1*(exim1-deltasxi)+eyim1*(eyim1-deltasyi));
 exi=(1-gi/eim1)*exim1-deltasxi;   
 eyi=(1-gi/eim1)*eyim1-deltasyi;   
 ein=sqrt(exi*exi+eyi*eyi);
 exi=(ei/ein)*exi;  %correction
 eyi=(ei/ein)*eyi;  %correction
 pxi=(exi/ei)*mu*pzi;
 pyi=(eyi/ei)*mu*pzi;
 end;
end;            

pii=sqrt(pxi*pxi+pyi*pyi);
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Fxi=Fxim1+pxi*2*a/n;
Fyi=Fyim1+pyi*2*a/n;
Mzi=Mzim1+(xi*pyi -ybieff*pxi)*2*a/n;
py(i)=pyi;
Fxim1=Fxi;
Fyim1=Fyi;
Mzim1=Mzi;

if picture==1
 if ibLR==-1   
 yL(1,i)=mu*pzi; yL(2,i)=pxi; yL(3,i)=pyi; yL(4,i)=pii; yL(5,i)=0;
 xelL(3*i-2)=xi; xelL(3*i-1)=xi+exi ; xelL(3*i)=xi; 
 yelL(3*i-2)=ybi-bLR; yelL(3*i-1)=ybi-bLR+eyi ; yelL(3*i)=ybi-bLR; 
 ey(i)=eyi;
 else
  if ibLR==0   
  yM(1,i)=mu*pzi; yM(2,i)=pxi; yM(3,i)=pyi; yM(4,i)=pii; yM(5,i)=0; yM(6,i)=pzi;
yM(7,i)=1000*Vbi;
  xelM(3*i-2)=xi; xelM(3*i-1)=xi+exi ; xelM(3*i)=xi; 
  yelM(3*i-2)=ybi-bLR; yelM(3*i-1)=ybi-bLR+eyi ; yelM(3*i)=ybi-bLR; 
  ey(i)=eyi;
  else
  yR(1,i)=mu*pzi; yR(2,i)=pxi; yR(3,i)=pyi; yR(4,i)=pii; yR(5,i)=0;
  xelR(3*i-2)=xi; xelR(3*i-1)=xi+exi ; xelR(3*i)=xi; 
  yelR(3*i-2)=ybi-bLR; yelR(3*i-1)=ybi-bLR+eyi ; yelR(3*i)=ybi-bLR; 
  eyR(i)=eyi;
  end;
 end;
end;

end;               % **  end i-loop (passage through contact length)

if ibLR==-1
 FxL=Fxi; FyL=Fyi; MzL=Mzi;
else
if ibLR==0  
 FxM=Fxi; FyM=Fyi; MzM=Mzi;
else 
 FxR=Fxi; FyR=Fyi; MzR=Mzi;
end;
end;
end;                % **  end iLR-loop (one, two or three rows of elements)

if nrow==1
 Fx=FxM;
 Fy=FyM;
 Mz=MzM;
else
 if nrow==2
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 Fx=FxL+FxR;
 Fy=FyL+FyR;
 Mz=MzL+MzR;
 else
 Fx=FxL+FxR+FxM;
 Fy=FyL+FyR+FyM;
 Mz=MzL+MzR+MzM;
 end;
end;

Mzprime=Mz+Fx*ymeff*epsyprime;   % for torsion (slope) calculation

end;                % **  end iit-loop (carcass deflection iteration)

if rigid==1
   Mz=Mz-c*Fx*Fy-y0*Fx;
else
   Mz=Mz-y0*Fx;
end;

t=-Mz/Fy; % pneumatic trail

yfx(ia,j)=Fx;
yfy(ia,j)=Fy;
ymz(ia,j)=Mz;
yt(ia,j)=t;

if kapparuns==1
xa(ia,j)=kappa;
end;
if alpharuns==1
xa(ia,j)=alphadeg;
end;
if aphitruns==1
xa(ia,j)=aphit;
end;
if alpharuns==1 % calculation of CFalpha/Fz (take deltalphadegr small!)
   if nCFa==0
      if ia>1
    if alpha>0
       if gamma==0

if abs(aphit)<0.001
if kappa==0

 CFalphaFz=(Fy-Fym1)/(Fz*pi*deltalphdegr/180);
 nCFa=1;
 end;

end;
end;

end;
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     end;
   end;
else
 CFalphaFz='?';   
end;

if alpharuns==1
 deltalphdegr=g1a*abs(alphadeg)+g2a;
 alphadeg=alphadeg+deltalphdegr;
end;
if kapparuns==1
 deltakappar=g1k*abs(kappa)+g2k;
 kappa=kappa+deltakappar;
end;
if aphitruns==1
 deltaphitr=g1t*abs(aphit)+g2t;
 aphit=aphit+deltaphitr;
end;

end;               % **  end running variable ia-loop 

end;               % **  end motion parameter j-loop

if picture==1
xelL(1)=a; xelL(2)=a ; xelL(3)=a;  
yelL(1)=0; yelL(2)=0 ; yelL(3)=ym +cs*a+0.5*cc*a*a;  
xelL(3*(n+1)+1)=-a; yelL(3*(n+1)+1)=0;
xelL(3*(n+1)+2)=a; yelL(3*(n+1)+2)=0;
xelM(1)=a; xelM(2)=a ; xelM(3)=a;  
yelM(1)=0; yelM(2)=0 ; yelM(3)=ym +cs*a+0.5*cc*a*a;  
xelM(3*(n+1)+1)=-a; yelM(3*(n+1)+1)=0;
xelM(3*(n+1)+2)=a; yelM(3*(n+1)+2)=0;
xelR(1)=a; xelR(2)=a ; xelR(3)=a;  
yelR(1)=0; yelR(2)=0 ; yelR(3)=ym +cs*a+0.5*cc*a*a;  
xelR(3*(n+1)+1)=-a; yelR(3*(n+1)+1)=0;
xelR(3*(n+1)+2)=a; yelR(3*(n+1)+2)=0;
   if rigid==1
      yc=Fy*c;

for i=3:3*(n+1)
         yelL(i)=yelL(i)+yc;
         yelM(i)=yelM(i)+yc;
         yelR(i)=yelR(i)+yc;
      end;   

end;
%  plots picture of force distribution and deformations

if nrow~=2                     
figure(1);
plot(x,yM);     
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xlabel('x  [m]'); 
ylabel('d.blue: mu*pz, l.blue: p, green: px, red: py, sepia: pz[N/m], black: Vb[mm/s]');
text(-0.1,16500,...

['alpha= ',num2str(alphapict),' deg, gamma= ',num2str(gammapict),' deg, kappa= ',....
       num2str(kappapict),', R= ',num2str(Rpict),'m']);
text(-0.1,18500,...

['cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),', clat= ',...
 num2str(clat),', cp= ',num2str(cp)]);

text(-0.1,14500,['theta= ',num2str(theta)]);
text(-0.1,12500,['epsyprime= ',num2str(epsyprime),...

', epsyrgamma= ',num2str(epsyrgamma)]);
text(-0.1,10500,['epsyFy= ',num2str(epsyFy),', epsgamma= ',num2str(epsgamma)]);
text(-0.1,8500,['epsdrgam= ',num2str(epsdrgam),', y0= ',num2str(y0*1000),'mm']);
 if nrow==1 
   text(0.03,12500,['SINGLE ROW']);
 else 
   text(0.03,12500,['MIDDLE ROW']); 
 end;
axis([-0.11,0.11,-5000,20000]);
grid;

figure(2);
plot(xelM,-yelM); 
xlabel('x and longitudinal deflections [m]'); 
ylabel('lateral deflections  [m]');
text(-0.1,0.007,['alpha= ',num2str(alphapict),' deg, gamma= ',num2str(gammapict),...

' deg, kappa= ', num2str(kappapict),', R= ',num2str(Rpict),'m']);
 if rigid==1
   text(-0.1,0.009,['** RIGID **,  c= ',num2str(c),'m/N']);
 else   
   text(-0.1,0.009,['cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),...

', clat= ',num2str(clat),', cp= ',num2str(cp)]);
 end;
text(-0.02,0.005,['Fy= ',num2str(round(Fy)),'N,  Mz= ',num2str(round(Mz)),'Nm']);
 if nrow==1 
   text(-0.1,0.005,['SINGLE ROW']);
 else 
   text(-0.1,0.005,['MIDDLE ROW']); 
 end;
axis([-0.11,0.11,-0.04,0.01]);
end;
if nrow~=1
figure(3);
plot(x,yR);     
xlabel('x  [m]'); 
ylabel('d.blue: mu*pz,  l.blue: p,  green: px,  red: py  [N/m]');
text(-0.1,16500,['alpha= ',num2str(alphapict),' [deg], gamma= ',num2str(gammapict),...

' [deg], kappa= ',num2str(kappapict),' [-], R= ',num2str(Rpict),' [m]']);
text(-0.1,18500,['cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),...
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', clat= ',num2str(clat),', cp= ',num2str(cp)]);
text(-0.1,12500,['RIGHT ROW']);
axis([-0.11,0.11,-5000,20000]);
grid;
figure(4);
plot(xelR,-yelR); 
xlabel('x and longitudinal deflections [m]'); 
ylabel('lateral deflections  [m]');
text(-0.1,0.007,['alpha= ',num2str(alphapict),' [deg], gamma= ',num2str(gammapict),...

' [deg], kappa= ',num2str(kappapict),' [-], R= ',num2str(Rpict),' [m]']);
 if rigid==1
   text(-0.1,0.009,['** RIGID **,  c= ',num2str(c),'m/N']);
 else   
text(-0.1,0.009,['cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),', clat= ',num2str(clat),...

', cp= ',num2str(cp)]);
 end;
text(-0.1,0.005,['RIGHT ROW,   brow/a= ',num2str(brow/a)]);
axis([-0.11,0.11,-0.04,0.01]);

figure(5);
plot(x,yL);     
xlabel('x  [m]'); 
ylabel('d.blue: mu*pz,  l.blue: p,  green: px,  red: py  [N/m]');
text(-0.1,16500,['alpha= ',num2str(alphapict),' deg, gamma= ',num2str(gammapict),...

' deg, kappa= ', num2str(kappapict),', R= ',num2str(Rpict),'m']);
text(-0.1,18500,['cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),...

', clat= ',num2str(clat),', cp= ',num2str(cp)]);
text(-0.1,14500,['theta= ',num2str(theta)]);
text(-0.1,12500,['epsyprime= ',num2str(epsyprime),...

', epsyrgamma= ',num2str(epsyrgamma)]);
text(-0.1,10500,['epsyFy= ',num2str(epsyFy),', epsgamma= ',num2str(epsgamma)]);
text(-0.1,8500,['epsdrgam= ',num2str(epsdrgam),', y0= ',num2str(y0*1000),'mm']);
text(0.03,12500,['LEFT ROW']); 
axis([-0.11,0.11,-5000,20000]);
grid;

figure(6);
plot(xelL,-yelL); 
xlabel('x and longitudinal deflections [m]'); ylabel('lateral deflections  [m]');
text(-0.1,0.007,['alpha= ',num2str(alphapict),' deg, gamma= ',num2str(gammapict),...

' deg, kappa= ', num2str(kappapict),', R= ',num2str(Rpict),'m']);
 if rigid==1
   text(-0.1,0.009,['** RIGID **,  c= ',num2str(c),'m/N']);
 else   
text(-0.1,0.009,['cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),', clat= ',num2str(clat),...

', cp= ',num2str(cp)]);
 end;
text(-0.02,0.005,['Fy= ',num2str(round(Fy)),'N,  Mz= ',num2str(round(Mz)),'Nm']);
text(-0.1,0.005,['LEFT ROW']); 
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axis([-0.11,0.11,-0.04,0.01]);
end;

% end if picture

else 
% plots with running variable

if alpharuns==1
xmin=alphdegminr; xmax=alphdegmaxr; xtext='slip angle  alpha  [deg]';
Fxmin=-mu0*Fz; Fxmax=mu 0 * F z;  F ymi n =-mu 0 * F z;  F yma x =mu0*Fz;
Mmin=1.1*0.1*a*Fymin; Mmax=0.9*0.1*a*Fymax; 
tmin=-0.2*a; tmax=0.6*a; ax=0.25; ay=0; 
partext1=['CFkap= ',num2str(CFkappaFz),'*Fz, CFalf= ',num2str(CFalphaFz),'*Fz'];
end;
if kapparuns==1
xmin=kappaminr; xmax=kappamaxr; xtext='longitudinal slip ratio  kappa  [-]';
F x mi n =-mu 0 * F z;  F x ma x =mu 0 *Fz; Fymin=-mu0*Fz; Fymax=mu 0 * F z;
Mmin=1.1*0.1*a*Fymin; Mmax=0.9*0.1*a*Fymax; 
tmin=-0.2*a; tmax=0.6*a; ax=-0.25; ay=0; 
partext1=['CFkap= ',num2str(CFkappaFz),'*Fz']; 
end;
if aphitruns==1
xmin=0; xmax=aphitmaxr; xtext='non-dim. turn slip  aphit= a/R  [-]';
Fxmin=-mu0*Fz; Fxmax=mu0*Fz; Fymin=-mu0*Fz/3; Fymax=mu0*Fz; Mmin=1.1*a*Fymin/6;
Mmax=0.9*0.8*a*Fymax; 
tmin=-a; tmax=0.2*a; ax=0.25; ay=0; 
partext1=['CFkap= ',num2str(CFkappaFz),'*Fz']; 
end;

xl=xmax-xmin; Fxl=Fxmax-Fxmin; Fyl=Fymax-Fymin; Ml=Mmax-Mmin; tl=tmax-tmin;

if kappapar==1
 if alpharuns==1 
  partext0=['a/R= ',num2str(aphit),', gamma= ',num2str(gammadeg),' [deg]']; 
  else 
        partext0=['alpha= ',num2str(alphadeg),', gamma= ',num2str(gammadeg),' [deg]']; 
   end;
 if jmax==1
       partext=['kappa= ',num2str(kappamin)]; 
   else
      partext=['kappamin= ',num2str(kappamin), ', deltakappa=',num2str(deltakappa),' [-]']; 
   end;
elseif gammapar==1
 if alpharuns==1 
  partext0=['a/R= ',num2str(aphit),', kappa= ',num2str(kappa)]; 
  elseif kapparuns==1 
  partext0=['alpha= ',num2str(alphadeg),' [deg]',', a/R= ',num2str(aphit)];
  else
  partext0=['alpha= ',num2str(alphadeg),' [deg]',', kappa= ',num2str(kappa)];
 end;
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 if jmax==1
       partext=['gamma= ',num2str(gamdegmin)],' [deg]'; 
   else
        partext=['gammamin= ',num2str(gamdegmin), ', deltagamma=',...

num2str(deltgamdeg),' [deg]']; 
   end;
elseif alphapar==1
 if kapparuns==1 
  partext0=['a/R= ',num2str(aphit),', gamma= ',num2str(gammadeg),' [deg]']; 
  else 
      partext0=['kappa= ',num2str(kappa),', gamma= ',num2str(gammadeg),' [deg]']; 
   end;
 if jmax==1
       partext=['alpha= ',num2str(alphdegmin),' [deg]']; 
   else
       partext=['alphamin= ',num2str(alphdegmin), ', deltaalpha=',...

num2str(deltalphdeg),' [deg]']; 
   end;
elseif aphitpar==1
   if alpharuns==1
   partext0=['kappa= ',num2str(kappa),', gamma= ',num2str(gammadeg),' [deg]']; 
  else 
        partext0=['alpha= ',num2str(alphadeg),' [deg]',', gamma= ',num2str(gammadeg),' [deg]']; 
   end;
 if jmax==1
       partext=['aphit= ',num2str(aphitmin)]; 
   else
      partext=['aphitmin= ',num2str(aphitmin), ', deltaaphit=',num2str(deltaphit),' [-]']; 
   end;
else      

if alpharuns==1 
  partext0=['a/R= ',num2str(aphit),', kappa= ',num2str(kappa)]; 
  elseif kapparuns==1 
  partext0=['alpha= ',num2str(alphadeg),' [deg]',', a/R= ',num2str(aphit)];
  else
  partext0=['alpha= ',num2str(alphadeg),' [deg]',', kappa= ',num2str(kappa)];
 end;
    partext=['gamma= ',num2str(gamdegmin),' [deg]'];   
end;    
if rigid==0
   texttitle= ['Vc= ',num2str(Vc),'m/s, mu0= ',num2str(mu0),', amu= ',num2str(amu),....

', cyaw= ',num2str(cyaw),', cbend= ',num2str(cbend),', clat= ',num2str(clat)];
else
   texttitle= ['Vc= ',num2str(Vc),'m/s , mu0= ',num2str(mu0),' , amu= ',num2str(amu),....
        ' , c= ',num2str(c),' , y0= ',num2str(y0),'      (rigid carcass)'];
end;
partext2= ['a=',num2str(a),', b=',num2str(b),', brow=',num2str(brow), ', Fz=',num2str(Fz),...
 ', plyst=',num2str(alphadegply),', conic=',num2str(gammadegcon),',iitend=',num2str(iitend)];
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figure(1);
plot(xa,yfy); ylabel('side force  Fy [N]'); xlabel(xtext);
title(texttitle);
text(xmin+0.02*xl, Fymin+(0.95-1.5*ay)*Fyl,['nr rows= ',num2str(nrow)]);
text(xmin+0.02*xl, Fymin+(0.9-1.5*ay)*Fyl,['theta= ',num2str(theta)]);
text(xmin+(0.27+ax)*xl, Fymin+0.205*Fyl,partext0);
text(xmin+(0.27+ax)*xl, Fymin+0.13*Fyl,partext);
text(xmin+(0.27+ax)*xl, Fymin+0.055*Fyl,partext1);
text(xmin+(0.27+ax)*xl, Fymin+0.01*Fyl,partext2);
axis([xmin,xmax,Fymin,Fymax]);
grid;

figure(2);
plot(xa,yfx); ylabel('longitudinal force  Fx [N]'); xlabel(xtext);
title(texttitle);
text(xmin+0.02*xl, Fymin+0.95*Fyl,['nr rows= ',num2str(nrow)]);
text(xmin+0.02*xl, Fymin+0.9*Fyl,['theta= ',num2str(theta)]);
text(xmin+(0.27-ax)*xl, Fymin+0.205*Fyl,partext0);
text(xmin+(0.27-ax)*xl, Fymin+0.13*Fyl,partext);
text(xmin+(0.27-ax)*xl, Fymin+0.055*Fyl,partext1);
axis([xmin,xmax,Fxmin,Fxmax]);
grid;

figure(3);
plot(xa,ymz); ylabel('align.torque  Mz [-]'); xlabel(xtext);
title(texttitle);
text(xmin+0.02*xl, Mmin+0.95*Ml,['nr rows= ',num2str(nrow),', nr elem= ',num2str(n)]);
text(xmin+0.02*xl, Mmin+0.9*Ml,['theta= ',num2str(theta)]);
text(xmin+0.52*xl, Mmin+0.95*Ml,['epsyprime= ',...

num2str(epsyprime),', epsyrgamma= ',num2str(epsyrgamma)]);
text(xmin+0.52*xl, Mmin+0.88*Ml,['epsyFy= ',...

num2str(epsyFy),', epsgamma= ',num2str(epsgamma)]);
text(xmin+0.52*xl, Mmin+0.81*Ml,['epsdrgam= ',...

num2str(epsdrgam),', y0= ',num2str(y0*1000),'mm']);
text(xmin+0.02*xl, Mmin+(0.275+ay)*Ml,partext0);
text(xmin+0.02*xl, Mmin+(0.205+ay)*Ml,partext);
text(xmin+0.02*xl, Mmin+(0.13+ay)*Ml,partext1);
text(xmin+0.02*xl, Mmin+(0.055+ay)*Ml,partext2);
axis([xmin,xmax,Mmin,Mmax]);
grid;

figure(4);
plot(xa,yt); ylabel('pneum. trail [m]'); xlabel(xtext);   % (xamean,ytdiff)
title(texttitle);
text(xmin+0.02*xl, tmin+0.95*tl,['nr rows= ',num2str(nrow)]);
text(xmin+0.02*xl, tmin+0.205*tl,partext0);
text(xmin+0.02*xl, tmin+0.13*tl,partext);
text(xmin+0.02*xl, tmin+0.055*tl,partext1);
axis([xmin,xmax,tmin,tmax]);
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grid;

figure(5);
plot(yfx,yfy); ylabel('side force [N]'); xlabel('longitudinal force [N]');
title(texttitle);
text(Fxmin+0.03*Fxl, Fymin+0.95*Fyl,['nr rows= ',num2str(nrow)]);
text(Fxmin+0.03*Fxl, Fymin+0.205*Fyl,partext0);
text(Fxmin+0.03*Fxl, Fymin+0.13*Fyl,partext);
text(Fxmin+0.03*Fxl, Fymin+0.055*Fyl,partext1);
text(Fxmin+0.03*Fxl, Fymin+0.01*Fyl,partext2);
axis([1.2*Fxmin,1.2*Fxmax,Fymin,Fymax]);
grid;

figure(6);
plot(yfx,ymz); ylabel('aligning torque [Nm]'); xlabel('longitudinal force [N]');
title(texttitle);
text(Fxmin+0.03*Fxl, Mmin+0.95*Ml,['nr rows= ',num2str(nrow)]);
text(Fxmin+0.52*Fxl, Mmin+0.95*Ml,['epsyprime= ',num2str(epsyprime),...

', epsyrgamma= ',num2str(epsyrgamma)]);
text(Fxmin+0.52*Fxl, Mmin+0.88*Ml,['epsyFy= ',num2str(epsyFy),...

', epsgamma= ',num2str(epsgamma)]);
text(Fxmin+0.52*Fxl, Mmin+0.81*Ml,['epsdrgam= ',num2str(epsdrgam),...

', y0= ',num2str(y0*1000),'mm']);
text(Fxmin+0.03*Fxl, Mmin+0.205*Ml,partext0);
text(Fxmin+0.03*Fxl, Mmin+0.13*Ml,partext);
text(Fxmin+0.03*Fxl, Mmin+0.055*Ml,partext1);
text(Fxmin+0.03*Fxl, Mmin+0.0*Ml,partext2);
%axis([1.2*Fxmin,1.2*Fxmax,Mmin,Mmax]);
grid;

end;
clear;
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SWIFT parameters

App. 3.1.  Parameter values of Magic Formula and SWIFT model

Table A3.1.  (205/60R15 91V, 2.2 bar. ISO sign definition. Also, cf. App.3.2)

Ro (=ro) = 0.313m ,      Fzo (=FNo) = 4000N ,      mo = 9.3kg ,      Vo = 16.67m/s

pCx1 = 1.685
pEx3 =!0.020
pHx1 =!0.002
rBx1  =  12.35
qsx1 = 0
pCy1 = 1.193
pEy2 =!0.537
pKy3 =!0.028
pHy1 = 0.003
pVy1 =  0.045
rBy1  =  6.461
rHy1 =  0.009
rVy5 =  1.9
qBz1 

= 8.964
qBz9 = 18.47
qDz3 = 0.007
qDz9 =!0.009
qEz1 =!1.609
qEz5 =!0.896
ssz1 = 0.043

qIay = 0.109
qIaxz = 0.071
qIby = 0.696
qIbxz = 0.357
qIc = 0.055

qV1=7.1×10!5

qV2 =  2.489
qFz1 =  13.37
qFz2 =  14.35

pDx1 = 1.210
pEx4  =  0
pHx2 = 0.002
rBx2  =!10.77 
qsx2   =  0
pDy1  =!0.990
pEy3  =!0.083
pKy4 = 2
pHy2 =!0.001
pVy2  =!0.024
rBy2  = 4.196
rVy1 = 0.053
rVy6 =!10.71
qBz2  =!1.106
qBz10 =  0
qDz4 = 13.05
qDz10 = 0
qEz2 =!0.359
qHz1 = 0.007
ssz2 = 0.001

qma   =  0.237
qmb   =  0.763
qmc   =  0.108

qFz3 =  0
qsy1 =  0.01
qsy3 =  0
qsy4 =  0

pDx2 =!0.037
pKx1 =  21.51
pVx1 =  0
rBx3  = 0
qsx3 =  0
pDy2 =  0.145
pEy4 =!4.787
pKy5 =  0
pHy3 =  0
pVy3 =!0.532
rBy3  =!0.015
rVy2

=!0.073

qBz3 =!0.842
qCz1 = 1.180
qDz6 =!0.008
qDz11= 0
qEz3 =  0
qHz2 =!0.002
ssz3 = 0.731

qcbx0,z= 121.4
qcby  = 40.05
qccx  = 391.9
qccy  = 62.7

qa1   = 0.135
qa2   = 0.035
qbvx,z  = 3.957
qbvθ  = 3.957

pEx1 = 0.344
pKx2 =!0.163 
pVx2 = 0
rCx1 = 1.092

pDy3 =!11.23
pKy1 =!14.95 
pKy6 =!0.92

pVy4 =  0.039
rBy4  =  0
rVy3 =  0.517

qBz5 =!0.227
qDz1 = 0.100
qDz7  = 0.000

qEz4 =  0.174
qHz3 =  0.147
ssz4 =!0.238

qkbx,z =  0.228
qkby =  0.284
qkcx =  0.910
qkcy =  0.910

Breff =  9
Dreff

=  0.23
Freff =  0.01

pEx2 =  0.095
pKx3 =  0.245

rHx1 =  0.007

pEy1 =!1.003
pKy2 =  2.130
pKy7 =!0.24

rCy1 =  1.081
rVy4 =  35.44

qBz6 =  0
qDz2 =!0.001
qDz8 =!0.296

qHz4 = 0.004

qcbθ0  = 61.96
qcbγ,ψ= 20.33
qccψ =  55.82
qkbθ =  0.080
qkbγ,ψ= 0.038
qkcψ =  0.834
qFcx1 =  0.1
qFcy1 =  0.3
qFcx2 =  0
qFcy2 =  0
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App. 3.2.  Non-Dimensionalisation (with some remarks)

The quantities listed in Table A3.1 are non-dimensional. They are used in the
following equations:

Magic Formula:  Eqs.(4.E1-4.E78), except (4.E68, 4.E70)
SWIFT:  Eqs.(9.131-236), except (9.177-182). 

The inertia quantities have been made non-dimensional by dividing by the
reference mass mo or the reference moment of inertia Io. For mo the total tyre
mass has been taken. The quantity Io is defined as:

  [kg.m2] (A3.1)Io' moR
2
o

Consequently, we have the non-dimensional parameters shown in the list above:

 , etc.  and  , etc. (A3.2)qma'
ma

mo

qIay '
Iay

mo R 2
o

As has been introduced already in connection with Eqs.(9.213-216) the non-
dimensionalisation of the stiffnesses and damping coefficients is realized by
dividing the linear (translational) stiffnesses and damping coefficients by:

  [N/m]       and           [Ns/m] (A3.3)cto '
Fzo

Ro

kto '
mo Fzo

Ro

and the rotational stiffnesses and damping coefficients by:

 [Nm/rad]   and      [Nms/rad] (A3.4)cro ' FzoRo kro ' mo Fzo R 3
o

As a consequence, we have for example:

 , etc.     and        , etc. (A3.5)qcbx '
cbx

cto

qkbx '
kbx

kto

 , etc.    and       , etc. (A3.6)qcbψ '
cbψ

cro

qkbψ '
kbψ

kro

Remarks. In (9.131-132) the factors kbx,zΩ are set equal to zero as rolling
resistance has been accounted for already by the moment My (9.236,9.230- 231).
The mass ma is the mass of that part of the tyre that, according to the model,
moves with the wheel rim or axle. The quantity Iay is the moment of inertia of
that part of the tyre that rotates about the η axis as if it were attached as a rigid
body to the wheel rim. The tyre inertia that is allocated to the belt is denoted with
subscript b. The inertia denoted with subscript c is assumed to move with the
contact patch. The interaction parameters qFcx2 and qFcy2 have been chosen equal
to zero. They would have taken values 0.94 and 1.56 if qFcx1 = qFcy1 =0.
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App. 3.3.  Estimation of SWIFT Parameter Values 
using a limited set of (semi-static) measurements
(Contributed by I.J.M. Besselink, TNO-Automotive) 

In Chapter 9  the SWIFT tyre model has been described. In order to assess the
parameters of this tyre model a number of different tests are required, e.g.
dynamic braking, yaw oscillation, dynamic cleat experiments on the drum. A full
measurement programme to determine all parameters of the SWIFT model will
be extensive and time consuming. Also the dedicated measurement equipment to
perform high frequency testing may not be available or not suited to handle very
large tyres (e.g. truck or aircraft tyres). 

Using the experience gained from a number of full measurement
programmes executed on passenger car tyres, a procedure has been developed
to make sensible first estimates for the SWIFT parameters. This description
applies to MF-Swift as implemented by TNO-Automotive in a number of
simulation codes (e.g. ADAMS, DADS, SIMPACK or MATLAB/Simulink). The
following steps can be distinguished:

(1)  Force and moment testing

Fitting of the Magic Formula: Fx, Fy, Mx, My, Mz = f(Fz, κ, α, γ, Vx).

The software program MF-Tool, also developed by TNO-Automotive, may
be used to fit the Magic Formula parameters. This program requires that the
measurement data is provided in the form of TYDEX files, a standardised format
as developed by the international TYDEX (Tyre Data Exchange) workgroup, cf.
Oosten et al.(1996).

Note: the contribution of the forward velocity Vx  is present in the rolling
resistance formula (9.231): 

(9.231)fr ' qsy1% qsy3|Vx/Vo|% qsy4(Vx/Vo )4

that is used in connection with Eqs.(9.230,9.236). Of course, in cases such as
moving on wet roads,  the friction coefficient may be formulated as functions of
the speed, cf. Eq.(4.E23). 

(2)  Loaded radius/effective rolling radius

The tyre normal deflection ρz is the difference between the free tyre radius of the
rotating tyre rΩ  and the loaded tyre radius rl: (cf. Eq.(9.218))

(A3.7)ρz ' ro%∆r& rl ' r
Ω
&rl

The following set of equations needs to be fitted:
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a) centrifugal growth of the tyre free radius ∆r  (coefficient qV1)

(9.219)∆r ' qV1ro(Ω ro /Vo)
2

b) vertical force-deflection equation (coefficients: qv2, qFcx1, qFcy1, qFz1 and qFz2)

Fz' 1%qV2|Ω |
ro

Vo

& qFcx1

Fx

Fzo

2

& qFcy1

Fy

Fzo

2

qFz1

ρz

ro

%qFz2

ρ2
z

ro
2

Fzo

(A3.8)

c) effective rolling radius, similar to (9.232), (coefficients: B,D,Freff)

(A3.9)re' ro% ∆r&
Fzo

CFz

Dreff arctan Breff

CFz

Fzo

ρz % Freff

CFz

Fzo

ρz

with the vertical stiffness of the standing tyre at nominal load Fzo as derived from
Eq.(A3.8):

 (9.232b)CFz '
Fzo

ro

q 2
Fz1% 4qFz2

Notes: (1) Fzo, Vo and ro=Ro are reference parameters: they are just used to make
the coefficients dimensionless. (2) An additional parameter qre0 may be
introduced that multiplied with ro in Eqs.(9.218, 9.232) gives an improved value
for the free unloaded radius. 

The measurement data for assessing the loaded and the effective rolling
radius typically consists of values for rl, re, V, Fx, Fy, Fz carried out for a number
of different vertical loads, forward velocities and possibly longitudinal and/or
lateral forces. Based on the relation V=Ωre it is sufficient to specify two out of
three variables: forward velocity V, angular velocity Ω and effective rolling
radius re. The data for Fx and Fy can be considered optional for passenger car
tyres, but generally should be included for racing tyres.

Fitting of the parameters is generally done in two steps. In order to obtain
maximum accuracy for the loaded radius the equations (9.219) and (9.217) are
fitted first. In a second step the coefficients for the effective rolling radius, as
given by equation (9.232,9.232a), are determined. 

(3)  Contact length

In SWIFT the following formula is used for the contact length formula, a
represents half of the contact length (coefficients: qa1 and qa2)
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Fig. A3.1. Measurement and empirical formula results for half the contact length as a function
of tyre deflection, passenger car tyres.

(9.207)a' qa1

Fz

Fzo

%qa2

Fz

Fzo

ro

Consequently, measurement data should provide half the contact length as a
function of the vertical load Fz. If no or only very limited data is available the
following formula may give a good estimate (where ρz is the tyre deflection):

(A3.10)a' pa1 pa2

ρz

ro

%

ρz

ro

ro

This formula was proposed by Besselink (2000) and better acknowledges the
fact that the contact length is a geometrical property and primarily a function of
the tyre deflection. The suggested parameter values for a passenger and light
truck tyres are respectively: 

pa1 =0.35 and pa2 =2.25 (on a flat surface) 
pa1 =0.45 and pa2 =1.25 (on an external drum with a diameter of 2.5m).

It has been found that this formula is valid for a fairly wide range of tyres and
can also be used for different tyre pressures without changing the coefficients,
see Fig.A3.1. This figure also clearly illustrates that on an external drum the
contact length is shorter compared to the situation on a flat road surface.
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(4)  Relaxation lengths, overall longitudinal and lateral stiffness

Apart from an accurate representation of the high frequency responses, it is
important that the low frequency, transient behaviour (i.e. relaxation effects of
the tyre) is included correctly. Measurements of the relaxation lengths can be
used to assess the resulting longitudinal and lateral stiffness of the tyre carcass
(that is excluding the tread) at ground level. For SWIFT the following equations
hold for the longitudinal and lateral relaxation lengths respectively, cf.
Eqs.(9.15) and (9.51) with m = 1 (at vanishing slip) and the relatively small
effect of the torsional compliance 1/cψ neglected:

(A3.11)σx '
CFκ

cx

% a

(A3.12)σy '
CFα

cy

% a

where:
longitudinal relaxation lengthσx

longitudinal slip stiffness of the tyreCFκ

 longitudinal carcass stiffness at ground levelcx

lateral relaxation lengthσy

cornering stiffness of the tyreCFα

lateral carcass stiffness at ground levelcy

half of the contact lengtha

In the lateral direction all parameters may be known ( ), but usuallyσy , CFα , cy , a
the left and right hand side of Eq.(A3.12) turn out not to be the same in
magnitude. In general the relaxation length based on the lateral stiffness and
contact length is too short compared to the measurements on a rolling tyre. Since
the aim of the tyre model is to have an accurate description of the tyre under
rolling conditions, Eqs.(A3.11,A3.12) are used to calculate the resulting carcass
stiffnesses of the tyre model in lateral and longitudinal direction (cx and cy

respectively). 
In the next step (5), the resulting compliances at ground level will be divided

and distributed over the various parts of the tyre model.

(5)  Carcass compliances

In SWIFT the rigid belt ring is elastically suspended with respect to the rim in all
directions. The contact patch is elastically attached to the ring. Normally the



635APPENDIX 3    SWIFT  PARAMETERS

rim fixed belt deflected
          (rigid ring)

contact patch
deflected

Fx
a b c

total circumferential 
 carcass deflection

     total lateral 
carcass deflection

a b c

belt deflected
     (rigid ring)

contact patch
deflected

cbλ

ccx

cbx

cbω

ccy

cby
rim fixed

Fy

side view rear view

Fig. A3.2.  Longitudinal and lateral deflections of the rigid ring and contact patch.

various stiffness values are determined from dynamic experimental results. By
using these values, it is possible to calculate their respective contribution to the
overall carcass deflection at ground level when it is assumed that a longitudinal
or lateral force is applied and that the rim is held fixed, cf. Fig.A3.2. 

Table A3.2.  Distribution of longitudinal and lateral carcass compliance components

longitudinal at ground level    tyre 1   tyre 2   tyre 3 rule of thumb

rigid ring translation (a)    27%   28%    31%       30%

rigid ring rotation (b)    63%   62%    60%       60%

contact patch translation (c)    10%   10%     9%       10%

lateral at ground level    tyre 1   tyre 2   tyre 3 rule of thumb

rigid ring translation (a)    34%   25%    27%       25%

rigid ring rotation (b)    62%   56%    55%       55%

contact patch translation (c)    4%   19%    18%       20%

Table A3.2 shows the relative contributions a, b and c that have been
assessed for three different tyres. Based on these data it may be concluded that
although the compliance values themselves are different, the relative
contributions to the overall carcass deflection are fairly constant. Since under
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step (4) the overall longitudinal and lateral carcass stiffnesses have been
determined, it is now possible to assess approximate individual stiffness values
using the suggested ‘rule of thumb’. 

Additional measurement data (e.g. yaw stiffness or FEM model results) may
also be used to enhance the estimates or to gain additional confidence in the
stiffness/deflection distribution.

(6) Tyre inertia

In the SWIFT model the tyre is not considered as a single rigid body. A part of
the tyre near the rim is assumed to be rigid and fixed to the rim. The other part
that represents the belt, is considered to move as a rigid ring. Consequently, the
total tyre mass has to be divided and a distribution has to be made over the
inertia of the ring and the inertia of the part rigidly attached to the rim. The latter
part is further regarded as a part of the wheel body. An estimate of this division
can be made based on past experience or on a detailed weight break-down
provided by the tyre manufacturer. The following rough initial estimate is
suggested:

 75% of the tyre mass is assigned to the tyre belt
 85% of the tyre moments of inertia is assigned to the tyre belt

Tentatively, the contact patch body is considered as an additional small mass.

(7) Carcass damping

Generally, the exact amount of damping of the tyre is very difficult to assess
experimentally. For instance, it is observed that a large difference in vertical
damping exists between a tyre that stands still and a tyre that rolls: under rolling
conditions the apparent damping may be a factor 10 smaller compared to the
damping of a tyre standing still, also cf. Jianmin et al. (2001). A simple model
with finite contact length and provided with radial dry friction dampers (Pacejka
1981a) may explain this phenomenon.

Based on experience, the following guideline may be provided: when the tyre
is not in contact with the ground (and the rim is fixed) the damping will be
relatively low. Typical values of the damping coefficients lie in the range of 1 to
6% of the corresponding critical damping coefficients. Generally, the modes that
contain a large translational component are more heavily damped than the modes
with a large rotational component.
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